
The Magic of Rails
exploring the principles & techniques

behind the framework

Hello RailsConf! I'm
Eileen M. Uchitelle
@eileencodes
@eileencodes@ruby.social

The Magic of Rails
exploring the principles & techniques

behind the framework

What is
Ruby on Rails?

Rails is
modular, but
not fractured

Rails is
designed to
have agnostic
interfaces

Rails is
extracted from
applications

Rails is
made of
simple and
aesthetic APIs

Rails is
a framework
that takes on
complexity to
empower you

How Rails components
are structured

RUBY ON RAILS

Active Record

Active Support

Active ModelActive Job

Active Storage

Action Mailer

Action Pack Action View

Action Cable

Action Text

Action Mailbox

Railties

Naming Convention
Active vs Action

Active Record
Active Support
Active Model
Active Job
Active Storage

BACKEND

NAMING CONVENTION

USER FACING

Active Record
Active Support
Active Model
Active Job
Active Storage

BACKEND

NAMING CONVENTION

Action Mailer
Action Pack
Action View
Action Cable
Action Text
Action Mailbox

USER FACING

Active Record
Active Support
Active Model
Active Job
Active Storage

Action Mailer
Action Pack
Action View
Action Cable
Action Text
Action Mailbox

BACKEND USER FACING

Railties

GLUE

NAMING CONVENTION

Architeture & Patterns
of Rails components

Architecture & Patterns
the role of Railties

👩💻
Application

👩💻
Application Register hooks

👩💻
Application Register hooks Load components

👩💻
Application Register hooks Load components Run hooks

railtie.rb

initializer "initializer.name" do
 # do something at initialization
end

railties/lib/rails/application.rb

def initializer(name, opts = {}, &block)
 self.class.initializer(name, opts, &block)
end

railtie.rb

initializer "initializer.name" do |app|
 app.do_something
 app.config.do_something
end

railtie.rb

initializer "initializer.name" do
 ActiveSupport.on_load(:active_record) do
 # do something at initialization
 end
end

activerecord/lib/active_record/railtie.rb

initializer "active_record.initialize_database" do
 ActiveSupport.on_load(:active_record) do
 self.configurations =
 Rails.application.config.database_configuration

 establish_connection
 end
end

activerecord/lib/active_record/railtie.rb

initializer "active_record.initialize_database" do
 ActiveSupport.on_load(:active_record) do
 self.configurations =
 Rails.application.config.database_configuration

 establish_connection
 end
end

activerecord/lib/active_record/railtie.rb

initializer "active_record.initialize_database" do
 ActiveSupport.on_load(:active_record) do
 self.configurations =
 Rails.application.config.database_configuration

 establish_connection
 end
end

activejob/lib/active_job/railtie.rb

initializer "active_job.logger" do
 ActiveSupport.on_load(:active_job) {
 self.logger = ::Rails.logger
 }
end

activejob/lib/active_job/railtie.rb

initializer "active_model.deprecator",
 before: :load_environment_config do |app|

 app.deprecators[:active_model] =
 ActiveModel.deprecator
end

activejob/lib/active_job/railtie.rb

initializer "active_model.deprecator",
 before: :load_environment_config do |app|

 app.deprecators[:active_model] =
 ActiveModel.deprecator
end

• Railties are the core of
the framework

• Railties are the core of
the framework

• Railties control load
order and when hooks
should be run

• Railties are the core of
the framework

• Railties control load
order and when hooks
should be run

• Enables components to
work together without
adding dependencies

Architecture & Patterns
Agnostic interfaces

if connection.is_a?(PostgresqlAdapter)
 # ...
elsif connection.is_a?(Mysql2Adapter)
 # ...
elsif connection.is_?(Sqlite3Adapter)
 # ...
else
 # ...
end

if connection.is_a?(PostgresqlAdapter)
 # ...
elsif connection.is_a?(Mysql2Adapter)
 # ...
elsif connection.is_?(Sqlite3Adapter)
 # ...
else
 # ...
end

❌

module ActiveRecord
 module ConnectionAdapters
 class AbstractAdapter
 # define interface
 end
 end
end

module ActiveRecord
 module ConnectionAdapters
 class AbstractAdapter
 # define interface
 end
 end
end

module ActiveRecord
 module ConnectionAdapters
 class PostgresqlAdapter < AbstractAdapter
 # inherit or redefine interface
 end
 end
end

connection.supports_foreign_keys?
=> true

class AbstractAdapter
 def supports_foreign_keys?
 false
 end
end

class AbstractAdapter
 def supports_foreign_keys?
 false
 end
end

class PostgresqlAdapter < AbstractAdapter
 def supports_foreign_keys?
 true
 end
end

activestorage/lib/active_storage/service.rb

module ActiveStorage
 class Service
 def delete(key)
 raise NotImplementedError
 end
 end
end

activestorage/lib/active_storage/service/gcs_service.rb

class ActiveStorage
 class Service::GCSService < Service
 def delete(key)
 instrument :delete, key: key do
 file_for(key).delete
 rescue Google::Cloud::NotFoundError
 # Ignore files already deleted
 end
 end
 end
end

@service.delete(key)

• Consistent interface for
all supported libraries

• Consistent interface for
all supported libraries

• Simplifies Rails code to
avoid using `is_a?`

• Consistent interface for
all supported libraries

• Simplifies Rails code to
avoid using `is_a?`

• Makes it easy for apps to
swap out adapters /
services

• Consistent interface for
all supported libraries

• Simplifies Rails code to
avoid using `is_a?`

• Makes it easy for apps to
swap out adapters /
services

• Lowers the maintenance
burden

Migrating Shopify's
Core Rails Monolith
to Trilogy
Adrianna Chang
Monday, April 24 @ 3pm

Architecture & Patterns
Metaprogramming

class Post < ApplicationRecord
 has_many :comments
end

class Comment < ApplicationRecord
 belongs_to :post
end

post = Post.first
post.comments

=> [#<Comment:0x000000010e353838...>,
 #<Comment:0x000000010e3530e0>]

post = Post.first
post.method(:comments).source_location

post = Post.first
post.method(:comments).source_location

=> ["rails/activerecord/lib/
 active_record/associations/builder/
 association.rb", 103]

activerecord/lib/active_record/associations/builder/
association.rb

class ActiveRecord::Associations::Builder
 class Association
 def self.define_readers(mixin, name)
 mixin.class_eval <<-CODE, __FILE__, __LINE__ + 1
 def #{name}
 association(:#{name}).reader
 end
 CODE
 end
 end
end

activerecord/lib/active_record/associations/builder/
association.rb

class ActiveRecord::Associations::Builder
 class Association
 def self.define_readers(mixin, name)
 mixin.class_eval <<-CODE, __FILE__, __LINE__ + 1
 def #{name}
 association(:#{name}).reader
 end
 CODE
 end
 end
end

activerecord/lib/active_record/associations/builder/
association.rb

class ActiveRecord::Associations::Builder
 class Association
 def self.define_readers(mixin, name)
 mixin.class_eval <<-CODE, __FILE__, __LINE__ + 1
 def #{name}
 association(:#{name}).reader
 end
 CODE
 end
 end
end

Post::GeneratedAssociationMethods

activerecord/lib/active_record/associations/builder/
association.rb

class ActiveRecord::Associations::Builder
 class Association
 def self.define_readers(mixin, name)
 mixin.class_eval <<-CODE, __FILE__, __LINE__ + 1
 def #{name}
 association(:#{name}).reader
 end
 CODE
 end
 end
end

activerecord/lib/active_record/associations/builder/
association.rb

class ActiveRecord::Associations::Builder
 class Association
 def self.define_writers(mixin, name)
 mixin.class_eval <<-CODE, __FILE__, __LINE__ + 1
 def #{name}=(value)
 association(:#{name}).writer(value)
 end
 CODE
 end
 end
end

activerecord/lib/active_record/associations/builder/
association.rb

class ActiveRecord::Associations::Builder
 class Association
 def self.define_writers(mixin, name)
 mixin.class_eval <<-CODE, __FILE__, __LINE__ + 1
 def #{name}=(value)
 association(:#{name}).writer(value)
 end
 CODE
 end
 end
end

• Powerful tool that
enables us to build
beautiful, simple APIs

• Powerful tool that
enables us to build
beautiful, simple APIs

• Hides complexity from
your application

• Powerful tool that
enables us to build
beautiful, simple APIs

• Hides complexity from
your application

• Where "Rails Magic"
comes from

Maintaining Rails
Why I work on it

2010
Introduced
to Rails

2010
Introduced
to Rails

2011
Big Nerd Ranch

2010
Introduced
to Rails

2011
Big Nerd Ranch

2014
1st conference
1st contribution

2010
Introduced
to Rails

2011
Big Nerd Ranch

2014
1st conference
1st contribution

2015
First RailsConf

2010
Introduced
to Rails

2011
Big Nerd Ranch

2014
1st conference
1st contribution

2015
First RailsConf

2017
Join Rails Core

2010
Introduced
to Rails

2011
Big Nerd Ranch

2014
1st conference
1st contribution

2015
First RailsConf

2017
Join Rails Core

2023
This RailsConf

I work on Rails to
advance the

framework

I work on Rails to
ensure applications

can stay on Rails

I work on Rails to
build a stronger

community

I work on Rails to
have an impact

on the future

Rails is so much more
than just a framework

Rails is
inspiring

Rails is
empowering

Rails is
imperfect

Rails is
the applications we build

Rails is
the team behind it

Rails is
the community

Rails is magic

Thank You!

