
Appendix A

Socket Library

Because the socket and network libraries are such important parts of integrating Ruby appli-

cations with the ’net, we’ve decided to document them in more detail than the other standard

libraries.

The hierarchy of socket classes is shown in the following diagram:

IO

BasicSocket

IPSocket

TCPSocket

SOCKSSocket

TCPServer

UDPSocket

Socket

UNIXSocket

UNIXServer

Because the socket calls are implemented in a library, you’ll need to remember to add the

following line to your code:

require 'socket'

Report erratum878

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=878

BASICSOCKET 879

Class
BasicSocket < IO

require
"mkmf"

BasicSocket is an abstract base class for all other socket classes.

This class and its subclasses often manipulate addresses using something called a struct

sockaddr, which is effectively an opaque binary string.1

Class methods

do_not_reverse_lookup BasicSocket.do_not_reverse_lookup → true or false

Returns the value of the global reverse lookup flag.

do_not_reverse_lookup= BasicSocket.do_not_reverse_lookup = true or false

Sets the global reverse lookup flag. If set to true, queries on remote addresses will return the

numeric address but not the host name.

By default the socket library performs this reverse lookup on connections. If for some reason

this lookup is slow or times out, connecting to a host can take a long time. Set this option to

false to fix this.

for_fd BasicSocket.for_fd(fd)→ sock

Wraps an already open file descriptor into a socket object.

Instance methods

close_read sock.close_read→ nil

Closes the readable connection on this socket.

close_write sock.close_write→ nil

Closes the writable connection on this socket.

getpeername sock.getpeername→ string

Returns the struct sockaddr structure associated with the other end of this socket connec-

tion.

getsockname sock.getsockname→ string

Returns the struct sockaddr structure associated with sock.

getsockopt sock.getsockopt(level, optname)→ string

Returns the value of the specified option.

recv sock.recv(len, 〈 , flags 〉)→ string

Receives up to len bytes from sock.

1. In reality, it maps onto the underlying C-language struct sockaddr set of structures, documented in the man

pages and in the books by Stevens.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=879

BASICSOCKET 880

recv_nonblock sock.recv_nonblock(len, 〈 , flags 〉)→ string

1.9 Receives up to len bytes from sock after first setting the socket into nonblocking mode. If

the underlying recvfrom call returns 0, an empty string is returned.

send sock.send(string, flags, 〈 , to 〉)→ int

Sends string over sock. If specified, to is a struct sockaddr specifying the recipient address.

flags are the sum of one or more of the MSG_ options (listed on the next page). Returns the

number of characters sent.

setsockopt sock.setsockopt(level, optname, optval)→ 0

Sets a socket option. level is one of the socket-level options (listed on the following page).

optname and optval are protocol specific—see your system documentation for details.

shutdown sock.shutdown(how=2)→ 0

Shuts down the receive (how == 0), sender (how == 1), or both (how == 2), parts of this

socket.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=880

SOCKET 881

Class
Socket < BasicSocket

require
"mkmf"

Class Socket provides access to the operating system socket implementation. It can be used

to provide more system–specific functionality than the protocol-specific socket classes but

at the expense of greater complexity. In particular, the class handles addresses using struct

sockaddr structures packed into Ruby strings, which can be a joy to manipulate.

Class constants

Constants are available only on architectures that support the related facility.

Types:

SOCK_DGRAM, SOCK_PACKET, SOCK_RAW, SOCK_RDM, SOCK_SEQPACKET,

SOCK_STREAM

Protocol families:

PF_APPLETALK, PF_AX25, PF_INET6, PF_INET, PF_IPX, PF_UNIX, PF_UNSPEC

Address families:

AF_APPLETALK, AF_AX25, AF_INET6, AF_INET, AF_IPX, AF_UNIX, AF_UNSPEC

Lookup-order options:

LOOKUP_INET6, LOOKUP_INET, LOOKUP_UNSPEC

Send/receive options:

MSG_DONTROUTE, MSG_OOB, MSG_PEEK

Socket-level options:

SOL_ATALK, SOL_AX25, SOL_IPX, SOL_IP, SOL_SOCKET, SOL_TCP, SOL_UDP

Socket options:

SO_BROADCAST, SO_DEBUG, SO_DONTROUTE, SO_ERROR, SO_KEEPALIVE,

SO_LINGER, SO_NO_CHECK, SO_OOBINLINE, SO_PRIORITY, SO_RCVBUF,

SO_REUSEADDR, SO_SNDBUF, SO_TYPE

QOS options:

SOPRI_BACKGROUND, SOPRI_INTERACTIVE, SOPRI_NORMAL

Multicast options:

IP_ADD_MEMBERSHIP, IP_DEFAULT_MULTICAST_LOOP,

IP_DEFAULT_MULTICAST_TTL, IP_MAX_MEMBERSHIPS, IP_MULTICAST_IF,

IP_MULTICAST_LOOP, IP_MULTICAST_TTL

TCP options:

TCP_MAXSEG, TCP_NODELAY

getaddrinfo error codes:

EAI_ADDRFAMILY, EAI_AGAIN, EAI_BADFLAGS, EAI_BADHINTS, EAI_FAIL,

EAI_FAMILY, EAI_MAX, EAI_MEMORY, EAI_NODATA, EAI_NONAME,

EAI_PROTOCOL, EAI_SERVICE, EAI_SOCKTYPE, EAI_SYSTEM

ai_flags values:

AI_ALL, AI_CANONNAME, AI_MASK, AI_NUMERICHOST, AI_PASSIVE,

AI_V4MAPPED_CFG

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=881

SOCKET 882

Class methods

getaddrinfo Socket.getaddrinfo(hostname, port,

〈 family 〈 , socktype 〈 , protocol 〈 , flags 〉 〉 〉 〉)→ array

Returns an array of arrays describing the given host and port (optionally qualified as shown).

Each subarray contains the address family, port number, host name, host IP address, protocol

family, socket type, and protocol.

require 'socket'

for line in Socket.getaddrinfo('www.microsoft.com', 'http')

puts line.join(", ")

end

produces:

AF_INET, 80, wwwbaytest1.microsoft.com, 207.46.19.190, 2, 2, 17

AF_INET, 80, wwwbaytest1.microsoft.com, 207.46.19.190, 2, 1, 6

AF_INET, 80, wwwbaytest2.microsoft.com, 207.46.19.254, 2, 2, 17

AF_INET, 80, wwwbaytest2.microsoft.com, 207.46.19.254, 2, 1, 6

gethostbyaddr Socket.gethostbyaddr(addr, type=AF_INET)→ array

Returns the host name, address family, and sockaddr component for the given address.

a = Socket.gethostbyname("198.145.243.54")

res = Socket.gethostbyaddr(a[3], a[2])

res.join(', ') # => "mike.pragprog.com, , 2, \xC6\x91\xF36"

gethostbyname Socket.gethostbyname(hostname)→ array

Returns a four-element array containing the canonical host name, a subarray of host aliases,

the address family, and the address portion of the sockaddr structure.

a = Socket.gethostbyname("63.68.129.130")

a.join(', ') # => "63.68.129.130, , 2, ?D\x81\x82"

gethostname Socket.gethostname→ string

Returns the name of the current host.

Socket.gethostname # => "dave2.home"

getnameinfo Socket.getnameinfo(addr 〈 , flags 〉)→ array

Looks up the given address, which may be either a string containing a sockaddr or a three-

or four-element array. If addr is an array, it should contain the string address family, the port

(or nil), and the host name or IP address. If a fourth element is present and not nil, it will be

used as the host name. Returns a canonical host name (or address) and port number as an

array.

Socket.getnameinfo(["AF_INET", '23', 'www.rubylang.org'])

getservbyname Socket.getservbyname(service, proto=’tcp’)→ int

Returns the port corresponding to the given service and protocol.

Socket.getservbyname("telnet") # => 23

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=882

SOCKET 883

getservbyport Socket.getservbyport(port, proto=’tcp’)→ string

1.9 Returns the port corresponding to the given service and protocol.

Socket.getservbyport(23) # => "telnet"

new Socket.new(domain, type, protocol)→ sock

Creates a socket using the given parameters.

open Socket.open(domain, type, protocol)→ sock

Synonym for Socket.new.

pack_sockaddr_in Socket.pack_sockaddr_in(port, host)→ str_address

Given a port and a host, returns the (system dependent) sockaddr structure as a string of

bytes.

require 'socket'

addr = Socket.pack_sockaddr_in(80, "pragprog.com")

Pragprog.com is 65.74.171.137

addr.unpack("CCnC4") # => [16, 2, 80, 65, 74, 171, 137]

pack_sockaddr_un Socket.pack_sockaddr_un(path) → str_address

Given a path to a Unix socket, returns the (system dependent) sock_addr_un structure as a

string of bytes. Available only on boxes supporting the Unix address family.

require 'socket'

addr = Socket.pack_sockaddr_un("/tmp/sample")

addr[0,20] # => "\x00\x01/tmp/sample\x00\x00\x00\x00\x00\x00\x00"

pair Socket.pair(domain, type, protocol)→ array

Returns an array containing a pair of connected, anonymous Socket objects with the given

domain, type, and protocol.

socketpair Socket.socketpair(domain, type, protocol)→ array

Synonym for Socket.pair.

sockaddr_in Socket.sockaddr_in(port, host)→ str_address

1.9 Synonym for pack_sockaddr_in.

sockaddr_un Socket.sockaddr_un(path) → str_address

1.9 Synonym for pack_sockaddr_un.

socket_pair Socket.socket_pair(domain, type, protocol)→ array

Synonym for pair.

unpack_sockaddr_in Socket.pack_sockaddr_in(string_address) → [port, host]

Given a string containing a binary addrinfo structure, return the port and host.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=883

SOCKET 884

require 'socket'

addr = Socket.pack_sockaddr_in(80, "pragprog.com")

Socket.unpack_sockaddr_in(addr) # => [80, "65.74.171.137"]

unpack_sockaddr_un Socket.pack_sockaddr_in(string_address) → [port, host]

Given a string containing a binary sock_addr_un structure, returns the path to the Unix

socket. Available only on boxes supporting the Unix address family.

require 'socket'

addr = Socket.pack_sockaddr_in(80, "pragprog.com")

Socket.unpack_sockaddr_in(addr) # => [80, "65.74.171.137"]

Instance methods

accept sock.accept→ [socket, address]

Accepts an incoming connection returning an array containing a new Socket object and a

string holding the struct sockaddr information about the caller.

accept_nonblock sock.accept_nonblock→ [socket, address]

1.9 Puts the listening socket into nonblocking mode and then accepts an incoming connection.

Throws an exception if no connection is pending. You’ll probably use this in conjunction

with select.

bind sock.bind(sockaddr)→ 0

Binds to the given struct sockaddr, contained in a string.

connect sock.connect(sockaddr)→ 0

Connects to the given struct sockaddr, contained in a string.

listen sock.listen(int)→ 0

Listens for connections, using the specified int as the backlog.

recvfrom sock.recvfrom(len 〈 , flags 〉)→ [data, sender]

Receives up to len bytes from sock. flags is zero or more of the MSG_ options. The first

element of the result is the data received. The second element contains protocol-specific

information on the sender.

recvfrom_nonblock sock.recvfrom_nonblock(len 〈 , flags 〉)→ [data, sender]

1.9 Receives up to len bytes from sock in nonblocking mode. flags is zero or more of the MSG_

options. The first element of the result is the data received. The second element contains

protocol-specific information on the sender.

sysaccept sock.sysaccept→ [socket_fd, address]

Accepts an incoming connection. Returns an array containing the (integer) file descriptor

of the incoming connection and a string holding the struct sockaddr information about the

caller.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=884

IPSOCKET 885

Class
IPSocket < BasicSocket

require
"mkmf"

Class IPSocket is a base class for sockets using IP as their transport. TCPSocket and UDP-

Socket are based on this class.

Class methods

getaddress IPSocket.getaddress(hostname)→ string

Returns the dotted-quad IP address of hostname.

a = IPSocket.getaddress('www.rubylang.org')

a # => "221.186.184.68"

Instance methods

addr sock.addr→ array

Returns the domain, port, name, and IP address of sock as a four-element array. The name

will be returned as an address if the do_not_reverse_lookup flag is true.

u = UDPSocket.new

u.bind('localhost', 8765)

u.addr # => ["AF_INET", 8765, "localhost", "127.0.0.1"]

BasicSocket.do_not_reverse_lookup = true

u.addr # => ["AF_INET", 8765, "localhost", "127.0.0.1"]

peeraddr sock.peeraddr→ array

Returns the domain, port, name, and IP address of the peer.

recvfrom sock.recvfrom(len 〈 , flags 〉)→ [data, sender]

Receives up to len bytes on the connection. flags is zero or more of the MSG_ options

(listed on page 881). Returns a two-element array. The first element is the received data,

and the second is an array containing information about the peer. On systems such as my

Mac OS X box where the native recvfrom() method does not return peer information for

TCP connections, the second element of the array is nil.

require 'socket'

t = TCPSocket.new('127.0.0.1', 'ftp')

data = t.recvfrom(40)

data # => ["220 localhost FTP server (tnftpd 2006121", nil]

t.close # => nil

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=885

TCPSOCKET 886

Class
TCPSocket < IPSocket

require
"mkmf"

t = TCPSocket.new('localhost', 'ftp')

t.gets # => "220 localhost FTP server (tnftpd 20061217) ready.\r\n"

t.close # => nil

Class methods

gethostbyname TCPSocket.gethostbyname(hostname)→ array

Looks up hostname and returns its canonical name, an array containing any aliases, the

address type (AF_INET), and the dotted-quad IP address.

a = TCPSocket.gethostbyname('ns.pragprog.com')

a # => ["pragprog.com", ["ns.pragprog.com"], 2, "65.74.171.137"]

new TCPSocket.new(hostname, port)→ sock

Opens a TCP connection to hostname on the port.

open TCPSocket.open(hostname, port)→ sock

Synonym for TCPSocket.new.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=886

SOCKSSOCKET 887

Class
SOCKSSocket < TCPSocket

require
"mkmf"

Class SOCKSSocket supports connections based on the SOCKS protocol.

Class methods

new SOCKSSocket.new(hostname, port)→ sock

Opens a SOCKS connection to port on hostname.

open SOCKSSocket.open(hostname, port)→ sock

Synonym for SOCKSSocket.new.

Instance methods

close sock.close→ nil

Closes this SOCKS connection.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=887

TCPSERVER 888

Class
TCPServer < TCPSocket

require
"mkmf"

A TCPServer accepts incoming TCP connections. Here is a web server that listens on a

given port and returns the time:

require 'socket'

port = (ARGV[0] || 80).to_i

server = TCPServer.new('localhost', port)

while (session = server.accept)

puts "Request: #{session.gets}"

session.print "HTTP/1.1 200/OK\r\nContenttype: text/html\r\n\r\n"

session.print "<html><body><h1>#{Time.now}</h1></body></html>\r\n"

session.close

end

Class methods

new TCPServer.new(〈 hostname, 〉 port)→ sock

Creates a new socket on the given interface (identified by hostname and port). If hostname is

omitted, the server will listen on all interfaces on the current host (equivalent to an address

of 0.0.0.0).

open TCPServer.open(〈 hostname, 〉 port)→ sock

Synonym for TCPServer.new.

Instance methods

accept sock.accept→ tcp_socket

Waits for a connection on sockand returns a new tcp_socket connected to the caller. See the

example on this page.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=888

UDPSOCKET 889

Class
UDPSocket < IPSocket

require
"mkmf"

UDP sockets send and receive datagrams. To receive data, a socket must be bound to a

particular port. You have two choices when sending data: you can connect to a remote UDP

socket and thereafter send datagrams to that port, or you can specify a host and port every

time you send a packet. The following example is a UDP server that prints the message it

receives. It is called by both connectionless and connection-based clients.

require 'socket'

PORT = 4321

server = UDPSocket.open

server.bind(nil, PORT)

server_thread = Thread.start(server) do |server| # run server in a thread

3.times { p server.recvfrom(64) }

end

Adhoc client

UDPSocket.open.send("ad hoc", 0, 'localhost', PORT)

Connection based client

sock = UDPSocket.open

sock.connect('localhost', PORT)

sock.send("connectionbased", 0)

sock.send("second message", 0)

server_thread.join

produces:

["ad hoc", ["AF_INET", 55732, "localhost", "127.0.0.1"]]

["connectionbased", ["AF_INET", 55733, "localhost", "127.0.0.1"]]

["second message", ["AF_INET", 55733, "localhost", "127.0.0.1"]]

Class methods

new UDPSocket.new(family = AF_INET)→ sock

Creates a UDP endpoint, optionally specifying an address family.

open UDPSocket.open(family = AF_INET)→ sock

Synonym for UDPSocket.new.

Instance methods

bind sock.bind(hostname, port)→ 0

Associates the local end of the UDP connection with a given hostname and port. As well

as a host name, the first parameter may be "<broadcast>" or "" (the empty string) to bind to

INADDR_BROADCAST and INADDR_ANY, respectively. Must be used by servers to estab-

lish an accessible endpoint.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=889

UDPSOCKET 890

connect sock.connect(hostname, port)→ 0

Creates a connection to the given hostname and port. Subsequent UDPSocket#send requests

that don’t override the recipient will use this connection. Multiple connect requests may be

issued on sock: the most recent will be used by send. As well as a host name, the first

parameter may be "<broadcast>" or "" (the empty string) to bind to INADDR_BROADCAST

and INADDR_ANY, respectively.

recvfrom sock.recvfrom(len 〈 , flags 〉)→ [data, sender]

Receives up to len bytes from sock. flags is zero or more of the MSG_ options (listed on

page 881). The result is a two-element array containing the received data and information

on the sender. See the example on the preceding page.

recvfrom_nonblock sock.recvfrom_nonblock(len 〈 , flags 〉)→ [data, sender]

1.9 Receives up to len bytes from sock in nonblocking mode.

send sock.send(string, flags)→ int

sock.send(string, flags, hostname, port)→ int

The two-parameter form sends string on an existing connection. The four-parameter form

sends string to port on hostname.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=890

UNIXSOCKET 891

Class
UNIXSocket < BasicSocket

require
"mkmf"

Class UNIXSocket supports interprocess communications using the Unix domain protocol.

Although the underlying protocol supports both datagram and stream connections, the Ruby

library provides only a stream-based connection.

require 'socket'

SOCKET = "/tmp/sample"

sock = UNIXServer.open(SOCKET)

server_thread = Thread.start(sock) do |sock| # run server in a thread

s1 = sock.accept

p s1.recvfrom(124)

end

client = UNIXSocket.open(SOCKET)

client.send("hello", 0)

client.close

server_thread.join

produces:

["hello", ["AF_UNIX", ""]]

Class methods

new UNIXSocket.new(path)→ sock

Opens a new domain socket on path, which must be a path name.

open UNIXSocket.open(path)→ sock

Synonym for UNIXSocket.new.

Instance methods

addr sock.addr→ array

Returns the address family and path of this socket.

path sock.path→ string

Returns the path of this domain socket.

peeraddr sock.peeraddr→ array

Returns the address family and path of the server end of the connection.

recvfrom sock.recvfrom(len 〈 , flags 〉)→ array

Receives up to len bytes from sock. flags is zero or more of the MSG_ options (listed on

page 881). The first element of the returned array is the received data, and the second con-

tains (minimal) information on the sender.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=891

UNIXSERVER 892

U
N

IX
S

e
rv

e
r

Class
UNIXServer < UNIXSocket

require
"mkmf"

Class UNIXServer provides a simple Unix domain socket server. See UNIXSocket for exam-

ple code.

Class methods

new UNIXServer.new(path)→ sock

Creates a server on the given path. The corresponding file must not exist at the time of the

call.

open UNIXServer.open(path)→ sock

Synonym for UNIXServer.new.

Instance methods

accept sock.accept→ unix_socket

Waits for a connection on the server socket and returns a new socket object for that connec-

tion. See the example for UNIXSocket on the preceding page.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=892

