
Chapter 2

Ruby.new

Most books on programming languages look about the same. They start with chapters on

basic types: integers, strings, and so on. Then they look at expressions, before moving on

to if and while statements. Then, perhaps around Chapter 7 or 8, they’ll start mentioning

classes. We find that somewhat tedious.

Instead, when we designed this book, we had a grand plan (we were younger then). We

wanted to document the language from the top down, starting with classes and objects and

ending with the nitty-gritty syntax details. It seemed like a good idea at the time. After all,

most everything in Ruby is an object, so it made sense to talk about objects first.

Or so we thought.

Unfortunately, it turns out to be difficult to describe a language that way. If you haven’t

covered strings, if statements, assignments, and other details, it’s difficult to write examples

of classes. Throughout our top-down description, we kept coming across low-level details

we needed to cover so that the example code would make sense.

So, we came up with another grand plan (they don’t call us pragmatic for nothing). We’d

still describe Ruby starting at the top. But before we did that, we’d add a short chapter that

described all the common language features used in the examples along with the special

vocabulary used in Ruby, a kind of mini-tutorial to bootstrap us into the rest of the book.

And that mini-tutorial is this chapter.

Ruby Is an Object-Oriented Language
Let’s say it again. Ruby is a genuine object-oriented language. Everything you manipulate

is an object, and the results of those manipulations are themselves objects. However, many

languages make the same claim, and their users often have a different interpretation of what

object-oriented means and a different terminology for the concepts they employ.

So, before we get too far into the details, let’s briefly look at the terms and notation that

we’ll be using.

Report erratum35

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=35

RUBY IS AN OBJECT-ORIENTED LANGUAGE 36

When you write object-oriented programs, you’re normally looking to model concepts from

the real world. Typically during this modeling process you’ll discover categories of things

that need to be represented in code. In a jukebox, the concept of a “song” could be such

a category. In Ruby, you’d define a class to represent each of these entities. A class is a

combination of state (for example, the name of the song) and methods that use that state

(perhaps a method to play the song).

Once you have these classes, you’ll typically want to create a number of instances of each.

For the jukebox system containing a class called Song, you’d have separate instances for

popular hits such as “Ruby Tuesday,” “Enveloped in Python,” “String of Pearls,” “Small

Talk,” and so on. The word object is used interchangeably with class instance (and being

lazy typists, we’ll probably be using the word object more frequently).

In Ruby, these objects are created by calling a constructor, a special method associated with

a class. The standard constructor is called new.

Download samples/intro_1.rb

song1 = Song.new("Ruby Tuesday")

song2 = Song.new("Enveloped in Python")

and so on

These instances are both derived from the same class, but they have unique characteristics.

First, every object has a unique object identifier (abbreviated as object ID). Second, you

can define instance variables, variables with values that are unique to each instance. These

instance variables hold an object’s state. Each of our songs, for example, will probably have

an instance variable that holds the song title.

Within each class, you can define instance methods. Each method is a chunk of functionality

that may be called in the context of the class and (depending on accessibility constraints)

from outside the class. These instance methods in turn have access to the object’s instance

variables and hence to the object’s state. A Song class, for example, might define an instance

method called play. If the variable my_way referenced a particular Song instance, you’d be

able to call that instance’s play method and play a particular song.

Methods are invoked by sending a message to an object. The message contains the method’s

name, along with any parameters the method may need.1 When an object receives a mes-

sage, it looks into its own class for a corresponding method. If found, that method is exe-

cuted. If the method isn’t found. . . well, we’ll get to that later.

This business of methods and messages may sound complicated, but in practice it is very

natural. Let’s look at some method calls. In this code, we’re using puts, a standard Ruby

method that writes its argument(s) to the console, adding a newline after each:

puts "gin joint".length

puts "Rick".index("c")

puts 42.even?

puts sam.play(song)

1. This idea of expressing method calls in the form of messages comes from Smalltalk.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/intro_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=36

SOME BASIC RUBY 37

produces:

9

2

true

duh dum, da dum de dum ...

Each line shows a method being called as an argument to puts. The thing before the period

is called the receiver, and the name after the period is the method to be invoked. The first

example asks a string for its length, and the second asks a different string to find the index

of the letter c. The third line asks the number 42 if it is even (the question mark is part of the

method name even?). Finally, we ask Sam to play us a song (assuming there’s an existing

variable called sam that references an appropriate object).

It’s worth noting here a major difference between Ruby and most other languages. In (say)

Java, you’d find the absolute value of some number by calling a separate function and pass-

ing in that number. You could write this:

num = Math.abs(num) // Java code

In Ruby, the ability to determine an absolute value is built into numbers—they take care of

the details internally. You simply send the message abs to a number object and let it do the

work:

num = ­1234 # => ­1234

positive = num.abs # => 1234

The same applies to all Ruby objects. In C you’d write strlen(name), but in Ruby it’s

name.length, and so on. This is part of what we mean when we say that Ruby is a gen-

uine object-oriented language.

Some Basic Ruby
Not many people like to read heaps of boring syntax rules when they’re picking up a new

language, so we’re going to cheat. In this section, we’ll hit some of the highlights—the

stuff you’ll just need to know if you’re going to write Ruby programs. Later, in Chapter 22,

which begins on page 325, we’ll go into all the gory details.

Let’s start with a simple Ruby program. We’ll write a method that returns a cheery, person-

alized greeting. We’ll then invoke that method a couple of times:

Download samples/intro_5.rb

def say_goodnight(name)

result = "Good night, " + name

return result

end

Time for bed...

puts say_goodnight("John­Boy")

puts say_goodnight("Mary­Ellen")

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/intro_5.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=37

SOME BASIC RUBY 38

As the example shows, Ruby syntax is clean. You don’t need semicolons at the ends of

statements as long as you put each statement on a separate line. Ruby comments start with a

character and run to the end of the line. Code layout is pretty much up to you; indentation is

not significant (but using two-character indentation will make you friends in the community

if you plan on distributing your code).

Methods are defined with the keyword def, followed by the method name (in this case,

say_goodnight) and the method’s parameters between parentheses. (In fact, the parentheses

are optional, but we like to use them.) Ruby doesn’t use braces to delimit the bodies of

compound statements and definitions. Instead, you simply finish the body with the keyword

end. Our method’s body is pretty simple. The first line concatenates the literal string "Good

night, " and the parameter name and assigns the result to the local variable result. The next

line returns that result to the caller. Note that we didn’t have to declare the variable result; it

sprang into existence when we assigned to it.

Having defined the method, we invoke it twice. In both cases, we pass the result to the

method puts, which simply outputs its argument followed by a newline (moving on to the

next line of output):

Good night, John­Boy

Good night, Mary­Ellen

The line

puts say_goodnight("John­Boy")

contains two method calls, one to the method say_goodnight and the other to the method

puts. Why does one call have its arguments in parentheses while the other doesn’t? In this

case, it’s purely a matter of taste. The following lines are both equivalent:

puts say_goodnight("John­Boy")

puts(say_goodnight("John­Boy"))

However, life isn’t always that simple, and precedence rules can make it difficult to know

which argument goes with which method invocation, so we recommend using parentheses

in all but the simplest cases.

This example also shows some Ruby string objects. Ruby has many ways to create a string

object, but probably the most common is to use string literals, which are sequences of

characters between single or double quotation marks. The difference between the two forms

is the amount of processing Ruby does on the string while constructing the literal. In the

single-quoted case, Ruby does very little. With a few exceptions, what you type into the

string literal becomes the string’s value.

In the double-quoted case, Ruby does more work. First, it looks for substitutions (sequences

that start with a backslash character) and replaces them with some binary value. The most

common of these is \n, which is replaced with a newline character. When a string containing

a newline is output, that newline becomes a line break:

puts "And good night,\nGrandma"

produces:

And good night,

Grandma

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=38

SOME BASIC RUBY 39

The second thing that Ruby does with double-quoted strings is expression interpolation.

Within the string, the sequence #{expression} is replaced by the value of expression. We

could use this to rewrite our previous method:

Download samples/intro_10.rb

def say_goodnight(name)

result = "Good night, #{name}"

return result

end

puts say_goodnight('Pa')

produces:

Good night, Pa

When Ruby constructs this string object, it looks at the current value of name and substitutes

it into the string. Arbitrarily complex expressions are allowed in the #{. . . } construct. In the

following example, we invoke the capitalize method, defined for all strings, to output our

parameter with a leading uppercase letter:

Download samples/intro_11.rb

def say_goodnight(name)

result = "Good night, #{name.capitalize}"

return result

end

puts say_goodnight('uncle')

produces:

Good night, Uncle

For more information on strings, as well as on the other Ruby standard types, see Chapter

6, which begins on page 106.

Finally, we could simplify this method some more. The value returned by a Ruby method

is the value of the last expression evaluated, so we can get rid of the temporary variable and

the return statement altogether:

Download samples/intro_12.rb

def say_goodnight(name)

"Good night, #{name.capitalize}"

end

puts say_goodnight('ma')

produces:

Good night, Ma

We promised that this section would be brief. We have just one more topic to cover: Ruby

names. For brevity, we’ll be using some terms (such as class variable) that we aren’t going

to define here. However, by talking about the rules now, you’ll be ahead of the game when

we actually come to discuss class variables and the like later.

Ruby uses a convention that may seem strange at first: the first characters of a name indicate

how the name is used. Local variables, method parameters, and method names should all

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/intro_10.rb
http://media.pragprog.com/titles/ruby3/code/samples/intro_11.rb
http://media.pragprog.com/titles/ruby3/code/samples/intro_12.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=39

ARRAYS AND HASHES 40

start with a lowercase letter or with an underscore. Global variables are prefixed with a

dollar sign ($), and instance variables begin with an “at” sign (@). Class variables start with

two “at” signs (@@).2 Finally, class names, module names, and constants must start with

an uppercase letter. Samples of different names are given in Table 2.1 on the next page.

Following this initial character, a name can be any combination of letters, digits, and under-

scores (with the proviso that the character following an @ sign may not be a digit). How-

ever, by convention, multiword instance variables are written with underscores between the

words, and multiword class names are written in MixedCase (with each word capitalized).

Method names may end with the characters ?, !, and =.

Arrays and Hashes
Ruby’s arrays and hashes are indexed collections. Both store collections of objects, acces-

sible using a key. With arrays, the key is an integer, whereas hashes support any object as

a key. Both arrays and hashes grow as needed to hold new elements. It’s more efficient to

access array elements, but hashes provide more flexibility. Any particular array or hash can

hold objects of differing types; you can have an array containing an integer, a string, and a

floating-point number, as we’ll see in a minute.

You can create and initialize a new array object using an array literal—a set of elements

between square brackets. Given an array object, you can access individual elements by

supplying an index between square brackets, as the next example shows. Note that Ruby

array indices start at zero.

Download samples/intro_13.rb

a = [1, 'cat', 3.14] # array with three elements

puts "The first element is #{a[0]}"

set the third element

a[2] = nil

puts "The array is now #{a.inspect}"

produces:

The first element is 1

The array is now [1, "cat", nil]

You may have noticed that we used the special value nil in this example. In many languages,

the concept of nil (or null) means “no object.” In Ruby, that’s not the case; nil is an object,

just like any other, that happens to represent nothing. Anyway, let’s get back to arrays and

hashes.

2. Although we talk about global and class variables here for completeness, you’ll find they are rarely used in

Ruby programs. There’s a lot of evidence that global variables make programs harder to maintain. Class variables

are not as dangerous—it’s just that people tend not to use them much.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/intro_13.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=40

ARRAYS AND HASHES 41

Table 2.1. Example Variable and Class Names

Variables Constants and

Local Global Instance Class Class Names

name $debug @name @@total PI

fish_and_chips $CUSTOMER @point_1 @@symtab FeetPerMile

x_axis $_ @X @@N String

thx1138 $plan9 @_ @@x_pos MyClass

_26 $Global @plan9 @@SINGLE JazzSong

Sometimes creating arrays of words can be a pain, what with all the quotes and commas.

Fortunately, Ruby has a shortcut: %w does just what we want:

Download samples/intro_14.rb

a = ['ant', 'bee', 'cat', 'dog', 'elk']

a[0] # => "ant"

a[3] # => "dog"

this is the same:

a = %w{ ant bee cat dog elk }

a[0] # => "ant"

a[3] # => "dog"

Ruby hashes are similar to arrays. A hash literal uses braces rather than square brackets.

The literal must supply two objects for every entry: one for the key, the other for the value.

The key and value are normally separated by =>.

For example, you may want to map musical instruments to their orchestral sections. You

could do this with a hash:

inst_section = {

'cello' => 'string',

'clarinet' => 'woodwind',

'drum' => 'percussion',

'oboe' => 'woodwind',

'trumpet' => 'brass',

'violin' => 'string'

}

The thing to the left of the => is the key, and the thing to the right is the corresponding value.

Keys in a particular hash must be unique—you can’t have two entries for “drum.” The keys

and values in a hash can be arbitrary objects—you can have hashes where the values are

arrays, other hashes, and so on.

Hashes are indexed using the same square bracket notation as arrays. In this code, we’ll use

the p method to write the values to the console. This works like puts but displays values

such as nil explicitly.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/intro_14.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=41

SYMBOLS 42

p inst_section['oboe']

p inst_section['cello']

p inst_section['bassoon']

produces:

"woodwind"

"string"

nil

As the previous example shows, a hash by default returns nil when indexed by a key it

doesn’t contain. Normally this is convenient, because nil means false when used in condi-

tional expressions. Sometimes you’ll want to change this default. For example, if you’re

using a hash to count the number of times each different word occurs in a file, it’s conve-

nient to have the default value be zero. Then you can use the word as the key and simply

increment the corresponding hash value without worrying about whether you’ve seen that

word before. This is easily done by specifying a default value when you create a new, empty

hash. (The full source for the word frequency counter is on page 72.)

Download samples/intro_17.rb

histogram = Hash.new(0) # The default value is zero

histogram['ruby'] # => 0

histogram['ruby'] = histogram['ruby'] + 1

histogram['ruby'] # => 1

Array and hash objects have lots of useful methods; see the discussion starting on page 67,

and the reference sections starting on pages 447 and 533, for details.

Symbols
Often, when programming, you need to create a name for something significant. For exam-

ple, you might want to refer to the compass points by name, so you’d write this:

NORTH = 1

EAST = 2

SOUTH = 3

WEST = 4

Then, in the rest of your code, you could use the constants instead of the numbers:

walk(NORTH)

look(EAST)

Most of the time, the actual numeric values of these constants are irrelevant (as long as they

are unique). All you want to do is differentiate the four directions.

Ruby offers a cleaner alternative. Symbols are simply constant names that you don’t have to

predeclare and that are guaranteed to be unique. A symbol literal starts with a colon and is

normally followed by some kind of name:

walk(:north)

look(:east)

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/intro_17.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=42

CONTROL STRUCTURES 43

There’s no need to assign some kind of value to a symbol—Ruby takes care of that for you.

Ruby also guarantees that no matter where it appears in your program, a particular symbol

will have the same value. That is, you can write the following:

def walk(direction)

if direction == :north

...

end

end

Symbols are frequently used as keys in hashes. We could write our previous example as

this:

inst_section = {

:cello => 'string',

:clarinet => 'woodwind',

:drum => 'percussion',

:oboe => 'woodwind',

:trumpet => 'brass',

:violin => 'string'

}

inst_section[:oboe] # => "woodwind"

inst_section[:cello] # => "string"

Note that strings aren't the same as symbols...

inst_section['cello'] # => nil

In fact, symbols are so frequently used as hash keys that Ruby 1.9 introduces a new syntax—

you can use name: value pairs to create a hash if the keys are symbols:1.9

inst_section = {

cello: 'string',

clarinet: 'woodwind',

drum: 'percussion',

oboe: 'woodwind',

trumpet: 'brass',

violin: 'string'

}

puts "An oboe is a #{inst_section[:oboe]}"

produces:

An oboe is a woodwind

Control Structures
Ruby has all the usual control structures, such as if statements and while loops. Java, C, and

Perl programmers may well get caught by the lack of braces around the bodies of these

statements. Instead, Ruby uses the keyword end to signify the end of a body:

if count > 10

puts "Try again"

elsif tries == 3

puts "You lose"

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=43

CONTROL STRUCTURES 44

else

puts "Enter a number"

end

Similarly, while statements are terminated with end:

while weight < 100 and num_pallets <= 30

pallet = next_pallet()

weight += pallet.weight

num_pallets += 1

end

Most statements in Ruby return a value, which means you can use them as conditions. For

example, the method gets returns the next line from the standard input stream or nil when

end of file is reached. Because Ruby treats nil as a false value in conditions, you could write

the following to process the lines in a file:

while line = gets

puts line.downcase

end

Here, the assignment statement sets the variable line to either the next line of text or nil, and

then the while statement tests the value of the assignment, terminating the loop when it is

nil.

Ruby statement modifiers are a useful shortcut if the body of an if or while statement is just

a single expression. Simply write the expression, followed by if or while and the condition.

For example, here’s a simple if statement:

if radiation > 3000

puts "Danger, Will Robinson"

end

Here it is again, rewritten using a statement modifier:

puts "Danger, Will Robinson" if radiation > 3000

Similarly, a while loop such as this:

square = 2

while square < 1000

square = square*square

end

becomes this more concise version:

square = 2

square = square*square while square < 1000

These statement modifiers should seem familiar to Perl programmers.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=44

REGULAR EXPRESSIONS 45

Regular Expressions
Most of Ruby’s built-in types will be familiar to all programmers. A majority of languages

have strings, integers, floats, arrays, and so on. However, regular expression support is typ-

ically built into only scripting languages, such as Ruby, Perl, and awk. This is a shame,

because regular expressions, although cryptic, are a powerful tool for working with text.

And having them built in, rather than tacked on through a library interface, makes a big

difference.

Entire books have been written about regular expressions (for example, Mastering Regular

Expressions [Fri02]), so we won’t try to cover everything in this short section. Instead,

we’ll look at just a few examples of regular expressions in action. You’ll find full coverage

of regular expressions starting on page 117.

A regular expression is simply a way of specifying a pattern of characters to be matched

in a string. In Ruby, you typically create a regular expression by writing a pattern between

slash characters (/pattern/). And, Ruby being Ruby, regular expressions are objects and can

be manipulated as such.

For example, you could write a pattern that matches a string containing the text Perl or the

text Python using the following regular expression:

/Perl|Python/

The forward slashes delimit the pattern, which consists of the two things we’re matching,

separated by a pipe character (|). This pipe character means “either the thing on the right

or the thing on the left,” in this case either Perl or Python. You can use parentheses within

patterns, just as you can in arithmetic expressions, so you could also have written this pattern

like this:

/P(erl|ython)/

You can also specify repetition within patterns. /ab+c/ matches a string containing an a

followed by one or more b’s, followed by a c. Change the plus to an asterisk, and /ab*c/

creates a regular expression that matches one a, zero or more b’s, and one c.

You can also match one of a group of characters within a pattern. Some common examples

are character classes such as \s, which matches a whitespace character (space, tab, newline,

and so on); \d, which matches any digit; and \w, which matches any character that may

appear in a typical word. A dot (.) matches (almost) any character. A table of these character

classes appears on page 125.

We can put all this together to produce some useful regular expressions:

/\d\d:\d\d:\d\d/ # a time such as 12:34:56

/Perl.*Python/ # Perl, zero or more other chars, then Python

/Perl Python/ # Perl, a space, and Python

/Perl *Python/ # Perl, zero or more spaces, and Python

/Perl +Python/ # Perl, one or more spaces, and Python

/Perl\s+Python/ # Perl, whitespace characters, then Python

/Ruby (Perl|Python)/ # Ruby, a space, and either Perl or Python

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=45

BLOCKS AND ITERATORS 46

Once you have created a pattern, it seems a shame not to use it. The match operator =~ can

be used to match a string against a regular expression. If the pattern is found in the string,

=~ returns its starting position; otherwise, it returns nil. This means you can use regular

expressions as the condition in if and while statements. For example, the following code

fragment writes a message if a string contains the text Perl or Python:

if line =~ /Perl|Python/

puts "Scripting language mentioned: #{line}"

end

The part of a string matched by a regular expression can be replaced with different text

using one of Ruby’s substitution methods:

line.sub(/Perl/, 'Ruby') # replace first 'Perl' with 'Ruby'

line.gsub(/Python/, 'Ruby') # replace every 'Python' with 'Ruby'

You can replace every occurrence of Perl and Python with Ruby using this:

line.gsub(/Perl|Python/, 'Ruby')

We’ll have a lot more to say about regular expressions as we go through the book.

Blocks and Iterators
This section briefly describes one of Ruby’s particular strengths. We’re about to look at

code blocks, which are chunks of code you can associate with method invocations, almost

as if they were parameters. This is an incredibly powerful feature. One of our reviewers

commented at this point: “This is pretty interesting and important, so if you weren’t paying

attention before, you should probably start now.” We’d have to agree.

You can use code blocks to implement callbacks (but they’re simpler than Java’s anonymous

inner classes), to pass around chunks of code (but they’re more flexible than C’s function

pointers), and to implement iterators.

Code blocks are just chunks of code between braces or between do. . . end. This is a code

block:

{ puts "Hello" }

So is this:

do

club.enroll(person)

person.socialize

end

Why are there two kinds of delimiter? It’s partly because sometimes one feels more natural

to write than another. It’s partly too because they have different precedences: the braces

bind more tightly than the do/end pairs. In this book, we try to follow what is becoming a

Ruby standard and use braces for single-line blocks and do/end for multiline blocks.

All you can do with a block is associate it with a call to a method. You do this by putting

the start of the block at the end of the source line containing the method call.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=46

BLOCKS AND ITERATORS 47

For example, in the following code, the block containing puts "Hi" is associated with the call

to the method greet (which we don’t show):

greet { puts "Hi" }

If the method has parameters, they appear before the block:

verbose_greet("Dave", "loyal customer") { puts "Hi" }

A method can then invoke an associated block one or more times using the Ruby yield

statement. You can think of yield as being something like a method call that invokes the

block associated with the call to the method containing the yield.

The following example shows this in action. We define a method that calls yield twice. We

then call this method, putting a block on the same line, after the call (and after any arguments

to the method).3

Download samples/intro_41.rb

def call_block

puts "Start of method"

yield

yield

puts "End of method"

end

call_block { puts "In the block" }

produces:

Start of method

In the block

In the block

End of method

The code in the block (puts "In the block") is executed twice, once for each call to yield.

You can provide arguments to the call to yield, and they will be passed to the block. Within

the block, you list the names of the parameters to receive these arguments between vertical

bars (| params... |). The following example shows a method calling its associated block

twice, passing the block two arguments each time:

Download samples/intro_42.rb

def who_says_what

yield("Dave", "hello")

yield("Andy", "goodbye")

end

who_says_what {|person, phrase| puts "#{person} says #{phrase}"}

produces:

Dave says hello

Andy says goodbye

3. Some people like to think of the association of a block with a method as a kind of argument passing. This

works on one level, but it isn’t really the whole story. You may be better off thinking of the block and the method as

coroutines, which transfer control back and forth between themselves.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/intro_41.rb
http://media.pragprog.com/titles/ruby3/code/samples/intro_42.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=47

READING AND ’RITING 48

Code blocks are used throughout the Ruby library to implement iterators, which are meth-

ods that return successive elements from some kind of collection, such as an array:

animals = %w(ant bee cat dog elk) # create an array

animals.each {|animal| puts animal } # iterate over the contents

produces:

ant

bee

cat

dog

elk

Many of the looping constructs that are built into languages such as C and Java are simply

method calls in Ruby, with the methods invoking the associated block zero or more times:

Download samples/intro_44.rb

['cat', 'dog', 'horse'].each {|name| print name, " " }

5.times { print "*" }

3.upto(6) {|i| print i }

('a'..'e').each {|char| print char }

produces:

cat dog horse *****3456abcde

Here we ask an array to call the block once for each of its elements. Then, object 5 calls a

block five times. Rather than use for loops, in Ruby we can ask the number 3 to call a block,

passing in successive values until it reaches 6. Finally, the range of characters from a to e

invokes a block using the method each.

Reading and ’Riting
Ruby comes with a comprehensive I/O library. However, in most of the examples in this

book, we’ll stick to a few simple methods. We’ve already come across two methods that do

output: puts writes its arguments with a newline after each; print also writes its arguments

but with no newline. Both can be used to write to any I/O object, but by default they write

to standard output.

Another output method we use a lot is printf, which prints its arguments under the control

of a format string (just like printf in C or Perl):

printf("Number: %5.2f,\nString: %s\n", 1.23, "hello")

produces:

Number: 1.23,

String: hello

In this example, the format string "Number: %5.2f,\nString: %s\n" tells printf to substitute in

a floating-point number (with a minimum of five characters, two after the decimal point)

and a string. Notice the newlines (\n) embedded in the string; each moves the output onto

the next line.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/intro_44.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=48

COMMAND-LINE ARGUMENTS 49

You have many ways to read input into your program. Probably the most traditional is to

use the routine gets, which returns the next line from your program’s standard input stream:

line = gets

print line

Because gets returns nil when it reaches the end of input, you can use its return value in

a loop condition. Notice that here the condition to the while is an assignment: we store

whatever gets returns into the variable line and then test to see whether that returned value

was nil or false before continuing:

while line = gets

print line

end

Command-Line Arguments
When you run a Ruby program from the command line, you can pass in arguments. These

are accessible in two different ways.

First, the array ARGV contains each of the arguments passed to the running program. Create

a file called cmd_line.rb that contains the following:

puts "You gave #{ARGV.size} arguments"

p ARGV

When we run it with arguments, we can see that they get passed in:

$ ruby cmd_line.rb ant bee cat dog

produces:

You gave 4 arguments

["ant", "bee", "cat", "dog"]

Often, the arguments to a program are the names of files that you want to process. In this

case, you can use a second technique: the variable ARGF is a special kind of I/O object that

acts like all the contents of all the files whose names are passed on the command line (or

standard input if you don’t pass any filenames). We’ll look at that some more on page 342.

Onward and Upward
That’s it. We’ve finished our lightning-fast tour of some of the basic features of Ruby. We

took a look at objects, methods, strings, containers, and regular expressions; saw some sim-

ple control structures; and looked at some rather nifty iterators. We hope this chapter has

given you enough ammunition to be able to attack the rest of this book.

Time to move on and move up—up to a higher level. Next, we’ll be looking at classes and

objects, things that are at the same time both the highest-level constructs in Ruby and the

essential underpinnings of the entire language.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=49

