
Chapter 4

Containers, Blocks,
and Iterators

Most real programs deal with collections of data: the people in a course, the songs in your

playlist, the books in the store. Ruby comes with two built-in classes to handle these col-

lections: arrays and hashes.1 Mastery of these two classes is key to being an effective Ruby

programmer. This mastery may take some time, because both classes have large interfaces.

But it isn’t just these classes that give Ruby its power when dealing with collections. Ruby

also has a block syntax that lets you encapsulate chunks of code. When paired with col-

lections, these blocks become powerful iterator constructs. In this chapter, we’ll look at the

two collection classes as well as blocks and iterators.

Arrays

The class Array holds a collection of object references. Each object reference occupies a

position in the array, identified by a non-negative integer index.

You can create arrays by using literals or by explicitly creating an Array object. A literal

array is simply a list of objects between square brackets. (In the code examples that follow,

we’re often going to show the value of expressions such as a[0] in a comment at the end of

the line. If you simply typed this fragment of code into a file and executed it using Ruby,

you’d see no output—you’d need to add something like a call to puts to have the values

written to the console.)

a = [3.14159, "pie", 99]

a.class # => Array

a.length # => 3

a[0] # => 3.14159

a[1] # => "pie"

a[2] # => 99

a[3] # => nil

1. Some languages call hashes associative arrays or dictionaries.

Report erratum67

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=67

68

b = Array.new

b.class # => Array

b.length # => 0

b[0] = "second"

b[1] = "array"

b # => ["second", "array"]

Arrays are indexed using the [] operator. As with most Ruby operators, this is actually a

method (an instance method of class Array) and hence can be overridden in subclasses. As

the example shows, array indices start at zero. Index an array with a non-negative integer,

and it returns the object at that position or returns nil if nothing is there. Index an array with

a negative integer, and it counts from the end. This indexing scheme is illustrated in more

detail in Figure 4.1 on the following page.

a = [1, 3, 5, 7, 9]

a[­1] # => 9

a[­2] # => 7

a[­99] # => nil

You can also index arrays with a pair of numbers, [start, count]. This returns a new array

consisting of references to count objects starting at position start:

a = [1, 3, 5, 7, 9]

a[1, 3] # => [3, 5, 7]

a[3, 1] # => [7]

a[­3, 2] # => [5, 7]

Finally, you can index arrays using ranges, in which start and end positions are separated by

two or three periods. The two-period form includes the end position, and the three-period

form does not:

a = [1, 3, 5, 7, 9]

a[1..3] # => [3, 5, 7]

a[1...3] # => [3, 5]

a[3..3] # => [7]

a[­3..­1] # => [5, 7, 9]

The [] operator has a corresponding []= operator, which lets you set elements in the array. If

used with a single integer index, the element at that position is replaced by whatever is on

the right side of the assignment. Any gaps that result will be filled with nil:

a = [1, 3, 5, 7, 9] → [1, 3, 5, 7, 9]

a[1] = ’bat’ → [1, "bat", 5, 7, 9]

a[­3] = ’cat’ → [1, "bat", "cat", 7, 9]

a[3] = [9, 8] → [1, "bat", "cat", [9, 8], 9]

a[6] = 99 → [1, "bat", "cat", [9, 8], 9, nil, 99]

If the index to []= is two numbers (a start and a length) or a range, then those elements

in the original array are replaced by whatever is on the right side of the assignment. If the

length is zero, the right side is inserted into the array before the start position; no elements

are removed. If the right side is itself an array, its elements are used in the replacement. The

array size is automatically adjusted if the index selects a different number of elements than

are available on the right side of the assignment.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=68

69

Figure 4.1. How Arrays Are Indexed

Positive→ 0 1 2 3 4 5 6 Negative

indices −7 −6 −5 −4 −3 −2 −1 ← indices

a = “ant” “bat” “cat” “dog” “elk” “fly” “gnu”

a[2]→ “cat”

a[-3]→ “elk”

a[1..3]→ “bat” “cat” “dog”

a[1...3]→ “bat” “cat”

a[-3..-1]→ “elk” “fly” “gnu”

a[4..-2]→ “elk” “fly”

a = [1, 3, 5, 7, 9] → [1, 3, 5, 7, 9]

a[2, 2] = ’cat’ → [1, 3, "cat", 9]

a[2, 0] = ’dog’ → [1, 3, "dog", "cat", 9]

a[1, 1] = [9, 8, 7] → [1, 9, 8, 7, "dog", "cat", 9]

a[0..3] = [] → ["dog", "cat", 9]

a[5..6] = 99, 98 → ["dog", "cat", 9, nil, nil, 99, 98]

Arrays have a large number of other useful methods. Using them, you can treat arrays as

stacks, sets, queues, dequeues, and FIFO queues.

For example, push and pop add and remove elements from the end of an array, so you can

use it as a stack:

stack = []

stack.push "red"

stack.push "green"

stack.push "blue"

p stack

puts stack.pop

puts stack.pop

puts stack.pop

p stack

produces:

["red", "green", "blue"]

blue

green

red

[]

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=69

70

Similarly, unshift and shift add and remove elements from the head of an array. Combine

shift and push, and you have a first-in first-out (FIFO) queue:

queue = []

queue.push "red"

queue.push "green"

puts queue.shift

puts queue.shift

produces:

red

green

The first and last methods return the n entries at the head or end of an array without removing

them:

array = [1, 2, 3, 4, 5, 6, 7]

p array.first(4)

p array.last(4)

produces:

[1, 2, 3, 4]

[4, 5, 6, 7]

A complete list of array methods starts on page 447. It is well worth firing up irb and playing

with them.

Hashes

Hashes (sometimes known as associative arrays, maps, or dictionaries) are similar to arrays

in that they are indexed collections of object references. However, although you index arrays

with integers, you can index a hash with objects of any type: symbols, strings, regular

expressions, and so on. When you store a value in a hash, you actually supply two objects—

the index, which is normally called the key, and the entry to be stored with that key. You can

subsequently retrieve the entry by indexing the hash with the same key value that you used

to store it.

The example that follows uses hash literals: a list of key value pairs between braces:

h = { 'dog' => 'canine', 'cat' => 'feline', 'donkey' => 'asinine' }

h.length # => 3

h['dog'] # => "canine"

h['cow'] = 'bovine'

h[12] = 'dodecine'

h['cat'] = 99

h # => {"dog"=>"canine", "cat"=>99, "donkey"=>"asinine",

"cow"=>"bovine", 12=>"dodecine"}

In the previous example, the hash keys were strings. If instead we wanted them to be sym-

bols, we could write the hash literal using either the old syntax with => or the new key:

value syntax introduced in Ruby 1.91.9 .

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=70

71

h = { dog: 'canine', cat: 'feline', donkey: 'asinine' }

same as...

h = { :dog => 'canine', :cat => 'feline', :donkey => 'asinine' }

Compared with arrays, hashes have one significant advantage: they can use any object as an

index. And, as of Ruby 1.9, you’ll find something that might be surprising:1.9 Ruby remembers

the order in which you add items to a hash. When you subsequently iterate over the entries,

Ruby will return them in that order.

You’ll find that hashes are one of the most commonly used data structures in Ruby. A full

list of the methods implemented by class Hash starts on page 533.

Word Frequency: Using Hashes and Arrays

Let’s round off this section with a simple program that calculates the number of times each

word occurs in some text. (So, for example, in this sentence the word the occurs two times.)

The problem breaks down into two parts. First, given some text as a string, return a list of

words. That sounds like an array. Then, build a count for each distinct word. That sounds

like a use for a hash—we can index it with the word and use the corresponding entry to keep

a count.

Let’s start with the method that splits a string into words:

def words_from_string(string)

string.downcase.scan(/[\w']+/)

end

This method uses two very useful String methods: downcase returns a lowercase version of

a string, and scan returns an array of substrings that match a given pattern. In this case, the

pattern is [\w’]+, which matches sequences containing “word characters” and single quotes.

We can play with this method. Notice how the result is an array:

p words_from_string("But I didn't inhale, he said (emphatically)")

produces:

["but", "i", "didn't", "inhale", "he", "said", "emphatically"]

Our next task is to calculate word frequencies. To do this, we’ll create a hash object indexed

by the words in our list. Each entry in this hash stores the number of times that word

occurred. Let’s say we already have read part of the list, and we have seen the word the

already. Then we’d have a hash that contained this:

{ ..., "the" => 1, ... }

If the variable next_word contained the word the, then incrementing the count is as simple

as this:

counts[next_word] += 1

We’d then end up with a hash containing the following:

{ ..., "the" => 2, ... }

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=71

72

Our only problem is what to do when we encounter a word for the first time. We’ll try to

increment the entry for that word, but there won’t be one, so our program will fail. There are

a number of solutions to this. One is to check to see whether the entry exists before doing

the increment:

if counts.has_key?(next_word)

counts[next_word] += 1

else

counts[next_word] = 1

end

However, there’s a tidier way. If we create a hash object using Hash.new(0), the parameter

(0 in this case) will be used as the hash’s default value—it will be the value returned if

you look up a key that isn’t yet in the hash. Using that, we can write our count_frequency

method:

def count_frequency(word_list)

counts = Hash.new(0)

for word in word_list

counts[word] += 1

end

counts

end

p count_frequency(["sparky", "the", "cat", "sat", "on", "the", "mat"])

produces:

{"sparky"=>1, "the"=>2, "cat"=>1, "sat"=>1, "on"=>1, "mat"=>1}

One little job left. The hash containing the word frequencies is ordered based on the first

time it sees each word. It would be better to display the results based on the frequencies

of the words. We can do that using the hash’s sort_by method. When you use sort_by, you

give it a block that tells the sort what to use when making comparisons. In our case, we’ll

just use the count. The result of the sort is an array containing a set of two-element arrays,

each subarray corresponding to a key/entry pair in the original hash. This makes our whole

program:

Download samples/tutcontainers_21.rb

def words_from_string(string)

string.downcase.scan(/[\w']+/)

end

def count_frequency(word_list)

counts = Hash.new(0)

for word in word_list

counts[word] += 1

end

counts

end

raw_text = File.read("para.txt")

word_list = words_from_string(raw_text)

counts = count_frequency(word_list)

sorted = counts.sort_by {|word, count| count}

top_five = sorted.last(5)

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_21.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=72

73

for i in 0...5 # (this is ugly code

word = top_five[i][0] # which we'll fix shortly)

count = top_five[i][1]

puts "#{word}: #{count}"

end

produces:

that: 2

sounds: 2

like: 2

the: 3

a: 6

At this point, a quick test may be in order. To do this, we’re going to use a testing framework

called Test::Unit that comes with the standard Ruby distributions. We won’t describe it fully

yet (we do that in the Unit Testing chapter starting on page 198). For now, we’ll just say that

the method assert_equal checks that its two parameters are equal, complaining bitterly if

they aren’t. We’ll use assertions to test our two methods, one method at a time. (That’s one

reason why we wrote them as separate methods—it makes them testable in isolation.)

Here are some tests for the word_from_string method:

Download samples/tutcontainers_22.rb

require_relative 'words_from_string.rb'

require 'test/unit'

class TestWordsFromString < Test::Unit::TestCase

def test_empty_string

assert_equal([], words_from_string(""))

assert_equal([], words_from_string(" "))

end

def test_single_word

assert_equal(["cat"], words_from_string("cat"))

assert_equal(["cat"], words_from_string(" cat "))

end

def test_many_words

assert_equal(["the", "cat", "sat", "on", "the", "mat"],

words_from_string("the cat sat on the mat"))

end

def test_ignores_punctuation

assert_equal(["the", "cat's", "mat"],

words_from_string("<the!> cat's, ­mat­"))

end

end

produces:

Loaded suite /tmp/prog

Started

....

Finished in 0.000578 seconds.

4 tests, 6 assertions, 0 failures, 0 errors, 0 skips

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_22.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=73

BLOCKS AND ITERATORS 74

The test starts by requiring the source file containing our words_from_string method, along

with the unit test framework itself. It then defines a test class. Within that class, any methods

whose names start test are automatically run by the testing framework. The results show that

four test methods ran, successfully executing six assertions:

Download samples/tutcontainers_23.rb

require_relative 'count_frequency.rb'

require 'test/unit'

class TestCountFrequency < Test::Unit::TestCase

def test_empty_list

assert_equal({}, count_frequency([]))

end

def test_single_word

assert_equal({"cat" => 1}, count_frequency(["cat"]))

end

def test_two_different_words

assert_equal({"cat" => 1, "sat" => 1},

count_frequency(["cat", "sat"]))

end

def test_two_words_with_adjacent_repeat

assert_equal({"cat" => 2, "sat" => 1},

count_frequency(["cat", "cat", "sat"]))

end

def test_two_words_with_non_adjacent_repeat

assert_equal({"cat" => 2, "sat" => 1},

count_frequency(["cat", "sat", "cat"]))

end

end

produces:

Loaded suite /tmp/prog

Started

.....

Finished in 0.000534 seconds.

5 tests, 5 assertions, 0 failures, 0 errors, 0 skips

Blocks and Iterators
In our program that wrote out the results of our word frequency analysis, we had the fol-

lowing loop:

for i in 0...5

word = top_five[i][0]

count = top_five[i][1]

puts "#{word}: #{count}"

end

This works, and it looks comfortingly familiar: a for loop iterating over an array. What could

be more natural?

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_23.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=74

BLOCKS AND ITERATORS 75

It turns out there is something more natural. In a way, our for loop is somewhat too intimate

with the array; it magically knows that we’re iterating over five elements, and it retrieves

values in turn from the array. To do this, it has to know that the structure it is working with

is an array of two-element subarrays. This is a whole lot of coupling.

Instead, we could write this code like this:

top_five.each do |word, count|

puts "#{word}: #{count}"

end

The method each is an iterator—a method that invokes a block of code repeatedly. In fact,

some Ruby programmers might write this more compactly as this:

puts top_five.map { |word, count| "#{word}: #{count}" }

Just how far you take this is a matter of taste. But, however you use them, iterators and code

blocks are among the more interesting features of Ruby, so let’s spend a while looking into

them.

Blocks

A block is simply a chunk of code enclosed between either braces or the keywords do and

end. The two forms are identical except for precedence, which we’ll see in a minute. All

things being equal, the current Ruby style seems to favor using braces for blocks that fit on

one line and do/end when a block spans multiple lines:

some_array.each {|value| puts value * 3 }

sum = 0

other_array.each do |value|

sum += value

puts value / sum

end

You can think of a block as being somewhat like the body of an anonymous method. Just

like a method, the block can take parameters (but, unlike a method, those parameters appear

at the start of the block between vertical bars). Both the blocks in the preceding example

take a single parameter, value. And, just like a method, the body of a block is not executed

when Ruby first sees it. Instead, the block is saved away to be called later.

Blocks can appear in Ruby source code only immediately after the invocation of some

method. If the method takes parameters, the block appears after these. In a way, you can

almost think of the block as being one extra parameter, passed to that method. Let’s look at

a simple example that sums the squares of the numbers in an array:

sum = 0

[1, 2, 3, 4].each do |value|

square = value * value

sum += square

end

puts sum

produces:

30

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=75

BLOCKS AND ITERATORS 76

The block is being called by the each method once for each element in the array. The

element is passed to the block as the value parameter. But there’s something subtle going

on, too. Take a look at the sum variable. It’s declared outside the block, updated inside the

block, and then passed to puts after the each method returns.

This illustrates an important rule: if there’s a variable inside a block with the same name

as a variable in the same scope outside the block, the two are the same—there’s only one

variable sum in the preceding program. (You can override this behavior, as we’ll see later.)

If, however, a variable appears only inside a block, then that variable is local to the block—

in the preceding program, we couldn’t have written the value of square at the end of the

code, because square is not defined at that point. It is defined only inside the block itself.

Although simple, this behavior can lead to unexpected problems. For example, say our

program was dealing with drawing different shapes. We might have this:

square = Shape.new(sides: 4) # assume Shape defined elsewhere

#

.. lots of code

#

sum = 0

[1, 2, 3, 4].each do |value|

square = value * value

sum += square

end

puts sum

square.draw # BOOM!

This code would fail, because the variable square, which originally held a Shape object,

will have been overwritten inside the block and will hold a number by the time the each

method returns. This problem doesn’t bite often, but when it does, it can be very confusing.

Fortunately, Ruby 1.91.9 has a couple of answers.

First, parameters to a block are now always local to a block, even if they have the same

name as locals in the surrounding scope. (You’ll get a warning message if you run Ruby

with the -w option.)

Download samples/tutcontainers_30.rb

value = "some shape"

[1, 2].each {|value| puts value }

puts value

produces:

1

2

some shape

Second, you can now define block local variables by putting them after a semicolon in the

block’s parameter list. So, in our sum-of-squares example, we should have indicated that

the square variable was block-local by writing it as follows:

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_30.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=76

BLOCKS AND ITERATORS 77

Download samples/tutcontainers_31.rb

square = "some shape"

sum = 0

[1, 2, 3, 4].each do |value; square|

square = value * value # this is a different variable

sum += square

end

puts sum

puts square

produces:

30

some shape

By making square block-local, values assigned inside the block will not affect the value of

the variable with the same name in the outer scope.

Implementing Iterators

A Ruby iterator is simply a method that can invoke a block of code.

We said that a block may appear only in the source adjacent to a method call and that the

code in the block is not executed at the time it is encountered. Instead, Ruby remembers the

context in which the block appears (the local variables, the current object, and so on) and

then enters the method. This is where the magic starts.

Within the method, the block may be invoked, almost as if it were a method itself, using

the yield statement. Whenever a yield is executed, it invokes the code in the block. When

the block exits, control picks back up immediately after the yield.2 Let’s start with a trivial

example:

Download samples/tutcontainers_32.rb

def three_times

yield

yield

yield

end

three_times { puts "Hello" }

produces:

Hello

Hello

Hello

2. Programming-language buffs will be pleased to know that the keyword yield was chosen to echo the yield

function in Liskov’s language CLU, a language that is more than thirty years old and yet contains features that still

haven’t been widely exploited by the CLU-less.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_31.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_32.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=77

BLOCKS AND ITERATORS 78

The block (the code between the braces) is associated with the call to the three_times meth-

od. Within this method, yield is called three times in a row. Each time, it invokes the code

in the block, and a cheery greeting is printed. What makes blocks interesting, however, is

that you can pass parameters to them and receive values from them. For example, we could

write a simple function that returns members of the Fibonacci series up to a certain value:3

Download samples/tutcontainers_33.rb

def fib_up_to(max)

i1, i2 = 1, 1 # parallel assignment (i1 = 1 and i2 = 1)

while i1 <= max

yield i1

i1, i2 = i2, i1+i2

end

end

fib_up_to(1000) {|f| print f, " " }

produces:

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

In this example, the yield statement has a parameter. This value is passed to the associated

block. In the definition of the block, the argument list appears between vertical bars. In

this instance, the variable f receives the value passed to yield, so the block prints successive

members of the series. (This example also shows parallel assignment in action. We’ll come

back to this on page 151.) Although it is common to pass just one value to a block, this is

not a requirement; a block may have any number of arguments.

A block may also return a value to the method. The value of the last expression evaluated in

the block is passed back to the method as the value of the yield. This is how the find method

used by class Array works.4 Its implementation would look something like the following:

class Array

def find

for i in 0...size

value = self[i]

return value if yield(value)

end

return nil

end

end

[1, 3, 5, 7, 9].find {|v| v*v > 30 } # => 7

This passes successive elements of the array to the associated block. If the block returns true

(that is, a value other than nil or false), the method returns the corresponding element. If no

3. The basic Fibonacci series is a sequence of integers, starting with two 1s, in which each subsequent term is

the sum of the two preceding terms. The series is sometimes used in sorting algorithms and in analyzing natural

phenomena.

4. The find method is actually defined in module Enumerable, which is mixed into class Array.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_33.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=78

BLOCKS AND ITERATORS 79

element matches, the method returns nil. The example shows the benefit of this approach to

iterators. The Array class does what it does best, accessing array elements, and leaves the

application code to concentrate on its particular requirement (in this case, finding an entry

that meets some criteria).

Some iterators are common to many types of Ruby collections. We’ve looked at find already.

Two others are each and collect. each is probably the simplest iterator—all it does is yield

successive elements of its collection:

[1, 3, 5, 7, 9].each {|i| puts i }

produces:

1

3

5

7

9

The each iterator has a special place in Ruby; on page 162, we’ll describe how it’s used

as the basis of the language’s for loop, and starting on page 100, we’ll see how defining an

each method can add a whole lot more functionality to your class for free.

Another common iterator is collect (also known as map), which takes each element from the

collection and passes it to the block. The results returned by the block are used to construct

a new array. The following example uses the succ method, which increments a string value:

["H", "A", "L"].collect {|x| x.succ } # => ["I", "B", "M"]

Iterators are not limited to accessing existing data in arrays and hashes. As we saw in the

Fibonacci example, an iterator can return derived values. This capability is used by Ruby

input/output classes, which implement an iterator interface that returns successive lines (or

bytes) in an I/O stream:

f = File.open("testfile")

f.each do |line|

puts "The line is: #{line}"

end

f.close

produces:

The line is: This is line one

The line is: This is line two

The line is: This is line three

The line is: And so on...

Sometimes you want to keep track of how many times you’ve been through the block. The

each_with_index is your friend. It calls its block with two parameters: the current element

of the iteration and the count (which starts at zero, just like array indices):

f = File.open("testfile")

f.each_with_index do |line, index|

puts "Line #{index} is: #{line}"

end

f.close

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=79

BLOCKS AND ITERATORS 80

produces:

Line 0 is: This is line one

Line 1 is: This is line two

Line 2 is: This is line three

Line 3 is: And so on...

Let’s look at just one more useful iterator. The (somewhat obscurely named) inject method

(defined in the module Enumerable) lets you accumulate a value across the members of a

collection. For example, you can sum all the elements in an array, and find their product,

using code such as this:

[1,3,5,7].inject(0) {|sum, element| sum+element} # => 16

[1,3,5,7].inject(1) {|product, element| product*element} # => 105

inject works like this: the first time the associated block is called, sum is set to inject’s

parameter, and element is set to the first element in the collection. The second and subse-

quent times the block is called, sum is set to the value returned by the block on the previous

call. The final value of inject is the value returned by the block the last time it was called.

One more thing: if inject is called with no parameter, it uses the first element of the collec-

tion as the initial value and starts the iteration with the second value. This means that we

could have written the previous examples like this:

[1,3,5,7].inject {|sum, element| sum+element} # => 16

[1,3,5,7].inject {|product, element| product*element} # => 105

And, just to add to the mystique of inject, you can also give it the name of the method you

want to apply to successive elements of the collection.1.9 These examples work because, in

Ruby, addition and multiplication are simply methods on numbers, and :+ is the symbol

corresponding to the method +:

[1,3,5,7].inject(:+) # => 16

[1,3,5,7].inject(:*) # => 105

Enumerators—External Iterators

It’s worth spending a paragraph comparing Ruby’s approach to iterators to that of languages

such as C++ and Java. In the Ruby approach, the basic iterator is internal to the collection—

it’s simply a method, identical to any other, that happens to call yield whenever it generates

a new value. The thing that uses the iterator is just a block of code associated with a call to

this method.

In other languages, collections don’t contain their own iterators. Instead, they implement

methods that generate external helper objects (for example, those based on Java’s Iterator

interface) that carry the iterator state. In this, as in many other ways, Ruby is a transparent

language. When you write a Ruby program, you concentrate on getting the job done, not on

building scaffolding to support the language itself.

It’s also worth spending another paragraph looking at why Ruby’s internal iterators aren’t

always the best solution. One area where they fall down badly is where you need to treat

an iterator as an object in its own right (for example, passing the iterator into a method that

needs to access each of the values returned by that iterator). It’s also difficult to iterate over

two collections in parallel using Ruby’s internal iterator scheme.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=80

BLOCKS AND ITERATORS 81

Fortunately, Ruby 1.91.9 comes with a built-in Enumerator class, which implements external

iterators in Ruby for just such occasions.

One way to create an Enumerator object is to call the to_enum method (or its synonym,

enum_for) on a collection such as an array or a hash:

a = [1, 3, "cat"]

h = { dog: "canine", fox: "lupine" }

Create Enumerators

enum_a = a.to_enum

enum_h = h.to_enum

enum_a.next # => 1

enum_h.next # => [:dog, "canine"]

enum_a.next # => 3

enum_h.next # => [:fox, "lupine"]

Most of the internal iterator methods—the ones that normally yield successive values to a

block—will also return an Enumerator object if called without a block:

a = [1, 3, "cat"]

enum_a = a.each # create an Enumerator using an internal iterator

enum_a.next # => 1

enum_a.next # => 3

Ruby has a method called loop that does nothing but repeatedly invoke its block. Typically,

your code in the block will break out of the loop when some condition occurs. But loop

is also smart when you use an Enumerator—when an enumerator object runs out of values

inside a loop, the loop will terminate cleanly. The following example shows this in action—

the loop ends when the three-element enumerator runs out of values.5

short_enum = [1, 2, 3].to_enum

long_enum = ('a'..'z').to_enum

loop do

puts "#{short_enum.next} ­ #{long_enum.next}"

end

produces:

1 ­ a

2 ­ b

3 ­ c

5. You can also handle this in your own iterator methods by rescuing the StopIteration exception, but because

we haven’t talked about exceptions yet, we won’t go into details here.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=81

BLOCKS AND ITERATORS 82

Enumerators Are Objects

Enumerators take something that’s normally executable code (the act of iterating) and turn

it into an object. This means that you can do things programatically with enumerators that

aren’t easily done with regular loops.

For example, the Enumerable module defines each_with_index. This invokes its host class’s

each method, returning successive values along with an index:

result = []

['a', 'b', 'c'].each_with_index {|item, index| result << [item, index] }

result # => [["a", 0], ["b", 1], ["c", 2]]

But what if you wanted to iterate and receive an index but use a different method than each

to control that iteration? For example, you might want to iterate over the characters in a

string. There’s no method called each_char_with_index built into the String class.

Enumerators to the rescue. You can use the fact that the each_char method of strings will

return an enumerator if you don’t give it a block, and you can then call each_with_index on

that enumerator:

result = []

"cat".each_char.each_with_index {|item, index| result << [item, index] }

result # => [["c", 0], ["a", 1], ["t", 2]]

In fact, this is such a common use of enumerators that Matz has given us with_index, which

makes the code read better:

result = []

"cat".each_char.with_index {|item, index| result << [item, index] }

result # => [["c", 0], ["a", 1], ["t", 2]]

You can also create the Enumerator object explicitly—in this case we’ll create one that will

call our string’s each_char method. We can call to_a on that enumerator to iterate over it

and get the result:

enum = "cat".enum_for(:each_char)

enum.to_a # => ["c", "a", "t"]

If the method we’re using as the basis of our enumerator takes parameters, we can pass them

to enum_for:

enum_good = (1..10).enum_for(:each_slice, 3)

enum_good.to_a # => [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10]]

Enumerators Are Generators and Filters

(This is more advanced material that can be skipped on first reading.) As well as creating

enumerators from existing collections, you can create an explicit enumerator, passing it a

block. The code in the block will be used when the enumerator object needs to supply a

fresh value to your program. However, the block isn’t simply executed from top to bottom.

Instead, the block is executed in parallel with the rest of your program’s code. Execution

starts at the top and pauses when the block yields a value to your code. When the code needs

the next value, execution resumes at the statement following the yield. This lets you write

enumerators that generate infinite sequences (among other things):

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=82

BLOCKS AND ITERATORS 83

Download samples/tutcontainers_50.rb

triangular_numbers = Enumerator.new do |yielder|

number = 0

count = 1

loop do

number += count

count += 1

yielder.yield number

end

end

5.times { puts triangular_numbers.next }

produces:

1

3

6

10

15

Enumerator objects are also enumerable (that is to say, the methods available to enumerable

objects are also available to them). That means we can use enumerable’s methods (such as

first) on them:

triangular_numbers = Enumerator.new do |yielder|

...

end

p triangular_numbers.first(5)

produces:

[1, 3, 6, 10, 15]

You have to be slightly careful with enumerators that can generate infinite sequences. Some

of the regular enumerator methods such as count and select will happily try to read the whole

enumeration before returning a result. If you want a version of select that works with infinite

sequences, you’ll need to write it yourself. Here’s a version that gets passed an enumerator

and a block and returns a new enumerator containing values from the original for which the

block returns true. We’ll use it to return triangular numbers that are multiples of 10.

Download samples/tutcontainers_52.rb

triangular_numbers = Enumerator.new do |yielder|

... as before

end

def infinite_select(enum, &block)

Enumerator.new do |yielder|

enum.each do |value|

yielder.yield(value) if block.call(value)

end

end

end

p infinite_select(triangular_numbers) {|val| val % 10 == 0}.first(5)

produces:

[10, 120, 190, 210, 300]

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_50.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_52.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=83

BLOCKS AND ITERATORS 84

Here we use the &block notation to pass the block as a parameter to the infinite_select

method.

As Brian Candler pointed out in [ruby-core:19679], you can make this more convenient by

adding filters such as infinite_select directly to the Enumerator class. Here’s an example that

returns the first five triangular numbers that are multiples of 10 and that have the digit 3 in

them:

Download samples/tutcontainers_53.rb

triangular_numbers = Enumerator.new do |yielder|

... as before

end

class Enumerator

def infinite_select(&block)

Enumerator.new do |yielder|

self.each do |value|

yielder.yield(value) if block.call(value)

end

end

end

end

p triangular_numbers

.infinite_select {|val| val % 10 == 0}

.infinite_select {|val| val.to_s =~ /3/ }

.first(5)

produces:

[300, 630, 1830, 3160, 3240]

Blocks for Transactions

Although blocks are often used as the target of an iterator, they have other uses. Let’s look

at a few.

You can use blocks to define a chunk of code that must be run under some kind of trans-

actional control. For example, you’ll often open a file, do something with its contents, and

then want to ensure that the file is closed when you finish. Although you can do this using

conventional linear code, a version using blocks is simpler (and turns out to be less error

prone). A naive implementation (ignoring error handling) could look something like the

following:

Download samples/tutcontainers_54.rb

class File

def self.open_and_process(*args)

f = File.open(*args)

yield f

f.close()

end

end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_53.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_54.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=84

BLOCKS AND ITERATORS 85

File.open_and_process("testfile", "r") do |file|

while line = file.gets

puts line

end

end

produces:

This is line one

This is line two

This is line three

And so on...

open_and_process is a class method—it may be called independently of any particular file

object. We want it to take the same arguments as the conventional File.open method, but

we don’t really care what those arguments are. To do this, we specified the arguments as

*args, meaning “collect the actual parameters passed to the method into an array named

args.” We then call File.open, passing it *args as a parameter. This expands the array back

into individual parameters. The net result is that open_and_process transparently passes

whatever parameters it receives to File.open.

Once the file has been opened, open_and_process calls yield, passing the open file object

to the block. When the block returns, the file is closed. In this way, the responsibility for

closing an open file has been shifted from the users of file objects back to the file objects

themselves.

The technique of having files manage their own life cycle is so useful that the class File

supplied with Ruby supports it directly. If File.open has an associated block, then that block

will be invoked with a file object, and the file will be closed when the block terminates. This

is interesting, because it means that File.open has two different behaviors. When called with

a block, it executes the block and closes the file. When called without a block, it returns the

file object. This is made possible by the method block_given?, which returns true if a block

is associated with the current method. Using this method, you could implement something

similar to the standard File.open (again, ignoring error handling) using the following:

Download samples/tutcontainers_55.rb

class File

def self.my_open(*args)

result = file = File.new(*args)

If there's a block, pass in the file and close

the file when it returns

if block_given?

result = yield file

file.close

end

return result

end

end

This has one last twist: in the previous examples of using blocks to control resources, we

didn’t address error handling. If we wanted to implement these methods properly, we’d need

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_55.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=85

BLOCKS AND ITERATORS 86

to ensure that we closed a file even if the code processing that file somehow aborted. We do

this using exception handling, which we talk about later (starting on page 167).

Blocks Can Be Objects

Blocks are like anonymous methods, but there’s more to them than that. You can also convert

a block into an object, store it in variables, pass it around, and then invoke its code sometime

later.

Remember I said that you can think of blocks as being a little like an implicit parame-

ter that’s passed to a method? Well, you can also make that parameter explicit. If the last

parameter in a method definition is prefixed with an ampersand (such as &action), Ruby

looks for a code block whenever that method is called. That code block is converted to an

object of class Proc and assigned to the parameter. You can then treat the parameter as any

other variable.

Here’s an example where we create a Proc object in one instance method and store it in an

instance variable. We then invoke the proc from a second instance method.

Download samples/tutcontainers_56.rb

class ProcExample

def pass_in_block(&action)

@stored_proc = action

end

def use_proc(parameter)

@stored_proc.call(parameter)

end

end

eg = ProcExample.new

eg.pass_in_block { |param| puts "The parameter is #{param}" }

eg.use_proc(99)

produces:

The parameter is 99

See how the call method on a proc object invokes the code in the original block?

Many Ruby programs store and later call blocks in this way—it’s a great way of implement-

ing callbacks, dispatch tables, and so on.

But, you can go one step further. If a block can be turned into an object by adding an

ampersand parameter to a method, what happens if that method then returns the Proc object

to the caller?

Download samples/tutcontainers_57.rb

def create_block_object(&block)

block

end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_56.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_57.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=86

BLOCKS AND ITERATORS 87

bo = create_block_object { |param| puts "You called me with #{param}" }

bo.call 99

bo.call "cat"

produces:

You called me with 99

You called me with cat

In fact, this is so useful that Ruby provides not one but two built-in methods that convert a

block to an object.6 Both lambda and Proc.new take a block and return an object of class

Proc. The objects they return differ slightly in how they behave, but we’ll hold off talking

about that until page 364.

Download samples/tutcontainers_58.rb

bo = lambda { |param| puts "You called me with #{param}" }

bo.call 99

bo.call "cat"

produces:

You called me with 99

You called me with cat

Blocks Can Be Closures

Remember I said that a block can use local variables from the surrounding scope? So, let’s

look at a slightly different example of a block doing just that:

Download samples/tutcontainers_59.rb

def n_times(thing)

lambda {|n| thing * n }

end

p1 = n_times(23)

p1.call(3) # => 69

p1.call(4) # => 92

p2 = n_times("Hello ")

p2.call(3) # => "Hello Hello Hello "

The method n_times returns a Proc object that references the method’s parameter, thing.

Even though that parameter is out of scope by the time the block is called, the parameter

remains accessible to the block. This is called a closure—variables in the surrounding scope

that are referenced in a block remain accessible for the life of that block and the life of any

Proc object created from that block.

6. There’s actually a third, proc, but it is effectively deprecated.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_58.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_59.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=87

BLOCKS AND ITERATORS 88

Here’s another example, which is a method that returns a Proc object that returns successive

powers of 2 when called:

Download samples/tutcontainers_60.rb

def power_proc_generator

value = 1

lambda { value += value }

end

power_proc = power_proc_generator

puts power_proc.call

puts power_proc.call

puts power_proc.call

produces:

2

4

8

An Alternative Notation

Ruby 1.91.9 has another way of creating Proc objects. Rather than write this:

lambda { |params| ... }

you can now write the following:7

­>params { ... }

The parameters can be enclosed in optional parentheses. For example:

Download samples/tutcontainers_63.rb

proc1 = ­> arg { puts "In proc1 with #{arg}" }

proc2 = ­> arg1, arg2 { puts "In proc2 with #{arg1} and #{arg2}" }

proc3 = ­>(arg1, arg2) { puts "In proc3 with #{arg1} and #{arg2}" }

proc1.call "ant"

proc2.call "bee", "cat"

proc3.call "dog", "elk"

produces:

In proc1 with ant

In proc2 with bee and cat

In proc3 with dog and elk

7. Let’s start by getting something out of the way. Why ->? For compatibility across all the different source file

encodings, Matz is restricted to using pure 7-bit ASCII for Ruby operators, and the choice of available characters is

severely limited by the ambiguities inherent in the Ruby syntax. He felt that -> was (kind of) reminiscent of a Greek

lambda character λ.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_60.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_63.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=88

BLOCKS AND ITERATORS 89

The -> form is more compact than using lambda and seems to be in favor when you want to

pass one or more Proc objects to a method:

Download samples/tutcontainers_64.rb

def my_if(condition, then_clause, else_clause)

if condition

then_clause.call

else

else_clause.call

end

end

5.times do |val|

my_if val < 3,

­> { puts "#{val} is small" },

­> { puts "#{val} is big" }

end

produces:

0 is small

1 is small

2 is small

3 is big

4 is big

One good reason to pass blocks to methods is that you can reevaluate the code in those

blocks at any time. Here’s a trivial example of reimplementing a while loop using a method.

Because the condition is passed as a block, it can be evaluated each time around the loop:

Download samples/tutcontainers_65.rb

def my_while(cond, &body)

while cond.call

body.call

end

end

a = 0

my_while ­> { a < 3 } do

puts a

a += 1

end

produces:

0

1

2

Block Parameter Lists

Prior to Ruby 1.91.9 , blocks were to some extent the poor cousins of methods when it came

to parameter lists. Methods could have splat args, default values, and block parameters,

whereas blocks basically had just a list of names (and could accept a trailing splat argument).

Now, however, blocks have the same parameter list capabilities as methods.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_64.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_65.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=89

CONTAINERS EVERYWHERE 90

Blocks written using the old syntax take their parameter lists between vertical bars. Blocks

written using the -> syntax take a separate parameter list before the block body. In both

cases, the parameter list looks just like the list you can give to methods. It can take default

values, splat args (described on page 143), and a block parameter (a trailing argument start-

ing with an ampersand). You can write blocks that are just as versatile as methods.8

Here’s a block using the original block notation:

Download samples/tutcontainers_66.rb

proc1 = lambda do |a, *b, &block|

puts "a = #{a.inspect}"

puts "b = #{b.inspect}"

block.call

end

proc1.call(1, 2, 3, 4) { puts "in block1" }

produces:

a = 1

b = [2, 3, 4]

in block1

And here’s one using the new -> notation:

Download samples/tutcontainers_67.rb

proc2 = ­> a, *b, &block do

puts "a = #{a.inspect}"

puts "b = #{b.inspect}"

block.call

end

proc2.call(1, 2, 3, 4) { puts "in block2" }

produces:

a = 1

b = [2, 3, 4]

in block2

Containers Everywhere
Containers, blocks, and iterators are core concepts in Ruby. The more you write in Ruby,

the more you’ll find yourself moving away from conventional looping constructs. Instead,

you’ll write classes that support iteration over their contents. And you’ll find that this code

is compact, easy to read, and a joy to maintain. If this all seems too weird, don’t worry.

After a while, it’ll start to come naturally. And you’ll have plenty of time to practice as you

use Ruby libraries and frameworks.

8. Actually, they are more versatile, because these blocks are also closures, while methods are not.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_66.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_67.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=90

