
Chapter 14

Following users
In this chapter, we will complete the Rails Tutorial sample application by adding
a social layer that allows users to follow (and unfollow) other users, resulting
in each user’s Home page displaying a status feed of the followed users’ mi-
croposts. We’ll start by learning how to model relationships between users in
Section 14.1, and we’ll build the corresponding web interface in Section 14.2
(including an introduction to Ajax). We’ll end by developing a fully functional
status feed in Section 14.3.

This final chapter contains some of the most challenging material in the tu-
torial, including some Ruby/SQL trickery to make the status feed. Through
these examples, you will see how Rails can handle even rather intricate data
models, which should serve you well as you go on to develop your own appli-
cations with their own specific requirements. To help with the transition from
tutorial to independent development, Section 14.4 offers some pointers to more
advanced resources.

Because the material in this chapter is particularly challenging, before writ-
ing any code we’ll pause for a moment and take a tour of the interface. As
in previous chapters, at this early stage we’ll represent pages using mockups.1
The full page flow runs as follows: a user (John Calvin) starts at his profile page

1Image of child retrieved from https://www.flickr.com/photos/john_lustig/2518452221/ on 2013-12-16. Copy-
right © 2008 by John Lustig and used unaltered under the terms of the Creative Commons Attribution 2.0 Generic
license. Image of tiger retrieved from https://www.flickr.com/photos/renemensen/9187111340 on 2014-08-15.
Copyright © 2013 by Rene Mesen and used unaltered under the terms of the Creative Commons Attribution 2.0
Generic license.

807

https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/

808 CHAPTER 14. FOLLOWING USERS

(Figure 14.1) and navigates to the Users page (Figure 14.2) to select a user to
follow. Calvin navigates to the profile of a second user, Thomas Hobbes (Fig-
ure 14.3), clicking on the “Follow” button to follow that user. This changes
the “Follow” button to “Unfollow” and increments Hobbes’s “followers” count
by one (Figure 14.4). Navigating to his home page, Calvin now sees an in-
cremented “following” count and finds Hobbes’s microposts in his status feed
(Figure 14.5). The rest of this chapter is dedicated to making this page flow
actually work.

14.1 The Relationship model
Our first step in implementing following users is to construct a data model,
which is not as straightforward as it seems. Naïvely, it seems that a has_many
relationship would do: a user has_many followed users and has_many fol-
lowers. As we will see, there is a problem with this approach, and we’ll learn
how to fix it using has_many :through.

As usual, Git users should create a new topic branch:

$ git checkout -b following-users

14.1.1 A problem with the data model (and a solution)
As a first step toward constructing a data model for following users, let’s ex-
amine a typical case. For instance, consider a user who follows a second user:
we could say that, e.g., Calvin is following Hobbes, and Hobbes is followed by
Calvin, so that Calvin is the follower and Hobbes is followed. Using Rails’ de-
fault pluralization convention, the set of all users following a given user is that
user’s followers, and hobbes.followers is an array of those users. Unfortu-
nately, the reverse doesn’t work: by default, the set of all followed users would
be called the followeds, which is ungrammatical and clumsy. We’ll adopt Twit-
ter’s convention and call them following (as in “50 following, 75 followers”),
with a corresponding calvin.following array.

14.1. THE RELATIONSHIP MODEL 809

Figure 14.1: A current user’s profile.

810 CHAPTER 14. FOLLOWING USERS

Figure 14.2: Finding a user to follow.

14.1. THE RELATIONSHIP MODEL 811

Figure 14.3: The profile of a user to follow, with a follow button.

812 CHAPTER 14. FOLLOWING USERS

Figure 14.4: A profile with an unfollow button and incremented followers
count.

14.1. THE RELATIONSHIP MODEL 813

Figure 14.5: The Home page with status feed and incremented following count.

814 CHAPTER 14. FOLLOWING USERS

user
id
1 Michael Hartl

name email
mhartl@example.com

...
email

10
...
...

7

1

2
follower_id

...

...

...1

...
1

namefollowed_id

8

...
1

following
has_many

Figure 14.6: A naïve implementation of user following.

This discussion suggests modeling the followed users as in Figure 14.6,
with a following table and a has_many association. Since user.follow-
ing should be a collection of users, each row of the following table would
need to be a user, as identified by the followed_id, together with the fol-
lower_id to establish the association.2 In addition, since each row is a user,
we would need to include the user’s other attributes, including the name, email,
password, etc.

The problem with the data model in Figure 14.6 is that it is terribly redun-
dant: each row contains not only each followed user’s id, but all their other
information as well—all of which is already in the users table. Even worse, to
model user followers we would need a separate, similarly redundant
followers table. Finally, this data model is a maintainability nightmare: each
time a user changed (say) their name, we would need to update not just the user’s
record in the users table but also every row containing that user in both the
following and followers tables.

The problem here is that we are missing an underlying abstraction. One
way to find the proper model is to consider how we might implement the act
of following in a web application. Recall from Section 7.1.2 that the REST ar-
chitecture involves resources that are created and destroyed. This leads us to

2For simplicity, Figure 14.6 omits the following table’s id column.

14.1. THE RELATIONSHIP MODEL 815

ask two questions: When a user follows another user, what is being created?
When a user unfollows another user, what is being destroyed? Upon reflection,
we see that in these cases the application should either create or destroy a rela-
tionship between two users. A user then has many relationships, and has many
following (or followers) through these relationships.

There’s an additional detail we need to address regarding our application’s
data model: unlike symmetric Facebook-style friendships, which are always
reciprocal (at least at the data-model level), Twitter-style following relation-
ships are potentially asymmetric—Calvin can follow Hobbes without Hobbes
following Calvin. To distinguish between these two cases, we’ll adopt the ter-
minology of active and passive relationships: if Calvin is following Hobbes but
not vice versa, Calvin has an active relationship with Hobbes and Hobbes has
a passive relationship with Calvin.3

We’ll focus now on using active relationships to generate a list of followed
users, and consider the passive case in Section 14.1.5. Figure 14.6 suggests how
to implement it: since each followed user is uniquely identified by follow-

ed_id, we could convert following to an active_relationships table,
omit the user details, and use followed_id to retrieve the followed user from
the users table. A diagram of the data model appears in Figure 14.7.

Because we’ll end up using the same database table for both active and pas-
sive relationships, we’ll use the generic term relationship for the table name,
with a corresponding Relationship model. The result is the Relationship data
model shown in Figure 14.8. We’ll see starting in Section 14.1.4 how to use the
Relationship model to simulate both Active Relationship and Passive Relation-
ship models.

To get started with the implementation, we first generate a migration corre-
sponding to Figure 14.8:

$ rails generate model Relationship follower_id:integer followed_id:integer

Because we will be finding relationships by follower_id and by fol-

lowed_id, we should add an index on each column for efficiency, as shown in
3Thanks to reader Paul Fioravanti for suggesting this terminology.

816 CHAPTER 14. FOLLOWING USERS

user
id
1 Michael Hartl

name email
mhartl@example.com

user
id
2 ...

name email
...

3
7

1
9

8

10

1

1

1
2

7

follower_id

2

1

1
1

followed_id
2

active_relationships

user
id
7 ...

name email
...

user
id
10 ...

name email
...

user
id
8 ...

name email
...

has_manythrough

has_many

has_many

has_many

user.following

Figure 14.7: A model of followed users through active relationships.

datetimeupdated_at
datetimecreated_at

followed_id integer

id
follower_id integer

integer
relationships

Figure 14.8: The Relationship data model.

14.1. THE RELATIONSHIP MODEL 817

Listing 14.1.

Listing 14.1: Adding indices for the relationships table.
db/migrate/[timestamp]_create_relationships.rb

class CreateRelationships < ActiveRecord::Migration[6.0]

def change

create_table :relationships do |t|

t.integer :follower_id

t.integer :followed_id

t.timestamps

end

add_index :relationships, :follower_id

add_index :relationships, :followed_id

add_index :relationships, [:follower_id, :followed_id], unique: true

end

end

Listing 14.1 also includes a multiple-key index that enforces uniqueness on
(follower_id, followed_id) pairs, so that a user can’t follow another user
more than once. (Compare to the email uniqueness index from Listing 6.29 and
the multiple-key index in Listing 13.3.) As we’ll see starting in Section 14.1.4,
our user interface won’t allow this to happen, but adding a unique index arranges
to raise an error if a user tries to create duplicate relationships anyway (for
example, by using a command-line tool such as curl).

To create the relationships table, we migrate the database as usual:

$ rails db:migrate

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. For the user with id equal to 1 from Figure 14.7, what would the value
of user.following.map(&:id) be? (Recall the map(&:method_-

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

818 CHAPTER 14. FOLLOWING USERS

name) pattern from Section 4.3.2; user.following.map(&:id) just
returns the array of ids.)

2. By referring again to Figure 14.7, determine the ids of user.following
for the user with id equal to 2. What would the value of user.follow-
ing.map(&:id) be for this user?

14.1.2 User/relationship associations
Before implementing user following and followers, we first need to establish the
association between users and relationships. A user has_many relationships,
and—since relationships involve two users—a relationship belongs_to both
a follower and a followed user.

As with microposts in Section 13.1.3, we will create new relationships using
the user association, with code such as

user.active_relationships.build(followed_id: ...)

At this point, you might expect application code as in Section 13.1.3, and it’s
similar, but there are two key differences.

First, in the case of the user/micropost association we could write

class User < ApplicationRecord

has_many :microposts

.

.

.

end

This works because by convention Rails looks for a Micropost model corre-
sponding to the :microposts symbol.4 In the present case, though, we want
to write

4Technically, Rails converts the argument of has_many to a class name using the classify method, which
converts "foo_bars" to "FooBar".

14.1. THE RELATIONSHIP MODEL 819

has_many :active_relationships

even though the underlying model is called Relationship. We will thus have to
tell Rails the model class name to look for.

Second, before we wrote

class Micropost < ApplicationRecord

belongs_to :user

.

.

.

end

in the Micropost model. This works because the microposts table has a
user_id attribute to identify the user (Section 13.1.1). An id used in this man-
ner to connect two database tables is known as a foreign key, and when the
foreign key for a User model object is user_id, Rails infers the association au-
tomatically: by default, Rails expects a foreign key of the form <class>_id,
where <class> is the lower-case version of the class name.5 In the present
case, although we are still dealing with users, the user following another user
is now identified with the foreign key follower_id, so we have to tell that to
Rails.

The result of the above discussion is the user/relationship association shown
in Listing 14.2 and Listing 14.3. As noted in the captions, the tests are currently
red (Why?);6 we’ll fix this issue in Section 14.1.3.

Listing 14.2: Implementing the active relationships has_many association.
red
app/models/user.rb

class User < ApplicationRecord

has_many :microposts, dependent: :destroy

5Technically, Rails uses the underscore method to convert the class name to an id. For example, "Foo-
Bar".underscore is "foo_bar", so the foreign key for a FooBar object would be foo_bar_id.

6Answer: As in Listing 6.30, the generated fixtures don’t satisfy the validations, which causes the tests to fail.

820 CHAPTER 14. FOLLOWING USERS

Method Purpose
active_relationship.follower Returns the follower
active_relationship.followed Returns the followed user
user.active_relationships.create(followed_id: other_user.id)

Creates an active relation-
ship associated with user

user.active_relationships.create!(followed_id: other_user.id)

Creates an active relation-
ship associated with user

(exception on failure)
user.active_relationships.build(followed_id: other_user.id)

Returns a new Relationship
object associated with user

Table 14.1: A summary of user/active relationship association methods.

has_many :active_relationships, class_name: "Relationship",

foreign_key: "follower_id",

dependent: :destroy

.

.

.

end

(Since destroying a user should also destroy that user’s relationships, we’ve
added dependent: :destroy to the association.)

Listing 14.3: Adding the follower belongs_to association to the Relation-
ship model. red
app/models/relationship.rb

class Relationship < ApplicationRecord

belongs_to :follower, class_name: "User"

belongs_to :followed, class_name: "User"

end

The followed association isn’t actually needed until Section 14.1.4, but the
parallel follower/followed structure is clearer if we implement them both at the
same time.

The relationships in Listing 14.2 and Listing 14.3 give rise to methods anal-
ogous to the ones we saw in Table 13.1, as shown in Table 14.1.

14.1. THE RELATIONSHIP MODEL 821

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Using the createmethod from Table 14.1 in the console, create an active
relationship for the first user in the database where the followed id is the
second user.

2. Confirm that the values for active_relationship.followed and
active_relationship.follower are correct.

14.1.3 Relationship validations
Before moving on, we’ll add a couple of Relationship model validations for
completeness. The tests (Listing 14.4) and application code (Listing 14.5) are
straightforward. As with the generated user fixture from Listing 6.30, the gen-
erated relationship fixture also violates the uniqueness constraint imposed by
the corresponding migration (Listing 14.1). The solution—removing the fix-
ture contents as in Listing 6.31—is also the same, as seen in Listing 14.6.

Listing 14.4: Testing the Relationship model validations. red
test/models/relationship_test.rb

require 'test_helper'

class RelationshipTest < ActiveSupport::TestCase

def setup

@relationship = Relationship.new(follower_id: users(:michael).id,

followed_id: users(:archer).id)

end

test "should be valid" do

assert @relationship.valid?

end

test "should require a follower_id" do

@relationship.follower_id = nil

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

822 CHAPTER 14. FOLLOWING USERS

assert_not @relationship.valid?

end

test "should require a followed_id" do

@relationship.followed_id = nil

assert_not @relationship.valid?

end

end

Listing 14.5: Adding the Relationship model validations. red
app/models/relationship.rb

class Relationship < ApplicationRecord

belongs_to :follower, class_name: "User"

belongs_to :followed, class_name: "User"

validates :follower_id, presence: true

validates :followed_id, presence: true

end

Listing 14.6: Removing the contents of the relationship fixture. green
test/fixtures/relationships.yml

empty

At this point, the tests should be green:

Listing 14.7: green
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Verify by commenting out the validations in Listing 14.5 that the tests still
pass. (This is a change as of Rails 5, and in previous versions of Rails the

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

14.1. THE RELATIONSHIP MODEL 823

validations are required. We’ll plan to leave them in for completeness,
but it’s worth bearing in mind that you may see these validations omitted
in other people’s code.)

14.1.4 Followed users
We come now to the heart of the Relationship associations: following and
followers. Here we will use has_many :through for the first time: a user
has many following through relationships, as illustrated in Figure 14.7. By
default, in a has_many :through association Rails looks for a foreign key
corresponding to the singular version of the association. In other words, with
code like

has_many :followeds, through: :active_relationships

Rails would see “followeds” and use the singular “followed”, assembling a col-
lection using the followed_id in the relationships table. But, as noted in
Section 14.1.1, user.followeds is rather awkward, so we’ll write user.-

following instead. Naturally, Rails allows us to override the default, in this
case using the source parameter (as shown in Listing 14.8), which explicitly
tells Rails that the source of the following array is the set of followed ids.

Listing 14.8: Adding the User model following association.
app/models/user.rb

class User < ApplicationRecord

has_many :microposts, dependent: :destroy

has_many :active_relationships, class_name: "Relationship",

foreign_key: "follower_id",

dependent: :destroy

has_many :following, through: :active_relationships, source: :followed

.

.

.

end

824 CHAPTER 14. FOLLOWING USERS

The association defined in Listing 14.8 leads to a powerful combination of
Active Record and array-like behavior. For example, we can check if the fol-
lowed users collection includes another user with the include? method (Sec-
tion 4.3.1), or find objects through the association:

user.following.include?(other_user)

user.following.find(other_user)

We can also add and delete elements just as with arrays:

user.following << other_user

user.following.delete(other_user)

(Recall from Section 4.3.1 that the shovel operator << appends to the end of an
array.)

Although in many contexts we can effectively treat following as an array,
Rails is smart about how it handles things under the hood. For example, code
like

following.include?(other_user)

looks like it might have to pull all the followed users out of the database to apply
the include? method, but in fact for efficiency Rails arranges for the compar-
ison to happen directly in the database. (Compare to the code in Section 13.2.1,
where we saw that

user.microposts.count

performs the count directly in the database.)
To manipulate following relationships, we’ll introduce follow and un-

follow utility methods so that we can write, e.g., user.follow(other_-

14.1. THE RELATIONSHIP MODEL 825

user). We’ll also add an associated following? boolean method to test if
one user is following another.7

This is exactly the kind of situation where I like to write some tests first.
The reason is that we are quite far from writing a working web interface for
following users, but it’s hard to proceed without some sort of client for the
code we’re developing. In this case, it’s easy to write a short test for the User
model, in which we use following? to make sure the user isn’t following the
other user, use follow to follow another user, use following? to verify that
the operation succeeded, and finally unfollow and verify that it worked. The
result appears in Listing 14.9.

Listing 14.9: Tests for some “following” utility methods. red
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

.

.

.

test "should follow and unfollow a user" do

michael = users(:michael)

archer = users(:archer)

assert_not michael.following?(archer)

michael.follow(archer)

assert michael.following?(archer)

michael.unfollow(archer)

assert_not michael.following?(archer)

end

end

By treating the following association as an array, we can write the fol-
low, unfollow, and following? methods as shown in Listing 14.10. (Note
that we have omitted the user self variable whenever possible.)

7Once you have a lot of experience modeling a particular domain, you can often guess such utility methods
in advance, and even when you can’t you’ll often find yourself writing them to make the tests cleaner. In this
case, though, it’s OK if you wouldn’t have guessed them. Software development is usually an iterative process—
you write code until it starts getting ugly, and then you refactor it—but for brevity the tutorial presentation is
streamlined a bit.

826 CHAPTER 14. FOLLOWING USERS

Listing 14.10: Utility methods for following. green
app/models/user.rb

class User < ApplicationRecord

.

.

.

def feed

.

.

.

end

Follows a user.

def follow(other_user)

following << other_user

end

Unfollows a user.

def unfollow(other_user)

following.delete(other_user)

end

Returns true if the current user is following the other user.

def following?(other_user)

following.include?(other_user)

end

private

.

.

.

end

With the code in Listing 14.10, the tests should be green:

Listing 14.11: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition

14.1. THE RELATIONSHIP MODEL 827

user
id
1 Michael Hartl

name email
mhartl@example.com

1
1

8
1

1

1

2

9

10
1

2

followed_id

7

2

3
7

follower_id
1

passive_relationships user
id
3 ...

name email
...

user
id
2 ...

name email
...

user
id
9 ...

name email
...

through has_many

has_many

has_many

user.followers

Figure 14.9: A model for user followers through passive relationships.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. At the console, replicate the steps shown in Listing 14.9.

2. What is the SQL for each of the commands in the previous exercise?

14.1.5 Followers
The final piece of the relationships puzzle is to add a user.followers

method to go with user.following. You may have noticed from Figure 14.7
that all the information needed to extract an array of followers is already present
in the relationships table (which we are treating as the active_rela-

tionships table via the code in Listing 14.2). Indeed, the technique is ex-
actly the same as for followed users, with the roles of follower_id and fol-
lowed_id reversed, and with passive_relationships in place of ac-
tive_relationships. The data model then appears as in Figure 14.9.

The implementation of the data model in Figure 14.9 parallels Listing 14.8
exactly, as seen in Listing 14.12.

https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

828 CHAPTER 14. FOLLOWING USERS

Listing 14.12: Implementing user.followers using passive relationships.
app/models/user.rb

class User < ApplicationRecord

has_many :microposts, dependent: :destroy

has_many :active_relationships, class_name: "Relationship",

foreign_key: "follower_id",

dependent: :destroy

has_many :passive_relationships, class_name: "Relationship",

foreign_key: "followed_id",

dependent: :destroy

has_many :following, through: :active_relationships, source: :followed

has_many :followers, through: :passive_relationships, source: :follower

.

.

.

end

It’s worth noting that we could actually omit the :source key for follow-
ers in Listing 14.12, using simply

has_many :followers, through: :passive_relationships

This is because, in the case of a :followers attribute, Rails will singularize
“followers” and automatically look for the foreign key follower_id in this
case. Listing 14.12 keeps the :source key to emphasize the parallel structure
with the has_many :following association.

We can conveniently test the data model above using the followers.in-
clude? method, as shown in Listing 14.13. (Listing 14.13 might have used a
followed_by? method to complement the following? method, but it turns
out we won’t need it in our application.)

Listing 14.13: A test for followers. green
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

.

14.1. THE RELATIONSHIP MODEL 829

.

.

test "should follow and unfollow a user" do

michael = users(:michael)

archer = users(:archer)

assert_not michael.following?(archer)

michael.follow(archer)

assert michael.following?(archer)

assert archer.followers.include?(michael)

michael.unfollow(archer)

assert_not michael.following?(archer)

end

end

Listing 14.13 adds only one line to the test from Listing 14.9, but so many
things have to go right to get it to pass that it’s a very sensitive test of the code
in Listing 14.12.

At this point, the full test suite should be green:

$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. At the console, create several followers for the first user in the database
(which you should call user). What is the value of user.followers.-
map(&:id)?

2. Confirm that user.followers.count matches the number of follow-
ers you created in the previous exercise.

3. What is the SQL used by user.followers.count? How is this differ-
ent from user.followers.to_a.count? Hint: Suppose that the user
had a million followers.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

830 CHAPTER 14. FOLLOWING USERS

14.2 A web interface for following users
Section 14.1 placed some rather heavy demands on our data modeling skills, and
it’s fine if it takes a while to soak in. In fact, one of the best ways to understand
the associations is to use them in the web interface.

In the introduction to this chapter, we saw a preview of the page flow for
user following. In this section, we will implement the basic interface and fol-
lowing/unfollowing functionality shown in those mockups. We will also make
separate pages to show the user following and followers arrays. In Section 14.3,
we’ll complete our sample application by adding the user’s status feed.

14.2.1 Sample following data
As in previous chapters, we will find it convenient to use rails db:seed to
fill the database with sample relationships. This will allow us to design the look
and feel of the web pages first, deferring the back-end functionality until later
in this section.

Code to seed the following relationships appears in Listing 14.14. Here we
somewhat arbitrarily arrange for the first user to follow users 3 through 51, and
then have users 4 through 41 follow that user back. The resulting relationships
will be sufficient for developing the application interface.

Listing 14.14: Adding following/follower relationships to the sample data.
db/seeds.rb

Users

User.create!(name: "Example User",

email: "example@railstutorial.org",

password: "foobar",

password_confirmation: "foobar",

admin: true,

activated: true,

activated_at: Time.zone.now)

99.times do |n|

name = Faker::Name.name

email = "example-#{n+1}@railstutorial.org"

password = "password"

User.create!(name: name,

14.2. A WEB INTERFACE FOR FOLLOWING USERS 831

email: email,

password: password,

password_confirmation: password,

activated: true,

activated_at: Time.zone.now)

end

Microposts

users = User.order(:created_at).take(6)

50.times do

content = Faker::Lorem.sentence(5)

users.each { |user| user.microposts.create!(content: content) }

end

Create following relationships.

users = User.all

user = users.first

following = users[2..50]

followers = users[3..40]

following.each { |followed| user.follow(followed) }

followers.each { |follower| follower.follow(user) }

To execute the code in Listing 14.14, we reset and reseed the database as
usual:

$ rails db:migrate:reset

$ rails db:seed

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Using the console, confirm that User.first.followers.count

matches the value expected from Listing 14.14.

2. Confirm that User.first.following.count is correct as well.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

832 CHAPTER 14. FOLLOWING USERS

Figure 14.10: A mockup of the stats partial.

14.2.2 Stats and a follow form
Now that our sample users have both followed users and followers, we need to
update the profile page and Home page to reflect this. We’ll start by making a
partial to display the following and follower statistics on the profile and home
pages. We’ll next add a follow/unfollow form, and then make dedicated pages
for showing “following” (followed users) and “followers”.

As noted in Section 14.1.1, we’ll adopt Twitter’s convention of using “fol-
lowing” as a label for followed users, as in “50 following”. This usage is re-
flected in the mockup sequence starting in Figure 14.1 and shown in close-up
in Figure 14.10.

The stats in Figure 14.10 consist of the number of users the current user
is following and the number of followers, each of which should be a link to its
respective dedicated display page. In Chapter 5, we stubbed out such links with
the dummy text '#', but that was before we had much experience with routes.
This time, although we’ll defer the actual pages to Section 14.2.3, we’ll make
the routes now, as seen in Listing 14.15. This code uses the :member method
inside a resources block, which we haven’t seen before, but see if you can
guess what it does.

Listing 14.15: Adding following and followers actions to the Users con-
troller.
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get '/help', to: 'static_pages#help'

get '/about', to: 'static_pages#about'

get '/contact', to: 'static_pages#contact'

get '/signup', to: 'users#new'

14.2. A WEB INTERFACE FOR FOLLOWING USERS 833

get '/login', to: 'sessions#new'

post '/login', to: 'sessions#create'

delete '/logout', to: 'sessions#destroy'

resources :users do

member do

get :following, :followers

end

end

resources :account_activations, only: [:edit]

resources :password_resets, only: [:new, :create, :edit, :update]

resources :microposts, only: [:create, :destroy]

end

You might suspect that the URLs for following and followers will look like
/users/1/following and /users/1/followers, and that is exactly what the code in
Listing 14.15 arranges. Since both pages will be showing data, the proper HTTP
verb is a GET request, so we use the get method to arrange for the URLs to
respond appropriately. Meanwhile, the member method arranges for the routes
to respond to URLs containing the user id. The other possibility, collection,
works without the id, so that

resources :users do

collection do

get :tigers

end

end

would respond to the URL /users/tigers (presumably to display all the tigers in
our application).8

A table of the routes generated by Listing 14.15 appears in Table 14.2. Note
the named routes for the followed user and followers pages, which we’ll put to
use shortly.

With the routes defined, we are now in a position to define the stats partial,
which involves a couple of links inside a div, as shown in Listing 14.16.

8For more details on such routing options, see the Rails Guides article on “Rails Routing from the Outside In”.

https://guides.rubyonrails.org/routing.html

834 CHAPTER 14. FOLLOWING USERS

HTTP request URL Action Named route
GET /users/1/following following following_user_path(1)

GET /users/1/followers followers followers_user_path(1)

Table 14.2: RESTful routes provided by the custom rules in resource in List-
ing 14.15.

Listing 14.16: A partial for displaying follower stats.
app/views/shared/_stats.html.erb

<% @user ||= current_user %>

<div class="stats">

<a href="<%= following_user_path(@user) %>">

<strong id="following" class="stat">

<%= @user.following.count %>

following

<a href="<%= followers_user_path(@user) %>">

<strong id="followers" class="stat">

<%= @user.followers.count %>

followers

</div>

Since we will be including the stats on both the user show pages and the
home page, the first line of Listing 14.16 picks the right one using

<% @user ||= current_user %>

As discussed in Box 8.1, this does nothing when @user is not nil (as on a
profile page), but when it is (as on the Home page) it sets @user to the current
user. Note also that the following/follower counts are calculated through the
associations using

14.2. A WEB INTERFACE FOR FOLLOWING USERS 835

@user.following.count

and

@user.followers.count

Compare these to the microposts count from Listing 13.24, where we wrote

@user.microposts.count

to count the microposts. As in that case, Rails calculates the count directly in
the database for efficiency.

One final detail worth noting is the presence of CSS ids on some elements,
as in

<strong id="following" class="stat">

...

This is for the benefit of the Ajax implementation in Section 14.2.5, which ac-
cesses elements on the page using their unique ids.

With the partial in hand, including the stats on the Home page is easy, as
shown in Listing 14.17.

Listing 14.17: Adding follower stats to the Home page.
app/views/static_pages/home.html.erb

<% if logged_in? %>

<div class="row">

<aside class="col-md-4">

<section class="user_info">

<%= render 'shared/user_info' %>

</section>

<section class="stats">

<%= render 'shared/stats' %>

836 CHAPTER 14. FOLLOWING USERS

</section>

<section class="micropost_form">

<%= render 'shared/micropost_form' %>

</section>

</aside>

<div class="col-md-8">

<h3>Micropost Feed</h3>

<%= render 'shared/feed' %>

</div>

</div>

<% else %>

.

.

.

<% end %>

To style the stats, we’ll add some SCSS, as shown in Listing 14.18 (which
contains all the stylesheet code needed in this chapter). The resulting Home
page appears in Figure 14.11.

Listing 14.18: SCSS for the Home page sidebar.
app/assets/stylesheets/custom.scss

.

.

.

/* sidebar */

.

.

.

.gravatar {

float: left;

margin-right: 10px;

}

.gravatar_edit {

margin-top: 15px;

}

.stats {

overflow: auto;

margin-top: 0;

padding: 0;

a {

float: left;

padding: 0 10px;

border-left: 1px solid $gray-lighter;

14.2. A WEB INTERFACE FOR FOLLOWING USERS 837

color: gray;

&:first-child {

padding-left: 0;

border: 0;

}

&:hover {

text-decoration: none;

color: blue;

}

}

strong {

display: block;

}

}

.user_avatars {

overflow: auto;

margin-top: 10px;

.gravatar {

margin: 1px 1px;

}

a {

padding: 0;

}

}

.users.follow {

padding: 0;

}

/* forms */

.

.

.

We’ll render the stats partial on the profile page in a moment, but first let’s
make a partial for the follow/unfollow button, as shown in Listing 14.19.

Listing 14.19: A partial for a follow/unfollow form.
app/views/users/_follow_form.html.erb

<% unless current_user?(@user) %>

<div id="follow_form">

<% if current_user.following?(@user) %>

<%= render 'unfollow' %>

<% else %>

<%= render 'follow' %>

838 CHAPTER 14. FOLLOWING USERS

Figure 14.11: The Home page with follow stats.

14.2. A WEB INTERFACE FOR FOLLOWING USERS 839

<% end %>

</div>

<% end %>

This does nothing but defer the real work to follow and unfollow partials,
which need new routes for the Relationships resource, which follows the Mi-
croposts resource example (Listing 13.30), as seen in Listing 14.20.

Listing 14.20: Adding the routes for user relationships.
config/routes.rb

Rails.application.routes.draw do

root 'static_pages#home'

get 'help' => 'static_pages#help'

get 'about' => 'static_pages#about'

get 'contact' => 'static_pages#contact'

get 'signup' => 'users#new'

get 'login' => 'sessions#new'

post 'login' => 'sessions#create'

delete 'logout' => 'sessions#destroy'

resources :users do

member do

get :following, :followers

end

end

resources :account_activations, only: [:edit]

resources :password_resets, only: [:new, :create, :edit, :update]

resources :microposts, only: [:create, :destroy]

resources :relationships, only: [:create, :destroy]

end

The follow/unfollow partials themselves are shown in Listing 14.21 and List-
ing 14.22.

Listing 14.21: A form for following a user.
app/views/users/_follow.html.erb

<%= form_with(model: current_user.active_relationships.build, local: true) do |f| %>

<div><%= hidden_field_tag :followed_id, @user.id %></div>

<%= f.submit "Follow", class: "btn btn-primary" %>

<% end %>

840 CHAPTER 14. FOLLOWING USERS

Listing 14.22: A form for unfollowing a user.
app/views/users/_unfollow.html.erb

<%= form_with(model: current_user.active_relationships.find_by(followed_id: @user.id),

html: { method: :delete }, local: true) do |f| %>

<%= f.submit "Unfollow", class: "btn" %>

<% end %>

These two forms both use form_with to manipulate a Relationship model
object; the main difference between the two is that Listing 14.21 builds a new
relationship, whereas Listing 14.22 finds the existing relationship. Naturally,
the former sends a POST request to the Relationships controller to create a
relationship, while the latter sends a DELETE request to destroy a relation-
ship. (We’ll write these actions in Section 14.2.4.) Finally, you’ll note that the
follow form doesn’t have any content other than the button, but it still needs to
send the followed_id to the controller. We accomplish this with the hid-

den_field_tag method in Listing 14.21, which produces HTML of the form

<input id="followed_id" name="followed_id" type="hidden" value="3" />

As we saw in Section 12.3 (Listing 12.14), the hidden input tag puts the rele-
vant information on the page without displaying it in the browser.

We can now include the follow form and the following statistics on the user
profile page simply by rendering the partials, as shown in Listing 14.23. Pro-
files with follow and unfollow buttons, respectively, appear in Figure 14.12 and
Figure 14.13.

Listing 14.23: Adding the follow form and follower stats to the user profile
page.
app/views/users/show.html.erb

<% provide(:title, @user.name) %>

<div class="row">

<aside class="col-md-4">

<section>

<h1>

14.2. A WEB INTERFACE FOR FOLLOWING USERS 841

<%= gravatar_for @user %>

<%= @user.name %>

</h1>

</section>

<section class="stats">

<%= render 'shared/stats' %>

</section>

</aside>

<div class="col-md-8">

<%= render 'follow_form' if logged_in? %>

<% if @user.microposts.any? %>

<h3>Microposts (<%= @user.microposts.count %>)</h3>

<ol class="microposts">

<%= render @microposts %>

<%= will_paginate @microposts %>

<% end %>

</div>

</div>

We’ll get these buttons working soon enough—in fact, we’ll do it two ways,
the standard way (Section 14.2.4) and using Ajax (Section 14.2.5)—but first
we’ll finish the HTML interface by making the following and followers pages.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Verify that /users/2 has a follow form and that /users/5 has an unfollow
form. Is there a follow form on /users/1?

2. Confirm in the browser that the stats appear correctly on the Home page
and on the profile page.

3. Write tests for the stats on the Home page. Hint: Add to the test in List-
ing 13.28. Why don’t we also have to test the stats on the profile page?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

842 CHAPTER 14. FOLLOWING USERS

Figure 14.12: A user profile with a follow button (/users/2).

14.2. A WEB INTERFACE FOR FOLLOWING USERS 843

Figure 14.13: A user profile with an unfollow button (/users/5).

844 CHAPTER 14. FOLLOWING USERS

14.2.3 Following and followers pages
Pages to display followed users and followers will resemble a hybrid of the
user profile page and the user index page (Section 10.3.1), with a sidebar of
user information (including the following stats) and a list of users. In addi-
tion, we’ll include a raster of smaller user profile image links in the sidebar.
Mockups matching these requirements appear in Figure 14.14 (following) and
Figure 14.15 (followers).

Our first step is to get the following and followers links to work. We’ll
follow Twitter’s lead and have both pages require user login. As with most
previous examples of access control, we’ll write the tests first, as shown in
Listing 14.24. Note that Listing 14.24 uses the named routes from Table 14.2.

Listing 14.24: Tests for the authorization of the following and followers
pages. red
test/controllers/users_controller_test.rb

require 'test_helper'

class UsersControllerTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

@other_user = users(:archer)

end

.

.

.

test "should redirect following when not logged in" do

get following_user_path(@user)

assert_redirected_to login_url

end

test "should redirect followers when not logged in" do

get followers_user_path(@user)

assert_redirected_to login_url

end

end

The only tricky part of the implementation is realizing that we need to add
two new actions to the Users controller. Based on the routes defined in List-
ing 14.15, we need to call them following and followers. Each action

14.2. A WEB INTERFACE FOR FOLLOWING USERS 845

Figure 14.14: A mockup of the user following page.

846 CHAPTER 14. FOLLOWING USERS

Figure 14.15: A mockup of the user followers page.

14.2. A WEB INTERFACE FOR FOLLOWING USERS 847

needs to set a title, find the user, retrieve either @user.following

or @user.followers (in paginated form), and then render the page. The re-
sult appears in Listing 14.25.

Listing 14.25: The following and followers actions. red
app/controllers/users_controller.rb

class UsersController < ApplicationController

before_action :logged_in_user, only: [:index, :edit, :update, :destroy,

:following, :followers]

.

.

.

def following

@title = "Following"

@user = User.find(params[:id])

@users = @user.following.paginate(page: params[:page])

render 'show_follow'

end

def followers

@title = "Followers"

@user = User.find(params[:id])

@users = @user.followers.paginate(page: params[:page])

render 'show_follow'

end

private

.

.

.

end

As we’ve seen throughout this tutorial, the usual Rails convention is to implic-
itly render the template corresponding to an action, such as rendering show.-

html.erb at the end of the show action. In contrast, both actions in List-
ing 14.25 make an explicit call to render, in this case rendering a view called
show_follow, which we must create. The reason for the common view is that
the ERb is nearly identical for the two cases, and Listing 14.26 covers them
both.

848 CHAPTER 14. FOLLOWING USERS

Listing 14.26: The show_follow view used to render following and follow-
ers. green
app/views/users/show_follow.html.erb

<% provide(:title, @title) %>

<div class="row">

<aside class="col-md-4">

<section class="user_info">

<%= gravatar_for @user %>

<h1><%= @user.name %></h1>

<%= link_to "view my profile", @user %>

Microposts: <%= @user.microposts.count %>

</section>

<section class="stats">

<%= render 'shared/stats' %>

<% if @users.any? %>

<div class="user_avatars">

<% @users.each do |user| %>

<%= link_to gravatar_for(user, size: 30), user %>

<% end %>

</div>

<% end %>

</section>

</aside>

<div class="col-md-8">

<h3><%= @title %></h3>

<% if @users.any? %>

<ul class="users follow">

<%= render @users %>

<%= will_paginate %>

<% end %>

</div>

</div>

The actions in Listing 14.25 render the view from Listing 14.26 in two con-
texts, “following” and “followers”, with the results shown in Figure 14.16 and
Figure 14.17. Note that nothing in the above code uses the current user, so the
same links work for other users, as shown in Figure 14.18.

At this point, the tests in Listing 14.24 should be green due to the before
filter in Listing 14.25:

14.2. A WEB INTERFACE FOR FOLLOWING USERS 849

Figure 14.16: Showing the users the given user is following.

850 CHAPTER 14. FOLLOWING USERS

Figure 14.17: Showing the given user’s followers.

14.2. A WEB INTERFACE FOR FOLLOWING USERS 851

Figure 14.18: Showing a different user’s followers.

852 CHAPTER 14. FOLLOWING USERS

Listing 14.27: green
$ rails test

To test the show_follow rendering, we’ll write a couple of short integra-
tion tests that verify the presence of working following and followers pages.
They are designed to be a reality check, not to be comprehensive; indeed, as
noted in Section 5.3.4, comprehensive tests of things like HTML structure are
likely to be brittle and thus counter-productive. Our plan in the case of follow-
ing/followers pages is to check the number is correctly displayed and that links
with the right URLs appear on the page.

To get started, we’ll generate an integration test as usual:

$ rails generate integration_test following

invoke test_unit

create test/integration/following_test.rb

Next, we need to assemble some test data, which we can do by adding some
relationships fixtures to create following/follower relationships. Recall from
Section 13.2.3 that we can use code like

orange:

content: "I just ate an orange!"

created_at: <%= 10.minutes.ago %>

user: michael

to associate a micropost with a given user. In particular, we can write

user: michael

instead of

14.2. A WEB INTERFACE FOR FOLLOWING USERS 853

user_id: 1

Applying this idea to the relationships fixtures gives the associations in List-
ing 14.28.

Listing 14.28: Relationships fixtures for use in following/follower tests.
test/fixtures/relationships.yml

one:

follower: michael

followed: lana

two:

follower: michael

followed: malory

three:

follower: lana

followed: michael

four:

follower: archer

followed: michael

The fixtures in Listing 14.28 first arrange for Michael to follow Lana and
Malory, and then arrange for Michael to be followed by Lana and Archer. To
test for the right count, we can use the same assert_match method we used
in Listing 13.28 to test for the display of the number of microposts on the user
profile page. Adding in assertions for the right links yields the tests shown in
Listing 14.29.

Listing 14.29: Tests for following/follower pages. green
test/integration/following_test.rb

require 'test_helper'

class FollowingTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

854 CHAPTER 14. FOLLOWING USERS

log_in_as(@user)

end

test "following page" do

get following_user_path(@user)

assert_not @user.following.empty?

assert_match @user.following.count.to_s, response.body

@user.following.each do |user|

assert_select "a[href=?]", user_path(user)

end

end

test "followers page" do

get followers_user_path(@user)

assert_not @user.followers.empty?

assert_match @user.followers.count.to_s, response.body

@user.followers.each do |user|

assert_select "a[href=?]", user_path(user)

end

end

end

In Listing 14.29, note that we include the assertion

assert_not @user.following.empty?

which is included to make sure that

@user.following.each do |user|

assert_select "a[href=?]", user_path(user)

end

isn’t vacuously true (and similarly for followers). In other words, if @us-
er.following.empty? were true, not a single assert_select would ex-
ecute in the loop, leading the tests to pass and thereby give us a false sense of
security.

The test suite should now be green:

https://en.wikipedia.org/wiki/Vacuous_truth

14.2. A WEB INTERFACE FOR FOLLOWING USERS 855

Listing 14.30: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Verify in a browser that /users/1/followers and /users/1/following work.
Do the image links in the sidebar work as well?

2. Comment out the application code needed to turn the assert_select
tests in Listing 14.29 red to confirm they’re testing the right thing.

14.2.4 A working follow button the standard way
Now that our views are in order, it’s time to get the follow/unfollow buttons
working. Because following and unfollowing involve creating and destroying
relationships, we need a Relationships controller, which we generate as usual

$ rails generate controller Relationships

As we’ll see in Listing 14.32, enforcing access control on the Relationships
controller actions won’t much matter, but we’ll still follow our previous practice
of enforcing the security model as early as possible. In particular, we’ll check
that attempts to access actions in the Relationships controller require a logged-
in user (and thus get redirected to the login page), while also not changing the
Relationship count, as shown in Listing 14.31.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

856 CHAPTER 14. FOLLOWING USERS

Listing 14.31: Basic access control tests for relationships. red
test/controllers/relationships_controller_test.rb

require 'test_helper'

class RelationshipsControllerTest < ActionDispatch::IntegrationTest

test "create should require logged-in user" do

assert_no_difference 'Relationship.count' do

post relationships_path

end

assert_redirected_to login_url

end

test "destroy should require logged-in user" do

assert_no_difference 'Relationship.count' do

delete relationship_path(relationships(:one))

end

assert_redirected_to login_url

end

end

We can get the tests in Listing 14.31 to pass by adding the logged_in_user
before filter (Listing 14.32).

Listing 14.32: Access control for relationships. green
app/controllers/relationships_controller.rb

class RelationshipsController < ApplicationController

before_action :logged_in_user

def create

end

def destroy

end

end

To get the follow and unfollow buttons to work, all we need to do is find the
user associated with the followed_id in the corresponding form (i.e., List-
ing 14.21 or Listing 14.22), and then use the appropriate follow or unfollow
method from Listing 14.10. The full implementation appears in Listing 14.33.

14.2. A WEB INTERFACE FOR FOLLOWING USERS 857

Listing 14.33: The Relationships controller. green
app/controllers/relationships_controller.rb

class RelationshipsController < ApplicationController

before_action :logged_in_user

def create

user = User.find(params[:followed_id])

current_user.follow(user)

redirect_to user

end

def destroy

user = Relationship.find(params[:id]).followed

current_user.unfollow(user)

redirect_to user

end

end

We can see from Listing 14.33 why the security issue mentioned above is minor:
if an unlogged-in user were to hit either action directly (e.g., using a command-
line tool like curl), current_user would be nil, and in both cases the ac-
tion’s second line would raise an exception, resulting in an error but no harm to
the application or its data. It’s best not to rely on that, though, so we’ve taken
the extra step and added an additional layer of security.

With that, the core follow/unfollow functionality is complete, and any user
can follow or unfollow any other user, as you can verify by clicking the corre-
sponding buttons in your browser. (We’ll write integration tests to verify this
behavior in Section 14.2.6.) The result of following user #2 is shown in Fig-
ure 14.19 and Figure 14.20.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Follow and unfollow /users/2 through the web. Did it work?

2. According to the server log, which templates are rendered in each case?

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

858 CHAPTER 14. FOLLOWING USERS

Figure 14.19: An unfollowed user.

14.2. A WEB INTERFACE FOR FOLLOWING USERS 859

Figure 14.20: The result of following an unfollowed user.

860 CHAPTER 14. FOLLOWING USERS

14.2.5 A working follow button with Ajax
Although our user following implementation is complete as it stands, we have
one bit of polish left to add before starting work on the status feed. You may
have noticed in Section 14.2.4 that both the create and destroy actions in
the Relationships controller simply redirect back to the original profile. In other
words, a user starts on another user’s profile page, follows the other user, and
is immediately redirected back to the original page. It is reasonable to ask why
the user needs to leave that page at all.

This is exactly the problem solved by Ajax, which allows web pages to
send requests asynchronously to the server without leaving the page.9 Because
adding Ajax to web forms is a common practice, Rails makes Ajax easy to
implement. Indeed, updating the follow/unfollow form partials is trivial: just
change

form_with(model: ..., local: true)

to

form_with(model: ..., remote: true)

and Rails automagically uses Ajax.10 The updated partials appear in Listing
14.34 and Listing 14.35.

Listing 14.34: A form for following a user using Ajax.
app/views/users/_follow.html.erb

<%= form_with(model: current_user.active_relationships.build, remote: true) do |f| %>

<div><%= hidden_field_tag :followed_id, @user.id %></div>

<%= f.submit "Follow", class: "btn btn-primary" %>

<% end %>

9Because it is nominally an acronym for asynchronous JavaScript and XML, Ajax is sometimes misspelled
“AJAX”, even though the original Ajax article spells it as “Ajax” throughout.

10In fact, the default behavior for form_with is to make remote submissions, but at least when starting out I
prefer to be explicit.

http://catb.org/jargon/html/A/automagically.html
http://www.adaptivepath.org/ideas/ajax-new-approach-web-applications/

14.2. A WEB INTERFACE FOR FOLLOWING USERS 861

Listing 14.35: A form for unfollowing a user using Ajax.
app/views/users/_unfollow.html.erb

<%= form_with(model: current_user.active_relationships.find_by(followed_id: @user.id),

html: { method: :delete }, remote: true) do |f| %>

<%= f.submit "Unfollow", class: "btn" %>

<% end %>

The actual HTML generated by this ERb isn’t particularly relevant, but you
might be curious, so here’s a peek at a schematic view (details may differ):

<form action="/relationships/117" class="edit_relationship" data-remote="true"

id="edit_relationship_117" method="post">

.

.

.

</form>

This sets the variable data-remote="true" inside the form tag, which tells
Rails to allow the form to be handled by JavaScript. By using a simple HTML
property instead of inserting the full JavaScript code (as in previous versions of
Rails), Rails follows the philosophy of unobtrusive JavaScript.

Having updated the form, we now need to arrange for the Relationships
controller to respond to Ajax requests. We can do this using the respond_to
method, responding appropriately depending on the type of request. The gen-
eral pattern looks like this:

respond_to do |format|

format.html { redirect_to user }

format.js

end

The syntax is potentially confusing, and it’s important to understand that in the
code above only one of the lines gets executed. (In this sense, respond_to is
more like an if-then-else statement than a series of sequential lines.) Adapting
the Relationships controller to respond to Ajax involves adding respond_to

as above to the create and destroy actions from Listing 14.33. The result

http://railscasts.com/episodes/205-unobtrusive-javascript

862 CHAPTER 14. FOLLOWING USERS

appears as in Listing 14.36. Note the change from the local variable user to
the instance variable @user; in Listing 14.33 there was no need for an instance
variable, but now such a variable is necessary for use in Listing 14.34 and List-
ing 14.35.

Listing 14.36: Responding to Ajax requests in the Relationships controller.
app/controllers/relationships_controller.rb

class RelationshipsController < ApplicationController

before_action :logged_in_user

def create

@user = User.find(params[:followed_id])

current_user.follow(@user)

respond_to do |format|

format.html { redirect_to @user }

format.js

end

end

def destroy

@user = Relationship.find(params[:id]).followed

current_user.unfollow(@user)

respond_to do |format|

format.html { redirect_to @user }

format.js

end

end

end

The actions in Listing 14.36 degrade gracefully, which means that they work
fine in browsers that have JavaScript disabled (although a small amount of con-
figuration is necessary, as shown in Listing 14.37).

Listing 14.37: Configuration needed for graceful degradation of form sub-
mission.
config/application.rb

require_relative 'boot'

.

.

.

module SampleApp

14.2. A WEB INTERFACE FOR FOLLOWING USERS 863

class Application < Rails::Application

.

.

.

Include the authenticity token in remote forms.

config.action_view.embed_authenticity_token_in_remote_forms = true

end

end

On the other hand, we have yet to respond properly when JavaScript is enabled.
In the case of an Ajax request, Rails automatically calls a JavaScript embedded
Ruby (.js.erb) file with the same name as the action, i.e., create.js.erb or
destroy.js.erb. As you might guess, such files allow us to mix JavaScript
and embedded Ruby to perform actions on the current page. It is these files that
we need to create and edit in order to update the user profile page upon being
followed or unfollowed.

Inside a JS-ERb file, Rails automatically provides the jQuery JavaScript
helpers to manipulate the page using the Document Object Model (DOM). The
jQuery library (which we saw briefly in Section 13.4.2) provides a large number
of methods for manipulating the DOM, but here we will need only two. First,
we will need to know about the dollar-sign syntax to access a DOM element
based on its unique CSS id. For example, to manipulate the follow_form

element, we will use the syntax

$("#follow_form")

(Recall from Listing 14.19 that this is a div that wraps the form, not the form
itself.) This syntax, inspired by CSS, uses the # symbol to indicate a CSS id.
As you might guess, jQuery, like CSS, uses a dot . to manipulate CSS classes.

The second method we’ll need is html, which updates the HTML inside
the relevant element with the contents of its argument. For example, to replace
the entire follow form with the string "foobar", we would write

$("#follow_form").html("foobar")

http://jquery.com/
http://www.w3.org/DOM/

864 CHAPTER 14. FOLLOWING USERS

Unlike plain JavaScript files, JS-ERb files also allow the use of embedded
Ruby, which we apply in the create.js.erb file to update the follow form
with the unfollow partial (which is what should show after a successful fol-
lowing) and update the follower count. The result is shown in Listing 14.38.
This uses the escape_javascript method, which is needed to escape out the
result when inserting HTML in a JavaScript file.

Listing 14.38: The JavaScript embedded Ruby to create a following relation-
ship.
app/views/relationships/create.js.erb

$("#follow_form").html("<%= escape_javascript(render('users/unfollow')) %>");

$("#followers").html('<%= @user.followers.count %>');

Note the presence of line-ending semicolons, which are characteristic of lan-
guages with syntax descended from ALGOL.

The destroy.js.erb file is analogous (Listing 14.39).

Listing 14.39: The Ruby JavaScript (RJS) to destroy a following relationship.
app/views/relationships/destroy.js.erb

$("#follow_form").html("<%= escape_javascript(render('users/follow')) %>");

$("#followers").html('<%= @user.followers.count %>');

With that, you should navigate to a user profile page and verify that you can
follow and unfollow without a page refresh.

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Unfollow and refollow /users/2 through the web. Did it work?

2. According to the server log, which templates are rendered in each case?

https://en.wikipedia.org/wiki/ALGOL
https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

14.2. A WEB INTERFACE FOR FOLLOWING USERS 865

14.2.6 Following tests
Now that the follow buttons are working, we’ll write some simple tests to pre-
vent regressions. To follow a user, we post to the relationships path and verify
that the number of followed users increases by 1:

assert_difference '@user.following.count', 1 do

post relationships_path, params: { followed_id: @other.id }

end

This tests the standard implementation, but testing the Ajax version is almost
exactly the same; the only difference is the addition of the option xhr: true:

assert_difference '@user.following.count', 1 do

post relationships_path, params: { followed_id: @other.id }, xhr: true

end

Here xhr stands for XmlHttpRequest; setting the xhr option to true issues an
Ajax request in the test, which causes the respond_to block in Listing 14.36
to execute the proper JavaScript method.

The same parallel structure applies to deleting users, with delete instead of
post. Here we check that the followed user count goes down by 1 and include
the relationship and followed user’s id:

assert_difference '@user.following.count', -1 do

delete relationship_path(relationship)

end

and

assert_difference '@user.following.count', -1 do

delete relationship_path(relationship), xhr: true

end

Putting the two cases together gives the tests in Listing 14.40.

866 CHAPTER 14. FOLLOWING USERS

Listing 14.40: Tests for the follow and unfollow buttons. green
test/integration/following_test.rb

require 'test_helper'

class FollowingTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

@other = users(:archer)

log_in_as(@user)

end

.

.

.

test "should follow a user the standard way" do

assert_difference '@user.following.count', 1 do

post relationships_path, params: { followed_id: @other.id }

end

end

test "should follow a user with Ajax" do

assert_difference '@user.following.count', 1 do

post relationships_path, xhr: true, params: { followed_id: @other.id }

end

end

test "should unfollow a user the standard way" do

@user.follow(@other)

relationship = @user.active_relationships.find_by(followed_id: @other.id)

assert_difference '@user.following.count', -1 do

delete relationship_path(relationship)

end

end

test "should unfollow a user with Ajax" do

@user.follow(@other)

relationship = @user.active_relationships.find_by(followed_id: @other.id)

assert_difference '@user.following.count', -1 do

delete relationship_path(relationship), xhr: true

end

end

end

At this point, the tests should be green:

14.3. THE STATUS FEED 867

Listing 14.41: green
$ rails test

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. By commenting and uncommenting each of the lines in the respond_to
blocks (Listing 14.36), verify that the tests are testing the right things.
Which test fails in each case?

2. What happens if you delete one of the occurrences of xhr: true in List-
ing 14.40? Explain why this is a problem, and why the procedure in the
previous exercise would catch it.

14.3 The status feed
We come now to the pinnacle of our sample application: the status feed of
microposts. Appropriately, this section contains some of the most advanced
material in the entire tutorial. The full status feed builds on the proto-feed from
Section 13.3.3 by assembling an array of the microposts from the users being
followed by the current user, along with the current user’s own microposts.
Throughout this section, we’ll proceed through a series of feed implementa-
tions of increasing sophistication. To accomplish this, we will need some fairly
advanced Rails, Ruby, and even SQL programming techniques.

Because of the heavy lifting ahead, it’s especially important to review where
we’re going. A recap of the final status feed, shown in Figure 14.5, appears
again in Figure 14.21.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

868 CHAPTER 14. FOLLOWING USERS

Figure 14.21: A mockup of a user’s Home page with a status feed.

14.3. THE STATUS FEED 869

8

user_id
1

9

7

10
2

2

18
1

4

...

content

10

...

...

...

...

6
5

8

1

...

2

7

...

...

...

3

id

9

...
4

microposts

8

1

7

10
2

2

1
...

10

...

...

...

5

1

...

2

7

...

...

9

4

user.feed

Figure 14.22: The feed for a user (id 1) following users with ids 2, 7, 8, and 10.

14.3.1 Motivation and strategy
The basic idea behind the feed is simple. Figure 14.22 shows a sample micro-
posts database table and the resulting feed. The purpose of a feed is to pull
out the microposts whose user ids correspond to the users being followed by
the current user (and the current user itself), as indicated by the arrows in the
diagram.

Although we don’t yet know how to implement the feed, the tests are rela-
tively straightforward, so (following the guidelines in Box 3.3) we’ll write them
first. The key is to check all three requirements for the feed: microposts for both
followed users and the user itself should be included in the feed, but a post from
an unfollowed user should not be included.

As we’ll see in Listing 14.28, we’ll be arranging for Michael to follow Lana
but not Archer; based on the fixtures in Listing 10.47 and Listing 13.54, this
means that Michael should see Lana’s posts and his own posts, but not Archer’s
posts. Converting these requirements to assertions and recalling that the feed
is in the User model (Listing 13.46) gives the updated User model test shown
in Listing 14.42.

870 CHAPTER 14. FOLLOWING USERS

Listing 14.42: A test for the status feed. red
test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

.

.

.

test "feed should have the right posts" do

michael = users(:michael)

archer = users(:archer)

lana = users(:lana)

Posts from followed user

lana.microposts.each do |post_following|

assert michael.feed.include?(post_following)

end

Posts from self

michael.microposts.each do |post_self|

assert michael.feed.include?(post_self)

end

Posts from unfollowed user

archer.microposts.each do |post_unfollowed|

assert_not michael.feed.include?(post_unfollowed)

end

end

end

Of course, the current implementation is just a proto-feed, so the new test
is initially red:

Listing 14.43: red
$ rails test

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Assuming the micropost’s ids are numbered sequentially, with larger
numbers being more recent, what would user.feed.map(&:id) re-

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

14.3. THE STATUS FEED 871

turn for the feed shown in Figure 14.22? Hint: Recall the default scope
from Section 13.1.4.

14.3.2 A first feed implementation
With the status feed design requirements captured in the test from Listing 14.42,
we’re ready to start writing the feed. Since the final feed implementation is
rather intricate, we’ll build up to it by introducing one piece at a time. The first
step is to think of the kind of query we’ll need. We need to select all the mi-
croposts from the microposts table with ids corresponding to the users being
followed by a given user (or the user itself). We might write this schematically
as follows:

SELECT * FROM microposts

WHERE user_id IN (<list of ids>) OR user_id = <user id>

In writing this code, we’ve guessed that SQL supports an IN keyword that al-
lows us to test for set inclusion. (Happily, it does.)

Recall from the proto-feed in Section 13.3.3 that Active Record uses the
where method to accomplish the kind of select shown above, as illustrated in
Listing 13.46. There, our select was very simple; we just picked out all the
microposts with user id corresponding to the current user:

Micropost.where("user_id = ?", id)

Here, we expect it to be more complicated, something like this:

Micropost.where("user_id IN (?) OR user_id = ?", following_ids, id)

We see from these conditions that we’ll need an array of ids corresponding
to the users being followed. One way to do this is to use Ruby’s map method,
available on any “enumerable” object, i.e., any object (such as an Array or a

872 CHAPTER 14. FOLLOWING USERS

Hash) that consists of a collection of elements.11 We saw an example of this
method in Section 4.3.2; as another example, we’ll use map to convert an array
of integers to an array of strings:

$ rails console

>> [1, 2, 3, 4].map { |i| i.to_s }

=> ["1", "2", "3", "4"]

Situations like the one illustrated above, where the same method gets called
on each element in the collection, are common enough that there’s a shorthand
notation for it (seen briefly in Section 4.3.2) that uses an ampersand & and a
symbol corresponding to the method:

>> [1, 2, 3, 4].map(&:to_s)

=> ["1", "2", "3", "4"]

Using the join method (Section 4.3.1), we can create a string composed of the
ids by joining them on comma-space :

>> [1, 2, 3, 4].map(&:to_s).join(', ')

=> "1, 2, 3, 4"

We can use the above method to construct the necessary array of followed
user ids by calling id on each element in user.following. For example, for
the first user in the database this array appears as follows:

>> User.first.following.map(&:id)

=> [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,

42, 43, 44, 45, 46, 47, 48, 49, 50, 51]

In fact, because this sort of construction is so useful, Active Record provides it
by default:

11The main requirement is that enumerable objects must implement an each method to iterate through the
collection.

14.3. THE STATUS FEED 873

>> User.first.following_ids

=> [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,

42, 43, 44, 45, 46, 47, 48, 49, 50, 51]

Here the following_ids method is synthesized by Active Record based on
the has_many :following association (Listing 14.8); the result is that we
need only append _ids to the association name to get the ids corresponding to
the user.following collection. A string of followed user ids then appears as
follows:

>> User.first.following_ids.join(', ')

=> "3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,

42, 43, 44, 45, 46, 47, 48, 49, 50, 51"

When inserting into an SQL string, though, you don’t need to do this; the
? interpolation takes care of it for you (and in fact eliminates some database-
dependent incompatibilities). This means we can use following_ids by it-
self. As a result, the initial guess of

Micropost.where("user_id IN (?) OR user_id = ?", following_ids, id)

actually works! The result appears in Listing 14.44.

Listing 14.44: The initial working feed. green
app/models/user.rb

class User < ApplicationRecord

.

.

.

Returns true if a password reset has expired.

def password_reset_expired?

reset_sent_at < 2.hours.ago

end

874 CHAPTER 14. FOLLOWING USERS

Returns a user's status feed.

def feed

Micropost.where("user_id IN (?) OR user_id = ?", following_ids, id)

end

Follows a user.

def follow(other_user)

following << other_user

end

.

.

.

end

The test suite should be green:

Listing 14.45: green
$ rails test

In some applications, this initial implementation might be good enough for most
practical purposes, but Listing 14.44 isn’t the final implementation; see if you
can make a guess about why not before moving on to the next section. (Hint:
What if a user is following 5000 other users?)

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. In Listing 14.44, remove the part of the query that finds the user’s own
posts. Which test in Listing 14.42 breaks?

2. In Listing 14.44, remove the part of the query that finds the followed
users’ posts. Which test in Listing 14.42 breaks?

3. How could you change the query in Listing 14.44 to have the feed er-
roneously return microposts of unfollowed users, thereby breaking the

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

14.3. THE STATUS FEED 875

third test in Listing 14.42? Hint: Returning all the microposts would do
the trick.

14.3.3 Subselects
As hinted at in the last section, the feed implementation in Section 14.3.2
doesn’t scale well when the number of microposts in the feed is large, as would
likely happen if a user were following, say, 5000 other users. In this section,
we’ll reimplement the status feed in a way that scales better with the number of
followed users.

The problem with the code in Section 14.3.2 is that following_ids pulls
all the followed users’ ids into memory, and creates an array the full length
of the followed users array. Since the condition in Listing 14.44 actually just
checks inclusion in a set, there must be a more efficient way to do this, and
indeed SQL is optimized for just such set operations. The solution involves
pushing the finding of followed user ids into the database using a subselect.

We’ll start by refactoring the feed with the slightly modified code in List-
ing 14.46.

Listing 14.46: Using key-value pairs in the feed’s where method. green
app/models/user.rb

class User < ApplicationRecord

.

.

.

Returns a user's status feed.

def feed

Micropost.where("user_id IN (:following_ids) OR user_id = :user_id",

following_ids: following_ids, user_id: id)

end

.

.

.

end

As preparation for the next step, we have replaced

876 CHAPTER 14. FOLLOWING USERS

Micropost.where("user_id IN (?) OR user_id = ?", following_ids, id)

with the equivalent

Micropost.where("user_id IN (:following_ids) OR user_id = :user_id",

following_ids: following_ids, user_id: id)

The question mark syntax is fine, but when we want the same variable inserted
in more than one place, the second syntax is more convenient.

The above discussion implies that we will be adding a second occurrence
of user_id in the SQL query. In particular, we can replace the Ruby code

following_ids

with the SQL snippet

following_ids = "SELECT followed_id FROM relationships

WHERE follower_id = :user_id"

This code contains an SQL subselect, and internally the entire select for user 1
would look something like this:

SELECT * FROM microposts

WHERE user_id IN (SELECT followed_id FROM relationships

WHERE follower_id = 1)

OR user_id = 1

This subselect arranges for all the set logic to be pushed into the database, which
is more efficient.

With this foundation, we are ready for a more efficient feed implemen-
tation, as seen in Listing 14.47. Note that, because it is now raw SQL, the
following_ids string is interpolated, not escaped.

14.3. THE STATUS FEED 877

Listing 14.47: The final implementation of the feed. green
app/models/user.rb

class User < ApplicationRecord

.

.

.

Returns a user's status feed.

def feed

following_ids = "SELECT followed_id FROM relationships

WHERE follower_id = :user_id"

Micropost.where("user_id IN (#{following_ids})

OR user_id = :user_id", user_id: id)

end

.

.

.

end

This code has a formidable combination of Rails, Ruby, and SQL, but it does
the job, and does it well:

Listing 14.48: green
$ rails test

Of course, even the subselect won’t scale forever. For bigger sites, you would
probably need to generate the feed asynchronously using a background job, but
such scaling subtleties are beyond the scope of this tutorial.

With the code in Listing 14.47, our status feed is now complete. Recall from
Section 13.3.3 that the Home page already includes the feed. In Chapter 13, the
result was only a proto-feed (Figure 13.14), but with the implementation in
Listing 14.47 as seen in Figure 14.23 the Home page now shows the full feed.

At this point, we’re ready to merge our changes into the master branch:

$ rails test

$ git add -A

$ git commit -m "Add user following"

$ git checkout master

$ git merge following-users

878 CHAPTER 14. FOLLOWING USERS

Figure 14.23: The Home page with a working status feed.

14.3. THE STATUS FEED 879

Figure 14.24: A working status feed on the live Web.

We can then push the code to the remote repository and deploy the application
to production:

$ git push

$ git push heroku

$ heroku pg:reset DATABASE

$ heroku run rails db:migrate

$ heroku run rails db:seed

The result is a working status feed on the live Web (Figure 14.24).

880 CHAPTER 14. FOLLOWING USERS

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. Write an integration test to verify that the first page of the feed appears
on the Home page as required. A template appears in Listing 14.49.

2. Note that Listing 14.49 escapes the expected HTML using
CGI.escapeHTML (which is closely related to the CGI.escape method
we used in Section 11.2.3 to escape URLs). Why is escaping the HTML
necessary in this case? Hint: Try removing the escaping and carefully
inspect the page source for the micropost content that doesn’t match. Us-
ing the search feature of your terminal shell (Cmd-F on Ctrl-F on most
systems) to find the word “sorry” may prove particularly helpful.

3. The code in Listing 14.47 can be expressed directly in Rails using a so-
called inner join using the join method. By running the tests, show that
the code in Listing 14.50 returns a valid feed.12 What is the SQL query
generated by this code? (Hint: Run User.first.feed in the console.)

Listing 14.49: Testing the feed HTML. green
test/integration/following_test.rb

require 'test_helper'

class FollowingTest < ActionDispatch::IntegrationTest

def setup

@user = users(:michael)

log_in_as(@user)

end

.

.

.

test "feed on Home page" do

get root_path

12Thanks to reader Anna for suggesting this version.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://www.guru99.com/sqlite-join.html

14.4. CONCLUSION 881

@user.feed.paginate(page: 1).each do |micropost|

assert_match CGI.escapeHTML(FILL_IN), FILL_IN

end

end

end

Listing 14.50: Using a join to make the feed.
app/models/user.rb

class User < ApplicationRecord

.

.

.

Returns a user's status feed.

def feed

part_of_feed = "relationships.follower_id = :id or microposts.user_id = :id"

Micropost.joins(user: :followers).where(part_of_feed, { id: id })

end

.

.

.

end

14.4 Conclusion
With the addition of the status feed, we’ve finished the sample application
for the Ruby on Rails Tutorial. This application includes examples of all the
major features of Rails, including models, views, controllers, templates, par-
tials, filters, validations, callbacks, has_many/belongs_to and has_many

:through associations, security, testing, and deployment.
Despite this impressive list, there is still much to learn about web develop-

ment. As a first step in this process, this section contains some suggestions for
further learning.

14.4.1 Guide to further resources
There is a wealth of Rails resources in stores and on the web—indeed, the sup-
ply is so rich that it can be overwhelming. The good news is that, having gotten

882 CHAPTER 14. FOLLOWING USERS

this far, you’re ready for almost anything else out there. Here are some sugges-
tions for further learning:

• Learn Enough All Access Bundle: Premium subscription service that in-
cludes a special enhanced version of the Ruby on Rails Tutorial book and
15+ hours of streaming screencast lessons filled with the kind of tips,
tricks, and live demos that you can’t get from reading a book. Also in-
cludes text and videos for the other Learn Enough tutorials. Scholarship
discounts are available.

• Launch School: Lots of in-person developer bootcamps have sprung up
in recent years, and I recommend looking for one in your area, but Launch
School is available online and so can be taken from anywhere. Launch
School is an especially good choice if you want instructor feedback with-
in the context of a structured curriculum.

• The Turing School of Software & Design: a full-time, 27-week Ruby/-
Rails/JavaScript training program in Denver, Colorado. Most of their
students start with limited programming experience but have the deter-
mination and drive needed to pick it up quickly. Turing guarantees its
students will find a job after graduating or they’ll refund the cost of tu-
ition.

• Bloc: An online bootcamp with a structured curriculum, personalized
mentorship, and a focus on learning through concrete projects. Use the
coupon code BLOCLOVESHARTL to get $500 off the enrollment fee.

• Thinkful: An online class that pairs you with a professional engineer as
you work through a project-based curriculum. Subjects include Ruby on
Rails, front-end development, web design, and data science.

• Pragmatic Studio: Online Ruby and Rails courses from Mike and Nicole
Clark.

• RailsApps: Instructive sample Rails apps

https://www.learnenough.com/all-access
https://www.learnenough.com/
https://launchschool.com/railstutorial
http://launchschool.com/railstutorial
http://launchschool.com/railstutorial
https://turing.io/
https://bloc.io/
https://www.thinkful.com/a/railstutorial
https://pragmaticstudio.com/refs/railstutorial
https://tutorials.railsapps.org/hartl

14.4. CONCLUSION 883

• Lambda School: Innovative full-time online program that you pay for
only if you land a high-paying job.

14.4.2 What we learned in this chapter
• Rails’ has_many :through allows the modeling of complicated data

relationships.

• The has_many method takes several optional arguments, including the
object class name and the foreign key.

• Using has_many and has_many :through with properly chosen class
names and foreign keys, we can model both active (following) and pas-
sive (being followed) relationships.

• Rails routing supports nested routes.

• The where method is a flexible and powerful way to create database
queries.

• Rails supports issuing lower-level SQL queries if needed.

• By putting together everything we’ve learned in this book, we’ve suc-
cessfully implemented user following with a status feed of microposts
from followed users.

https://lambdaschool.com

