
Chapter 1

Getting Started

Before we start talking about the Ruby language, it would be useful if we helped you get

Ruby running on your computer. That way, you can try sample code and experiment on your

own as you read along. In fact, that’s probably essential if you want to learn Ruby—get into

the habit of writing code as you’re reading. We will also show you some different ways to

run Ruby.

The Command Prompt
(Feel free to skip to the next section if you’re already comfortable at your system’s command

prompt.)

Although there’s growing support for Ruby in IDEs, you’ll probably still end up spending

some time at your system’s command prompt, also known as a shell prompt or just plain

prompt. If you’re a Linux user, you’re probably already familiar with the prompt. If you

don’t already have a desktop icon for it, hunt around for an application called Terminal or

xterm. (On Ubuntu, you can navigate to it using Applications > Accessories > Terminal.)

On Windows, you’ll want to run cmd.exe, accessible by typing cmd into the dialog box that

appears when you select Start > Run. On OS X, run Applications > Utilities > Terminal.app.

In all three cases, a fairly empty window will pop up. It will contain a banner and a prompt.

Try typing echo hello at the prompt and hitting Enter (or Return, depending on your key-

board). You should see hello echoed back, and another prompt should appear.

Directories, Folders, and Navigation

It is beyond the scope of this book to teach the commands available at the prompt, but we

do need to cover the basics of finding your way around.

If you’re used to a GUI tool such as Explorer on Windows, or Finder on OS X, for navigating

to your files, then you’ll be familiar with the idea of folders—locations on your hard drive

that can hold files and other folders.

Report erratum25

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=25

THE COMMAND PROMPT 26

When you’re at the command prompt, you have access to these same folders. But, somewhat

confusingly, at the prompt they’re called directories (because they contain lists of other

directories and files). These directories are organized into a strict hierarchy. On Unix-based

systems (including OS X), there’s one top-level directory, called / (a single forward slash).

On Windows, there is a top-level directory for each drive on your system, so you’ll find the

top level for your C: drive at C:\ (that’s the drive letter, C, a colon, and a single backslash).

The path to a file or directory is the set of directories that you have to traverse to get to

it from the top-level directory, followed by the name of the file or directory itself. Each

component in this name is separated by a forward slash (on Unix) or a backslash (on Win-

dows). So, if you organized your projects in a directory called projects under the top-level

directory and if the projects directory had a subdirectory for your time_planner project,

the full path to the README file would be /projects/time_planner/readme.txt on Unix and

C:\projects\time_planner\readme.txt on Windows.

To navigate to a directory, use the cd command. (Because the Unix prompt varies from

system to system, we’ll just use a single dollar sign to represent it here.)

$ cd /projects/time_planner (on Unix)

C:\> cd \projects\time_planner (on Windows)

Now, on Unix boxes, you probably don’t want to be creating top-level directories. Instead,

Unix gives each user their own home directory. So, if your username is dave, your home

directory might be located in /usr/dave, /home/dave, or /Users/dave. At the shell prompt,

the special character ~ (a single tilde) stands for the path to your home directory. You can

always change directories to your home directory using cd ~, which can also be abbreviated

to just cd.

To find out the directory you’re currently in, you can type pwd (on Unix) or cd on Windows.

So, for Unix users, you could type this:

$ cd /projects/time_planner

$ pwd

/projects/time_planner

$ cd

$ pwd

/Users/dave

$

On Windows, there’s no real concept of a user’s home directory:

C:\> cd \projects\time_planner

C:\projects\time_planner> cd \projects

C:\projects>

You can create a new directory under the current directory using the mkdir command:

$ cd /projects

$ mkdir expense_tracker

$ cd expense_tracker

$ pwd

/projects/expense_tracker

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=26

INSTALLING RUBY 27

Spaces in Directory Names and Filenames

Most operating systems now allow you to create folders with spaces in
their names. This is great when you’re working at the GUI level. How-
ever, from the command prompt, spaces can be a headache, because
the shell that interprets what you type will treat the spaces in file and
folder names as being parameter separators and not as part of the
name. You can get around this, but it generally isn’t worth the hassle.
If you are creating new folders and files, it’s easiest to avoid spaces in
their names.

Notice that to change to the new directory, we could just give its name relative to the current

directory—we don’t have to enter the full path.

I suggest you create a directory called pickaxe to hold the code you write while reading this

book:

$ mkdir ~/pickaxe (on Unix)

C:\> mkdir \pickaxe (on Windows)

Get into the habit of changing into that directory before you start work:

$ cd ~/pickaxe (on Unix)

C:\> cd \pickaxe (on Windows)

Installing Ruby
Quite often, you won’t even need to download Ruby. It now comes preinstalled on many

Linux distributions, and Mac OS X includes Ruby (although the version of Ruby prein-

stalled on OS X is normally several minor releases behind the current Ruby version). Try

typing ruby -v at a command prompt—you may be pleasantly surprised.

If you don’t already have Ruby on your system or if you’d like to upgrade to a newer version

(remembering that this book describes Ruby 1.9), you can install it pretty simply. But first,

you have a choice to make: go for a prepackaged distribution or build Ruby from source?

Prepackaged Distributions

A packaged distribution of Ruby simply works out of the box. You install it, and it runs.

Binary distributions are prebuilt for a particular operating environment and are convenient

if you don’t want to mess around with building Ruby from source. The downside of a

packaged distribution is that you may have to take it as given: it may be a minor release

or two behind the leading edge, and it may not have the optional libraries that you might

want (although you may be able to install additional libraries using RubyGems, described

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=27

INSTALLING RUBY 28

in a moment). If you can live with that, you’ll need to find a packaged distribution for your

operating system and machine architecture.

Windows Distributions

In the old days (where old means Ruby 1.8), things were good for Windows users. There

was a great “batteries included” package that would install not just Ruby but also a vast

array of libraries and gems. This was called the One-Click Installer, or OCI.

However, with the advent of Ruby 1.9, the situation has changed somewhat. Ruby 1.9 hasn’t

been around long, so some of the libraries that were included in the 1.8 installer have not

yet been made compatible with 1.9. As I write this, the OCI project is in a state of flux. The

maintainer, Luis Lavena, is planning on releasing a Ruby 1.9 version of the OCI in early

2009, but it may well not contain as many libraries as the 1.8 version. The situation will

improve over time. (And, if you feel strongly about this, I know Luis would welcome your

help porting stuff over.)

So, you have a couple of choices for installing Ruby 1.9 on Windows. You can visit http://rubyforge.org/projects/ruby

and see whether a one-click installer is available. If not, you can download a prebuilt binary

from ruby-lang.org.1

Linux Distributions

Most modern Linux distributions use the apt-get system (or the Synaptic GUI) to find and

install Ruby. As of November 2008, the following command installs Ruby, irb, and ri:

$ sudo aptget install ruby1.9 libruby1.9 libreadlineruby1.9 irb1.9

$ sudo aptget install rdoc1.9 ri1.9

This installs all the Ruby commands with a 1.9 suffix, so you’ll need to do this:

$ ruby1.9 v

ruby 1.9.0 (20071225 revision 14709) [i486linux]

Be aware that the version of Ruby we just installed is many months behind the current

version.

Note that you need to have superuser access to install global packages on a Unix or Linux

box, which is why we use the sudo command.

OS X Distributions

Leopard (OS X 10.5) comes with Ruby 1.8 preinstalled.2 If you want to make use of the

new Ruby 1.9 features, you’ll want to install Ruby yourself. You can do this from source,

or you can use a package management system. I personally use MacPorts.3 Once you have

1. Visit http://www.rubylang.org/en/downloads/, and look for Ruby on Windows.

2. At some point, it seems likely that Apple will include MacRuby. This is its own port of Ruby 1.9, tightly inte-

grated into the Objective-C runtime. In the meantime, you can download MacRuby from http://www.macruby.org.

3. http://www.macports.org/

Report erratum

http://rubyforge.org/projects/rubyinstaller
http://www.ruby-lang.org/en/downloads/
http://www.macruby.org
http://www.macports.org/
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=28

INSTALLING RUBY 29

the basic ports system installed, as described on its website, installing Ruby is as simple as

doing this:

$ sudo port install ruby19

As with apt-get for Linux, MacPorts currently installs the Ruby executables with a 1.9 suffix

(ruby1.9, irb1.9, and so on). If you don’t already have /opt/local/bin in your path, you’ll need

to add it. As an alternative, you could investigate http://rubyosx.com/, which claims to

offer a packaged OS X installation.

Building Ruby from Source

Because Ruby is an open source project, you can download the interpreter’s source code

and build it on your own system. Compared to using a binary distribution, this gives you

a lot more control over where things go, and you can keep your installation totally up-to-

date. The downside is that you’re taking on the responsibility of managing the build and

installation process. This isn’t onerous, but it can be scary if you’ve never installed an open

source application from source.

The first thing to do is to download the source. This comes in three flavors, all from

http://www.rubylang.org/en/downloads:

• The stable release in tarball format. A tarball is an archive file, much like a .zip file.

• The stable snapshot. This is a tarball, created nightly, of the latest source code in

Ruby’s stable development branch. The stable branch is intended for production code

and in general will be reliable. However, because the snapshot is taken daily, new fea-

tures may not have received thorough testing yet—the stable tarball in the previous

bullet will be generally more reliable.

• The nightly snapshot. This is again a tarball, created nightly. Unlike the stable code in

the previous two tarballs, this code is leading edge, because it is taken from the head

of the development branch. Expect things to be broken in here.

If you plan on downloading either of the nightly snapshots regularly, it may be easier to

subscribe to the source repository directly. The sidebar on page 31 gives more details.

Once you’ve loaded a tarball, you’ll have to expand the archive into its constituent files. Use

the tar command for this (if you don’t have tar installed, you can try using another archiving

utility, because many now support tar-format files).

$ tar xzf snapshot.tar.gz

ruby/

ruby/bcc32/

ruby/bcc32/Makefile.sub

ruby/bcc32/README.bcc32

: : :

This installs the Ruby source tree in the subdirectory ruby/. In that directory, you’ll find a

file named README, which explains the installation procedure in detail. To summarize, you

build Ruby on Unix-based systems using the same four commands you use for most other

open source applications: ./configure, make, make test, and make install. You can build Ruby

Report erratum

http://rubyosx.com/
http://www.ruby-lang.org/en/downloads
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=29

RUNNING RUBY 30

under other environments (including Windows)—see README.win32 in the distribution’s

win32 subdirectory as a starting point.

Source Code from This Book

We have made the source code from this book available for download from our website at

http://pragprog.com/titles/ruby3/code. Sometimes, the listings of code in the book

correspond to a complete source file. Other times, the book shows just part of the source in

a file—the program file may contain additional scaffolding to make the code run.

Running Ruby
Now that Ruby is installed, you’d probably like to run some programs. Unlike compiled

languages, you have two ways to run Ruby—you can type in code interactively, or you can

create program files and run them. Typing in code interactively is a great way to experiment

with the language, but for code that’s more complex or that you will want to run more than

once, you’ll need to create program files and run them. But, before we go any further, let’s

test to see whether Ruby is installed. Bring up a fresh command prompt, and type this:4

$ ruby v

ruby 1.9.1p0 (20090130 revision 21907) [i386darwin9.6.0]

If you believe that you should have Ruby installed and yet you get an error saying something

like “ruby: command not found,” then it is likely that the Ruby program is not in your

path—the list of places that the shell searches for programs to run. If you used the Windows

One-Click Installer, make sure you rebooted before trying this command. If you’re on OS X

and installed Ruby from source, you’ll probably have to add a line like this to the file .profile

in your home directory:

PATH=/usr/local/bin:$PATH

Interactive Ruby

One way to run Ruby interactively is simply to type ruby at the shell prompt. Here we typed

in the single puts expression and an end-of-file character (which is Ctrl+D on our system).

This process works, but it’s painful if you make a typo, and you can’t really see what’s

going on as you type.

% ruby

puts "Hello, world!"

^D

Hello, world!

4. Remember you may need to use ruby1.9 as the command name if you installed using a package management

system.

Report erratum

http://pragprog.com/titles/ruby3/code
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=30

RUNNING RUBY 31

The Very Latest Ruby

For those who just have to be on the very latest, hot-off-the-press,
and untested cutting edge (as we were while writing this book), you
can get development versions straight from the developers’ working
repository.

The Ruby developers use Subversion (often abbreviated as SVN) as
their revision control system. Subversion clients can be downloaded
from http://subversion.tigris.org/. You can check files out as an
anonymous user from their archive by executing the following SVN
command:

$ svn co http://svn.rubylang.org/repos/ruby/trunk ruby

The complete source code tree, just as the developers last left it, will
now be copied to a ruby subdirectory on your machine.

This command will check out the head of the development tree. If you
want the Ruby 1.8 branch, change trunk to branches/ruby_1_8 in the
checkout command.

For most folks, irb—Interactive Ruby—is the tool of choice for executing Ruby interac-

tively. irb is a Ruby shell, complete with command-line history, line-editing capabilities,

and job control. (In fact, it has its own chapter beginning on page 278.) You run irb from

the command line. Once it starts, just type in Ruby code. It will show you the value of each

expression as it evaluates it. Exit an irb session by typing exit or by using the end-of-file

character on your operating system (normally Ctrl+D or Ctrl+Z).

% irb

irb(main):001:0> def sum(n1, n2)

irb(main):002:1> n1 + n2

irb(main):003:1> end

=> nil

irb(main):004:0> sum(3, 4)

=> 7

irb(main):005:0> sum("cat", "dog")

=> "catdog"

irb(main):006:0> exit

We recommend that you get familiar with irb so you can try our examples interactively.

Ruby Programs

The normal way to write Ruby programs is to put them in one or more files. You’ll use a

text editor (Emacs, vim, TextMate, and so on) or an IDE (such as NetBeans) to create and

maintain these files. You’ll then run the files either from within the editor or IDE or from the

Report erratum

http://subversion.tigris.org/
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=31

RUBY DOCUMENTATION: RDOC AND RI 32

command line. I personally use both techniques, typically running from within the editor

for single-file programs and from the command line for more complex ones.

Let’s start by creating a simple Ruby program and running it. Open a command window,

and navigate to the pickaxe directory you created earlier:

$ cd ~/pickaxe (unix)

C:\> cd \pickaxe (windows)

Then, using your editor of choice, create the file myprog.rb, containing the following:

Download samples/gettingstarted_2.rb

puts "Hello, Ruby Programmer"

puts "It is now #{Time.now}"

(Note that the second string contains the text Time.now between curly braces, not parenthe-

ses.)

You can run a Ruby program from a file as you would any other shell script, Perl program, or

Python program. Simply run the Ruby interpreter, giving it the script name as an argument:

$ ruby myprog.rb

Hello, Ruby Programmer

It is now 20090413 13:25:51 0500

On Unix systems, you can use the “shebang” notation as the first line of the program file:5

Download samples/gettingstarted_4.rb

#!/usr/local/bin/ruby w

puts "Hello, Ruby Programmer"

puts "It is now #{Time.now}"

If you make this source file executable (using, for instance, chmod +x myprog.rb), Unix lets

you run the file as a program:

$./myprog.rb

Hello, Ruby Programmer

It is now 20090413 13:25:51 0500

You can do something similar under Microsoft Windows using file associations, and you

can run Ruby GUI applications by double-clicking their names in Explorer.

Ruby Documentation: RDoc and ri
As the volume of the Ruby libraries has grown, it has become impossible to document them

all in one book; the standard library that comes with Ruby now contains more than 9,000

5. If your system supports it, you can avoid hard-coding the path to Ruby in the “shebang” line by using

#!/usr/bin/env ruby, which will search your path for ruby and then execute it.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/gettingstarted_2.rb
http://media.pragprog.com/titles/ruby3/code/samples/gettingstarted_4.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=32

RUBY DOCUMENTATION: RDOC AND RI 33

methods. Fortunately, an alternative to paper documentation exists for these methods (and

classes and modules). Many are now documented internally using a system called RDoc.

If a source file is documented using RDoc, its documentation can be extracted and converted

into HTML and ri formats.

Several websites contain a complete set of the RDoc documentation for Ruby, but http://www.rubydoc.org

is probably the best known. Browse on over, and you should be able to find at least some

form of documentation for any Ruby library. The site is adding new documentation all the

time.

The ri tool is a local, command-line viewer for this same documentation. Most Ruby distri-

butions now also install the resources used by the ri program.

To find the documentation for a class, type ri ClassName. For example, the following lists

the summary information for the GC class. (For a list of classes with ri documentation, type

ri.)

$ ri GC

 Class: GC

The GC module provides an interface to Ruby's mark and sweep

garbage collection mechanism. Some of the underlying methods are

also available via the ObjectSpace module.

Class methods:

count, disable, enable, malloc_allocated_size, malloc_allocations,

start, stress, stress=

Instance methods:

garbage_collect

For information on a particular method, give its name as a parameter:

% ri GC::enable

 GC::enable

GC.enable => true or false

Enables garbage collection, returning true if garbage

collection was previously disabled.

GC.disable #=> false

GC.enable #=> true

GC.enable #=> false

If the method you pass to ri occurs in more than one class or module, ri will list all of the

alternatives.

Report erratum

http://www.ruby-doc.org
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=33

RUBY DOCUMENTATION: RDOC AND RI 34

Reissue the command, prefixing the method name with the name of the class and a dot:

$ ri assoc

More than one method matched your request. You can refine your

search by asking for information on one of:

Array#assoc [Ruby 1.9.1]

Array#rassoc [Ruby 1.9.1]

Hash#assoc [Ruby 1.9.1]

Hash#rassoc [Ruby 1.9.1]

$ ri Array.assoc

 Array#assoc

array.assoc(obj) > an_array or nil

Searches through an array whose elements are also arrays

comparing obj with the first element of each contained array

using obj.==. Returns the first contained array that matches

(that is, the first associated array), or nil if no match is

found. See also Array#rassoc.

: : :

For general help on using ri, type ri --help. In particular, you might want to experiment with

the --format option, which tells ri how to render decorated text (such as section headings). If

your terminal program supports ANSI escape sequences, using --format ansi will generate a

nice, colorful display. Once you find a set of options you like, you can set them into the RI

environment variable. Using my shell (zsh), this would be done using the following:

% export RI="format ansi width 70"

If a class or module isn’t yet documented in RDoc format, ask the friendly folks over at

suggestions@ruby-doc.org to consider adding it.

All this command-line hacking may seem a tad off-putting if you’re not a regular visitor to

the shell prompt. But, in reality, it isn’t that difficult, and the power you get from being able

to string together commands this way is often surprising. Stick with it, and you’ll be well

on your way to mastering both Ruby and your computer.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=34

