
808 CHAPTER 14. FOLLOWING USERS

(Figure 14.1) and navigates to the Users page (Figure 14.2) to select a user to
follow. Calvin navigates to the profile of a second user, Thomas Hobbes (Fig-
ure 14.3), clicking on the “Follow” button to follow that user. This changes
the “Follow” button to “Unfollow” and increments Hobbes’s “followers” count
by one (Figure 14.4). Navigating to his home page, Calvin now sees an in-
cremented “following” count and finds Hobbes’s microposts in his status feed
(Figure 14.5). The rest of this chapter is dedicated to making this page flow
actually work.

14.1 The Relationship model
Our first step in implementing following users is to construct a data model,
which is not as straightforward as it seems. Naïvely, it seems that a has_many
relationship would do: a user has_many followed users and has_many fol-
lowers. As we will see, there is a problem with this approach, and we’ll learn
how to fix it using has_many :through.

As usual, Git users should create a new topic branch:

$ git checkout -b following-users

14.1.1 A problem with the data model (and a solution)
As a first step toward constructing a data model for following users, let’s ex-
amine a typical case. For instance, consider a user who follows a second user:
we could say that, e.g., Calvin is following Hobbes, and Hobbes is followed by
Calvin, so that Calvin is the follower and Hobbes is followed. Using Rails’ de-
fault pluralization convention, the set of all users following a given user is that
user’s followers, and hobbes.followers is an array of those users. Unfortu-
nately, the reverse doesn’t work: by default, the set of all followed users would
be called the followeds, which is ungrammatical and clumsy. We’ll adopt Twit-
ter’s convention and call them following (as in “50 following, 75 followers”),
with a corresponding calvin.following array.

14.1. THE RELATIONSHIP MODEL 809

Figure 14.1: A current user’s profile.

810 CHAPTER 14. FOLLOWING USERS

Figure 14.2: Finding a user to follow.

14.1. THE RELATIONSHIP MODEL 811

Figure 14.3: The profile of a user to follow, with a follow button.

812 CHAPTER 14. FOLLOWING USERS

Figure 14.4: A profile with an unfollow button and incremented followers
count.

14.1. THE RELATIONSHIP MODEL 813

Figure 14.5: The Home page with status feed and incremented following count.

814 CHAPTER 14. FOLLOWING USERS

user
id
1 Michael Hartl

name email
mhartl@example.com

...
email

10
...
...

7

1

2
follower_id

...

...

...1

...
1

namefollowed_id

8

...
1

following
has_many

Figure 14.6: A naïve implementation of user following.

This discussion suggests modeling the followed users as in Figure 14.6,
with a following table and a has_many association. Since user.follow-
ing should be a collection of users, each row of the following table would
need to be a user, as identified by the followed_id, together with the fol-
lower_id to establish the association.2 In addition, since each row is a user,
we would need to include the user’s other attributes, including the name, email,
password, etc.

The problem with the data model in Figure 14.6 is that it is terribly redun-
dant: each row contains not only each followed user’s id, but all their other
information as well—all of which is already in the users table. Even worse, to
model user followers we would need a separate, similarly redundant
followers table. Finally, this data model is a maintainability nightmare: each
time a user changed (say) their name, we would need to update not just the user’s
record in the users table but also every row containing that user in both the
following and followers tables.

The problem here is that we are missing an underlying abstraction. One
way to find the proper model is to consider how we might implement the act
of following in a web application. Recall from Section 7.1.2 that the REST ar-
chitecture involves resources that are created and destroyed. This leads us to

2For simplicity, Figure 14.6 omits the following table’s id column.

14.1. THE RELATIONSHIP MODEL 815

ask two questions: When a user follows another user, what is being created?
When a user unfollows another user, what is being destroyed? Upon reflection,
we see that in these cases the application should either create or destroy a rela-
tionship between two users. A user then has many relationships, and has many
following (or followers) through these relationships.

There’s an additional detail we need to address regarding our application’s
data model: unlike symmetric Facebook-style friendships, which are always
reciprocal (at least at the data-model level), Twitter-style following relation-
ships are potentially asymmetric—Calvin can follow Hobbes without Hobbes
following Calvin. To distinguish between these two cases, we’ll adopt the ter-
minology of active and passive relationships: if Calvin is following Hobbes but
not vice versa, Calvin has an active relationship with Hobbes and Hobbes has
a passive relationship with Calvin.3

We’ll focus now on using active relationships to generate a list of followed
users, and consider the passive case in Section 14.1.5. Figure 14.6 suggests how
to implement it: since each followed user is uniquely identified by follow-

ed_id, we could convert following to an active_relationships table,
omit the user details, and use followed_id to retrieve the followed user from
the users table. A diagram of the data model appears in Figure 14.7.

Because we’ll end up using the same database table for both active and pas-
sive relationships, we’ll use the generic term relationship for the table name,
with a corresponding Relationship model. The result is the Relationship data
model shown in Figure 14.8. We’ll see starting in Section 14.1.4 how to use the
Relationship model to simulate both Active Relationship and Passive Relation-
ship models.

To get started with the implementation, we first generate a migration corre-
sponding to Figure 14.8:

$ rails generate model Relationship follower_id:integer followed_id:integer

Because we will be finding relationships by follower_id and by fol-

lowed_id, we should add an index on each column for efficiency, as shown in
3Thanks to reader Paul Fioravanti for suggesting this terminology.

816 CHAPTER 14. FOLLOWING USERS

user
id
1 Michael Hartl

name email
mhartl@example.com

user
id
2 ...

name email
...

3
7

1
9

8

10

1

1

1
2

7

follower_id

2

1

1
1

followed_id
2

active_relationships

user
id
7 ...

name email
...

user
id
10 ...

name email
...

user
id
8 ...

name email
...

has_manythrough

has_many

has_many

has_many

user.following

Figure 14.7: A model of followed users through active relationships.

datetimeupdated_at
datetimecreated_at

followed_id integer

id
follower_id integer

integer
relationships

Figure 14.8: The Relationship data model.

14.1. THE RELATIONSHIP MODEL 817

Listing 14.1.

Listing 14.1: Adding indices for the relationships table.
db/migrate/[timestamp]_create_relationships.rb

class CreateRelationships < ActiveRecord::Migration[6.0]

def change

create_table :relationships do |t|

t.integer :follower_id

t.integer :followed_id

t.timestamps

end

add_index :relationships, :follower_id

add_index :relationships, :followed_id

add_index :relationships, [:follower_id, :followed_id], unique: true

end

end

Listing 14.1 also includes a multiple-key index that enforces uniqueness on
(follower_id, followed_id) pairs, so that a user can’t follow another user
more than once. (Compare to the email uniqueness index from Listing 6.29 and
the multiple-key index in Listing 13.3.) As we’ll see starting in Section 14.1.4,
our user interface won’t allow this to happen, but adding a unique index arranges
to raise an error if a user tries to create duplicate relationships anyway (for
example, by using a command-line tool such as curl).

To create the relationships table, we migrate the database as usual:

$ rails db:migrate

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. For the user with id equal to 1 from Figure 14.7, what would the value
of user.following.map(&:id) be? (Recall the map(&:method_-

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

818 CHAPTER 14. FOLLOWING USERS

name) pattern from Section 4.3.2; user.following.map(&:id) just
returns the array of ids.)

2. By referring again to Figure 14.7, determine the ids of user.following
for the user with id equal to 2. What would the value of user.follow-
ing.map(&:id) be for this user?

14.1.2 User/relationship associations
Before implementing user following and followers, we first need to establish the
association between users and relationships. A user has_many relationships,
and—since relationships involve two users—a relationship belongs_to both
a follower and a followed user.

As with microposts in Section 13.1.3, we will create new relationships using
the user association, with code such as

user.active_relationships.build(followed_id: ...)

At this point, you might expect application code as in Section 13.1.3, and it’s
similar, but there are two key differences.

First, in the case of the user/micropost association we could write

class User < ApplicationRecord

has_many :microposts

.

.

.

end

This works because by convention Rails looks for a Micropost model corre-
sponding to the :microposts symbol.4 In the present case, though, we want
to write

4Technically, Rails converts the argument of has_many to a class name using the classify method, which
converts "foo_bars" to "FooBar".

14.1. THE RELATIONSHIP MODEL 819

has_many :active_relationships

even though the underlying model is called Relationship. We will thus have to
tell Rails the model class name to look for.

Second, before we wrote

class Micropost < ApplicationRecord

belongs_to :user

.

.

.

end

in the Micropost model. This works because the microposts table has a
user_id attribute to identify the user (Section 13.1.1). An id used in this man-
ner to connect two database tables is known as a foreign key, and when the
foreign key for a User model object is user_id, Rails infers the association au-
tomatically: by default, Rails expects a foreign key of the form <class>_id,
where <class> is the lower-case version of the class name.5 In the present
case, although we are still dealing with users, the user following another user
is now identified with the foreign key follower_id, so we have to tell that to
Rails.

The result of the above discussion is the user/relationship association shown
in Listing 14.2 and Listing 14.3. As noted in the captions, the tests are currently
red (Why?);6 we’ll fix this issue in Section 14.1.3.

Listing 14.2: Implementing the active relationships has_many association.
red
app/models/user.rb

class User < ApplicationRecord

has_many :microposts, dependent: :destroy

5Technically, Rails uses the underscore method to convert the class name to an id. For example, "Foo-
Bar".underscore is "foo_bar", so the foreign key for a FooBar object would be foo_bar_id.

6Answer: As in Listing 6.30, the generated fixtures don’t satisfy the validations, which causes the tests to fail.

820 CHAPTER 14. FOLLOWING USERS

Method Purpose
active_relationship.follower Returns the follower
active_relationship.followed Returns the followed user
user.active_relationships.create(followed_id: other_user.id)

Creates an active relation-
ship associated with user

user.active_relationships.create!(followed_id: other_user.id)

Creates an active relation-
ship associated with user

(exception on failure)
user.active_relationships.build(followed_id: other_user.id)

Returns a new Relationship
object associated with user

Table 14.1: A summary of user/active relationship association methods.

has_many :active_relationships, class_name: "Relationship",

foreign_key: "follower_id",

dependent: :destroy

.

.

.

end

(Since destroying a user should also destroy that user’s relationships, we’ve
added dependent: :destroy to the association.)

Listing 14.3: Adding the follower belongs_to association to the Relation-
ship model. red
app/models/relationship.rb

class Relationship < ApplicationRecord

belongs_to :follower, class_name: "User"

belongs_to :followed, class_name: "User"

end

The followed association isn’t actually needed until Section 14.1.4, but the
parallel follower/followed structure is clearer if we implement them both at the
same time.

The relationships in Listing 14.2 and Listing 14.3 give rise to methods anal-
ogous to the ones we saw in Table 13.1, as shown in Table 14.1.

14.1. THE RELATIONSHIP MODEL 821

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Using the createmethod from Table 14.1 in the console, create an active
relationship for the first user in the database where the followed id is the
second user.

2. Confirm that the values for active_relationship.followed and
active_relationship.follower are correct.

14.1.3 Relationship validations
Before moving on, we’ll add a couple of Relationship model validations for
completeness. The tests (Listing 14.4) and application code (Listing 14.5) are
straightforward. As with the generated user fixture from Listing 6.30, the gen-
erated relationship fixture also violates the uniqueness constraint imposed by
the corresponding migration (Listing 14.1). The solution—removing the fix-
ture contents as in Listing 6.31—is also the same, as seen in Listing 14.6.

Listing 14.4: Testing the Relationship model validations. red
test/models/relationship_test.rb

require 'test_helper'

class RelationshipTest < ActiveSupport::TestCase

def setup

@relationship = Relationship.new(follower_id: users(:michael).id,

followed_id: users(:archer).id)

end

test "should be valid" do

assert @relationship.valid?

end

test "should require a follower_id" do

@relationship.follower_id = nil

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

822 CHAPTER 14. FOLLOWING USERS

assert_not @relationship.valid?

end

test "should require a followed_id" do

@relationship.followed_id = nil

assert_not @relationship.valid?

end

end

Listing 14.5: Adding the Relationship model validations. red
app/models/relationship.rb

class Relationship < ApplicationRecord

belongs_to :follower, class_name: "User"

belongs_to :followed, class_name: "User"

validates :follower_id, presence: true

validates :followed_id, presence: true

end

Listing 14.6: Removing the contents of the relationship fixture. green
test/fixtures/relationships.yml

empty

At this point, the tests should be green:

Listing 14.7: green
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Verify by commenting out the validations in Listing 14.5 that the tests still
pass. (This is a change as of Rails 5, and in previous versions of Rails the

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

14.1. THE RELATIONSHIP MODEL 823

validations are required. We’ll plan to leave them in for completeness,
but it’s worth bearing in mind that you may see these validations omitted
in other people’s code.)

14.1.4 Followed users
We come now to the heart of the Relationship associations: following and
followers. Here we will use has_many :through for the first time: a user
has many following through relationships, as illustrated in Figure 14.7. By
default, in a has_many :through association Rails looks for a foreign key
corresponding to the singular version of the association. In other words, with
code like

has_many :followeds, through: :active_relationships

Rails would see “followeds” and use the singular “followed”, assembling a col-
lection using the followed_id in the relationships table. But, as noted in
Section 14.1.1, user.followeds is rather awkward, so we’ll write user.-

following instead. Naturally, Rails allows us to override the default, in this
case using the source parameter (as shown in Listing 14.8), which explicitly
tells Rails that the source of the following array is the set of followed ids.

Listing 14.8: Adding the User model following association.
app/models/user.rb

class User < ApplicationRecord

has_many :microposts, dependent: :destroy

has_many :active_relationships, class_name: "Relationship",

foreign_key: "follower_id",

dependent: :destroy

has_many :following, through: :active_relationships, source: :followed

.

.

.

end

824 CHAPTER 14. FOLLOWING USERS

The association defined in Listing 14.8 leads to a powerful combination of
Active Record and array-like behavior. For example, we can check if the fol-
lowed users collection includes another user with the include? method (Sec-
tion 4.3.1), or find objects through the association:

user.following.include?(other_user)

user.following.find(other_user)

We can also add and delete elements just as with arrays:

user.following << other_user

user.following.delete(other_user)

(Recall from Section 4.3.1 that the shovel operator << appends to the end of an
array.)

Although in many contexts we can effectively treat following as an array,
Rails is smart about how it handles things under the hood. For example, code
like

following.include?(other_user)

looks like it might have to pull all the followed users out of the database to apply
the include? method, but in fact for efficiency Rails arranges for the compar-
ison to happen directly in the database. (Compare to the code in Section 13.2.1,
where we saw that

user.microposts.count

performs the count directly in the database.)
To manipulate following relationships, we’ll introduce follow and un-

follow utility methods so that we can write, e.g., user.follow(other_-

14.1. THE RELATIONSHIP MODEL 825

user). We’ll also add an associated following? boolean method to test if
one user is following another.7

This is exactly the kind of situation where I like to write some tests first.
The reason is that we are quite far from writing a working web interface for
following users, but it’s hard to proceed without some sort of client for the
code we’re developing. In this case, it’s easy to write a short test for the User
model, in which we use following? to make sure the user isn’t following the
other user, use follow to follow another user, use following? to verify that
the operation succeeded, and finally unfollow and verify that it worked. The
result appears in Listing 14.9.

Listing 14.9: Tests for some “following” utility methods. red
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

.

.

.

test "should follow and unfollow a user" do

michael = users(:michael)

archer = users(:archer)

assert_not michael.following?(archer)

michael.follow(archer)

assert michael.following?(archer)

michael.unfollow(archer)

assert_not michael.following?(archer)

end

end

By treating the following association as an array, we can write the fol-
low, unfollow, and following? methods as shown in Listing 14.10. (Note
that we have omitted the user self variable whenever possible.)

7Once you have a lot of experience modeling a particular domain, you can often guess such utility methods
in advance, and even when you can’t you’ll often find yourself writing them to make the tests cleaner. In this
case, though, it’s OK if you wouldn’t have guessed them. Software development is usually an iterative process—
you write code until it starts getting ugly, and then you refactor it—but for brevity the tutorial presentation is
streamlined a bit.

826 CHAPTER 14. FOLLOWING USERS

Listing 14.10: Utility methods for following. green
app/models/user.rb

class User < ApplicationRecord

.

.

.

def feed

.

.

.

end

Follows a user.

def follow(other_user)

following << other_user

end

Unfollows a user.

def unfollow(other_user)

following.delete(other_user)

end

Returns true if the current user is following the other user.

def following?(other_user)

following.include?(other_user)

end

private

.

.

.

end

With the code in Listing 14.10, the tests should be green:

Listing 14.11: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition

14.1. THE RELATIONSHIP MODEL 827

user
id
1 Michael Hartl

name email
mhartl@example.com

1
1

8
1

1

1

2

9

10
1

2

followed_id

7

2

3
7

follower_id
1

passive_relationships user
id
3 ...

name email
...

user
id
2 ...

name email
...

user
id
9 ...

name email
...

through has_many

has_many

has_many

user.followers

Figure 14.9: A model for user followers through passive relationships.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. At the console, replicate the steps shown in Listing 14.9.

2. What is the SQL for each of the commands in the previous exercise?

14.1.5 Followers
The final piece of the relationships puzzle is to add a user.followers

method to go with user.following. You may have noticed from Figure 14.7
that all the information needed to extract an array of followers is already present
in the relationships table (which we are treating as the active_rela-

tionships table via the code in Listing 14.2). Indeed, the technique is ex-
actly the same as for followed users, with the roles of follower_id and fol-
lowed_id reversed, and with passive_relationships in place of ac-
tive_relationships. The data model then appears as in Figure 14.9.

The implementation of the data model in Figure 14.9 parallels Listing 14.8
exactly, as seen in Listing 14.12.

https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

828 CHAPTER 14. FOLLOWING USERS

Listing 14.12: Implementing user.followers using passive relationships.
app/models/user.rb

class User < ApplicationRecord

has_many :microposts, dependent: :destroy

has_many :active_relationships, class_name: "Relationship",

foreign_key: "follower_id",

dependent: :destroy

has_many :passive_relationships, class_name: "Relationship",

foreign_key: "followed_id",

dependent: :destroy

has_many :following, through: :active_relationships, source: :followed

has_many :followers, through: :passive_relationships, source: :follower

.

.

.

end

It’s worth noting that we could actually omit the :source key for follow-
ers in Listing 14.12, using simply

has_many :followers, through: :passive_relationships

This is because, in the case of a :followers attribute, Rails will singularize
“followers” and automatically look for the foreign key follower_id in this
case. Listing 14.12 keeps the :source key to emphasize the parallel structure
with the has_many :following association.

We can conveniently test the data model above using the followers.in-
clude? method, as shown in Listing 14.13. (Listing 14.13 might have used a
followed_by? method to complement the following? method, but it turns
out we won’t need it in our application.)

Listing 14.13: A test for followers. green
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

.

14.1. THE RELATIONSHIP MODEL 829

.

.

test "should follow and unfollow a user" do

michael = users(:michael)

archer = users(:archer)

assert_not michael.following?(archer)

michael.follow(archer)

assert michael.following?(archer)

assert archer.followers.include?(michael)

michael.unfollow(archer)

assert_not michael.following?(archer)

end

end

Listing 14.13 adds only one line to the test from Listing 14.9, but so many
things have to go right to get it to pass that it’s a very sensitive test of the code
in Listing 14.12.

At this point, the full test suite should be green:

$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. At the console, create several followers for the first user in the database
(which you should call user). What is the value of user.followers.-
map(&:id)?

2. Confirm that user.followers.count matches the number of follow-
ers you created in the previous exercise.

3. What is the SQL used by user.followers.count? How is this differ-
ent from user.followers.to_a.count? Hint: Suppose that the user
had a million followers.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

