
Chapter 5

Sharing Functionality:
Inheritance, Modules,

and Mixins

One of the accepted principles of good design is the elimination of unnecessary duplication.

We work hard to make sure that each concept in our application is expressed just once in

our code.1

We’ve already seen how classes help. All the methods in a class are automatically accessible

to instances of that class. But there are other, more general types of sharing that we want

to do. Maybe we’re dealing with an application that ships goods. Many forms of shipping

are available, but all forms share some basic functionality (weight calculation, perhaps). We

don’t want to duplicate the code that implements this functionality across the implementa-

tion of each shipping type. Or maybe we have a more generic capability that we want to

inject into a number of different classes. For example, an online store may need the ability

to calculate sales tax for carts, orders, quotes, and so on. Again, we don’t want to duplicate

the sales tax code in each of these places.

In this chapter, we’ll look at two different (but related) mechanisms for this kind of sharing

in Ruby. The first, class-level inheritance, is common in object-oriented languages. We’ll

then look at mixins, a technique that is often preferable to inheritance. We’ll wind up with a

discussion of when to use each.

Inheritance and Messages
In the previous chapter we saw that when puts needs to convert an object to a string, it

calls that object’s to_s method. But we’ve also written our own classes that don’t explic-

1. Why? Because the world changes. And when you adapt your application to each change, you want to know

that you’ve changed exactly the code you need to change. If each real-world concept is implemented at a single

point in the code, this becomes vastly easier.

Report erratum91

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=91

INHERITANCE AND MESSAGES 92

itly implement to_s. Despite this, objects of these classes respond successfully when we

call to_s on them. How this works has to do with inheritance, subclassing, and how Ruby

determines what method to run when you send a message to an object.

Inheritance allows you to create a class that is a refinement or specialization of another

class. This class is called a subclass of the original, and the original is a superclass of the

subclass. People also talk of child and parent classes.

The basic mechanism of subclassing is simple. The child inherits all of the capabilities of

its parent class—all the parent’s instance methods are available in instances of the child.

Let’s look at a trivial example and then later build on it. Here’s a definition of a parent class

and a child class that inherits from it:

Download samples/tutmodules_1.rb

class Parent

def say_hello

puts "Hello from #{self}"

end

end

p = Parent.new

p.say_hello

Subclass the parent...

class Child < Parent

end

c = Child.new

c.say_hello

produces:

Hello from #<Parent:0x0a40c4>

Hello from #<Child:0x0a3d68>

The parent class defines a single instance method, say_hello. We call it by creating a new

instance of the class and store a reference to that instance in the variable p.

We then create a subclass using class Child < Parent. The < notation means we’re creating a

subclass of the thing on the right; the fact that we use less-than presumably signals that the

child class is supposed to be a specialization of the parent.

Note that the child class defines no methods, but when we create an instance of it, we can

call say_hello. That’s because the child inherits all the methods of its parent. Note also that

when we output the value of self—the current object—it shows that we’re in an instance of

class Child, even though the method we’re running is defined in the parent.

The superclass method returns the parent of a particular class:

Download samples/tutmodules_2.rb

class Parent

end

class Child < Parent

end

puts "The superclass of Child is #{Child.superclass}"

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=92

INHERITANCE AND MESSAGES 93

produces:

The superclass of Child is Parent

But what’s the superclass of Parent?

class Parent

end

puts "The superclass of Parent is #{Parent.superclass}"

produces:

The superclass of Parent is Object

If you don’t define an explicit superclass when defining a class, Ruby automatically makes

the built-in class Object that class’s parent. Let’s go further:

puts "The superclass of Object is #{Object.superclass}"

produces:

The superclass of Object is BasicObject

Class BasicObject was introduced in Ruby 1.91.9 . It is used in certain kinds of metaprogram-

ming, acting as a blank canvas. What’s its parent?

puts "The superclass of BasicObject is #{BasicObject.superclass.inspect}"

produces:

The superclass of BasicObject is nil

So, we’ve finally reached the end. BasicObject is the root class of our hierarchy of classes.

Given any class in any Ruby application, you can ask for its superclass, then the superclass

of that class, and so on, and you’ll eventually get back to BasicObject.

We’ve seen that if you call a method in an instance of class Child and that method isn’t in

Child’s class definition, Ruby will look in the parent class. It goes deeper than that, because

if the method isn’t defined in the parent class, Ruby continues looking in the parent’s parent,

the parent’s parent’s parent, and so on, through the ancestors until it runs out of classes.

And this explains our original question. We can work out why to_s is available in just about

every Ruby object. to_s is actually defined in class Object. Because Object is an ancestor of

every Ruby class (except BasicObject), instances of every Ruby class have a to_s method

defined:

Download samples/tutmodules_6.rb

class Person

def initialize(name)

@name = name

end

end

p = Person.new("Michael")

puts p

produces:

#<Person:0x0a4efc>

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_6.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=93

INHERITANCE AND MESSAGES 94

We saw in the previous chapter that we can override the to_s method:

Download samples/tutmodules_7.rb

class Person

def initialize(name)

@name = name

end

def to_s

"Person named #{@name}"

end

end

p = Person.new("Michael")

puts p

produces:

Person named Michael

Armed with our knowledge of subclassing, we now know there’s nothing special about this.

The puts method calls to_s on its arguments. In this case, the argument is a Person object.

Because class Person defines a to_s method, that method is called. If it hadn’t defined a to_s

method, then Ruby looks for (and finds) to_s in Person’s parent class, Object.

It is common to use subclassing to add application-specific behavior to a standard library

or framework class. If you’ve used Ruby on Rails,2 you’ll have subclassed ActionController

when writing your own controller classes. Your controllers get all the behavior of the base

controller and add their own specific handlers to individual user actions. If you’ve used

the FXRuby GUI framework,3 you’ll have used subclassing to add your own application-

specific behavior to Fox’s standard GUI widgets.

Here’s a more self-contained example. Ruby comes with a library called GServer that imple-

ments basic TCP server functionality. You add your own behavior to it by subclassing the

GServer class. Let’s use that to write some code that waits for a client to connect on a socket

and then returns the last few lines of the system log file. This is an example of something

that’s actually quite useful in long-running applications—by building in such a server, you

can access the internal state of the application while it is running (possibly even remotely).

The GServer class handles all the mechanics of interfacing to TCP sockets. When you create

a GServer object, you tell it the port to listen on.4 Then, when a client connects, the GServer

object calls its serve method to handle that connection. Here’s the implementation of that

serve method in the GServer class:

def serve(io)

end

2. http://www.rubyonrails.com

3. http://www.fxruby.org

4. You can tell it a lot more, as well. We chose to keep it simple here.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_7.rb
http://www.rubyonrails.com
http://www.fxruby.org
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=94

INHERITANCE AND MESSAGES 95

As you can see, it does nothing. That’s where our own LogServer class comes in:

Download samples/tutmodules_9.rb

require 'gserver'

class LogServer < GServer

def initialize

super(12345)

end

def serve(client)

client.puts get_end_of_log_file

end

private

def get_end_of_log_file

File.open("/var/log/system.log") do |log|

log.seek(1000, IO::SEEK_END) # back up 1000 characters from end

log.gets # ignore partial line

log.read # and return rest

end

end

end

server = LogServer.new

server.start.join

I don’t want to focus too much on the details of running the server. Instead, let’s look at

how inheritance has helped us with this code. First, notice that our LogServer class inherits

from GServer. This means that a log server is a kind of GServer, sharing all the GServer

functionality. It also means we can add our own specialized behavior.

The first such specialization is the initialize method. We want our LogServer to run on TCP

port 12345. That’s a parameter that would normally be passed to the GServer constructor.

So, within the initialize method of the LogServer, we want to invoke the initialize method of

GServer, our parent, passing it the port number. We do that using the Ruby keyword super.

When you invoke super, Ruby sends a message to the parent of the current object, asking it

to invoke a method of the same name as the method invoking super. It passes this method

the parameters that were passed to super.

This is a crucial step and one often forgotten by folks new to OO. When you subclass

another class, you are responsible for making sure the initialization required by that class

gets run. This means that, unless you know it isn’t needed, you’ll need to put a call to super

somewhere in your subclass’s initialize method. (If your subclass doesn’t need an initialize

method, then there’s no need to do anything, because it will be the parent class’s initialize

method that gets run when your objects get created.)

So, by the time our initialize method finishes, our LogServer object will be a fully fledged

TCP server, all without us having to write any protocol-level code. Down at the end of our

program, we start the server. The call to join causes our program to wait for the server to

exit before itself exiting.

While our server is running, it will receive connections from external clients. These invoke

the serve method in the server object. Remember that empty method in class GServer? Well,

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_9.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=95

MODULES 96

our LogServer class provides its own implementation. And because it gets found by Ruby

first when it’s looking for methods to execute, it’s our code that gets run whenever GServer

accepts a connection. And our code reads the last few lines of the log file and returns them

to the client:5

$ telnet 127.0.0.1 12345

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

Jul 7 13:39:44 dave com.apple.syncservices.SyncServer[54938]:...

Jul 7 13:39:44 dave com.apple.syncservices.SyncServer[54938]:...

Jul 7 13:39:44 dave com.apple.syncservices.SyncServer[54938]:...

Jul 7 13:42:40 dave login[54768]: DEAD_PROCESS: 54768 ttys001

Jul 7 13:45:34 dave mdworker[54977]: fcntl to turn on F_CHECK...

Jul 7 13:48:44 dave mdworker[54977]: fcntl to turn on F_CHECK...

Connection closed by foreign host.

The use of the serve method shows a common idiom when using subclassing. A parent

class assumes that it will be subclassed and calls a method that it expects its children to

implement. This allows the parent to take on the brunt of the processing but to invoke what

are effectively hook methods in subclasses to add application-level functionality. As we’ll

see at the end of this chapter, just because this idiom is common doesn’t make it good

design.

So, instead, let’s look at mixins, a different way of sharing functionality in Ruby code. But,

before we look at mixins, we’ll need to get familiar with Ruby modules.

Modules
Modules are a way of grouping together methods, classes, and constants. Modules give you

two major benefits:

• Modules provide a namespace and prevent name clashes.

• Modules support the mixin facility.

Namespaces

As you start to write bigger and bigger Ruby programs, you’ll naturally find yourself pro-

ducing chunks of reusable code—libraries of related routines that are generally applicable.

You’ll want to break this code into separate files so the contents can be shared among dif-

ferent Ruby programs.

Often this code will be organized into classes, so you’ll probably stick a class (or a set of

interrelated classes) into a file. However, there are times when you want to group things

together that don’t naturally form a class.

5. You can also access this server from a web browser by connecting to http://127.0.0.1:12345.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=96

MODULES 97

Inheritance and Mixins

Some object-oriented languages (such as C++) support multiple
inheritance, where a class can have more than one immediate parent,
inheriting functionality from each. Although powerful, this technique
can be dangerous, because the inheritance hierarchy can become
ambiguous.

Other languages, such as Java and C#, support single inheritance.
Here, a class can have only one immediate parent. Although cleaner
(and easier to implement), single inheritance also has drawbacks—in
the real world objects often inherit attributes from multiple sources (a
ball is both a bouncing thing and a spherical thing, for example).

Ruby offers an interesting and powerful compromise, giving you the
simplicity of single inheritance and the power of multiple inheritance. A
Ruby class has only one direct parent, so Ruby is a single-inheritance
language. However, Ruby classes can include the functionality of
any number of mixins (a mixin is like a partial class definition). This
provides a controlled multiple-inheritance-like capability with none of
the drawbacks. We’ll explore mixins more beginning on the following
page.

An initial approach may be to put all these things into a file and simply load that file into

any program that needs it. This is the way the C language works. However, this approach

has a problem. Say you write a set of the trigonometry functions sin, cos, and so on. You

stuff them all into a file, trig.rb, for future generations to enjoy. Meanwhile, Sally is working

on a simulation of good and evil, and she codes a set of her own useful routines, including

be_good and sin, and sticks them into moral.rb. Joe, who wants to write a program to find

out how many angels can dance on the head of a pin, needs to load both trig.rb and moral.rb

into his program. But both define a method called sin. Bad news.

The answer is the module mechanism. Modules define a namespace, a sandbox in which

your methods and constants can play without having to worry about being stepped on by

other methods and constants. The trig functions can go into one module:

Download samples/tutmodules_10.rb

module Trig

PI = 3.141592654

def Trig.sin(x)

..

end

def Trig.cos(x)

..

end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_10.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=97

MIXINS 98

end

and the good and bad “moral” methods can go into another:

Download samples/tutmodules_11.rb

module Moral

VERY_BAD = 0

BAD = 1

def Moral.sin(badness)

...

end

end

Module constants are named just like class constants, with an initial uppercase letter.6 The

method definitions look similar, too: module methods are defined just like class methods.

If a third program wants to use these modules, it can simply load the two files (using the

Ruby require statement. In order to reference the name sin unambiguously, our code can

then qualify the name using the name of the module containing the implementation we

want, followed by ::, the scope resolution operator:

require 'trig'

require 'moral'

y = Trig.sin(Trig::PI/4)

wrongdoing = Moral.sin(Moral::VERY_BAD)

As with class methods, you call a module method by preceding its name with the module’s

name and a period, and you reference a constant using the module name and two colons.

Mixins
Modules have another, wonderful use. At a stroke, they pretty much eliminate the need for

inheritance, providing a facility called a mixin.

In the previous section’s examples, we defined module methods, methods whose names

were prefixed by the module name. If this made you think of class methods, your next

thought may well be “What happens if I define instance methods within a module?” Good

question. A module can’t have instances, because a module isn’t a class. However, you can

include a module within a class definition. When this happens, all the module’s instance

methods are suddenly available as methods in the class as well. They get mixed in. In fact,

mixed-in modules effectively behave as superclasses.

6. But we will conventionally use all uppercase letters when writing them.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_11.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=98

MIXINS 99

Download samples/tutmodules_13.rb

module Debug

def who_am_i?

"#{self.class.name} (\##{self.object_id}): #{self.to_s}"

end

end

class Phonograph

include Debug

...

end

class EightTrack

include Debug

...

end

ph = Phonograph.new("West End Blues")

et = EightTrack.new("Surrealistic Pillow")

ph.who_am_i? # => "Phonograph (#330450): West End Blues"

et.who_am_i? # => "EightTrack (#330420): Surrealistic Pillow"

By including the Debug module, both the Phonograph and EightTrack classes gain access to

the who_am_i? instance method.

We’ll make a couple of points about the include statement before we go on. First, it has

nothing to do with files. C programmers use a preprocessor directive called #include to

insert the contents of one file into another during compilation. The Ruby include statement

simply makes a reference to a module. If that module is in a separate file, you must use

require (or its less commonly used cousin, load) to drag that file in before using include.

Second, a Ruby include does not simply copy the module’s instance methods into the class.

Instead, it makes a reference from the class to the included module. If multiple classes

include that module, they’ll all point to the same thing. If you change the definition of a

method within a module, even while your program is running, all classes that include that

module will exhibit the new behavior.7

Mixins give you a wonderfully controlled way of adding functionality to classes. However,

their true power comes out when the code in the mixin starts to interact with code in the class

that uses it. Let’s take the standard Ruby mixin Comparable as an example. The Comparable

mixin adds the comparison operators (<, <=, ==, >=, and >), as well as the method between?,

to a class. For this to work, Comparable assumes that any class that uses it defines the

operator <=>. So, as a class writer, you define one method, <=>, include Comparable, and

get six comparison functions for free.

Let’s try this with a simple Person class.

7. Of course, we’re speaking only of methods here. Instance variables are always per object, for example.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_13.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=99

ITERATORS AND THE ENUMERABLE MODULE 100

We’ll make people comparable based on their names:

Download samples/tutmodules_14.rb

class Person

include Comparable

attr_reader :name

def initialize(name)

@name = name

end

def to_s

"#{@name}"

end

def <=>(other)

self.name <=> other.name

end

end

p1 = Person.new("Matz")

p2 = Person.new("Guido")

p3 = Person.new("Larry")

Compare a couple of names

if p1 > p2

puts "#{p1.name}'s name > #{p2.name}'s name"

end

Sort an array of Person objects

puts "Sorted list:"

puts [p1, p2, p3].sort

produces:

Matz's name > Guido's name

Sorted list:

Guido

Larry

Matz

Note that we included Comparable in our Person class and then defined a <=>. We were then

able to perform comparisons (such as p1 > p2) and even sort an array of Person objects.

Iterators and the Enumerable Module
The Ruby collection classes (Array, Hash, and so on) support a large number of operations

that do various things with the collection: traverse it, sort it, and so on. You may be thinking,

“Gee, it’d sure be nice if my class could support all these neat-o features, too!” (If you

actually thought that, it’s probably time to stop watching reruns of 1960s television shows.)

Well, your classes can support all these neat-o features, thanks to the magic of mixins and

module Enumerable. All you have to do is write an iterator called each, which returns the

elements of your collection in turn. Mix in Enumerable, and suddenly your class supports

things such as map, include?, and find_all?. If the objects in your collection implement

meaningful ordering semantics using the <=> method, you’ll also get methods such as min,

max, and sort.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_14.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=100

COMPOSING MODULES 101

Composing Modules
Enumerable is a standard mixin, implementing a bunch of methods in terms of the host

class’s each method. One of the methods defined by Enumerable is inject, which we saw

back on page 80. This method applies a function or operation to the first two elements in the

collection and then applies the operation to the result of this computation and to the third

element, and so on, until all elements in the collection have been used.

Because inject is made available by Enumerable, we can use it in any class that includes the

Enumerable module and defines the method each. Many built-in classes do this.

Download samples/tutmodules_15.rb

[1, 2, 3, 4, 5].inject(:+) # => 15

('a'..'m').inject(:+) # => "abcdefghijklm"

We could also define our own class that mixes in Enumerable and hence gets inject support:

Download samples/tutmodules_16.rb

class VowelFinder

include Enumerable

def initialize(string)

@string = string

end

def each

@string.scan(/[aeiou]/) do |vowel|

yield vowel

end

end

end

Download samples/tutmodules_17.rb

vf = VowelFinder.new("the quick brown fox jumped")

vf.inject(:+) # => "euiooue"

Notice that we’ve used the same pattern in the call to inject in these examples—we’re using

it to perform a summation. When applied to numbers, it returns the arithmetic sum; when

applied to strings, it concatenates them. We can use a module to encapsulate this function-

ality too:

Download samples/tutmodules_18.rb

module Summable

def sum

inject(:+)

end

end

class Array

include Summable

end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_15.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_16.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_17.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_18.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=101

COMPOSING MODULES 102

class Range

include Summable

end

class VowelFinder

include Summable

end

Download samples/tutmodules_19.rb

[1, 2, 3, 4, 5].sum # => 15

('a'..'m').sum # => "abcdefghijklm"

vf = VowelFinder.new("the quick brown fox jumped")

vf.sum # => "euiooue"

Instance Variables in Mixins

People coming to Ruby from C++ often ask, “What happens to instance variables in a

mixin? In C++, I have to jump through some hoops to control how variables are shared in a

multiple-inheritance hierarchy. How does Ruby handle this?”

Well, for starters, it’s not really a fair question. Remember how instance variables work in

Ruby: the first mention of an @-prefixed variable creates the instance variable in the current

object, self.

For a mixin, this means that the module you mix into your client class (the mixee?) may

create instance variables in the client object and may use attr_reader and friends to define

accessors for these instance variables. For instance, the Observable module in the following

example adds an instance variable @observer_list to any class that includes it:

module Observable

def observers

@observer_list ||= []

end

def add_observer(obj)

observers << obj

end

def notify_observers

observers.each {|o| o.update }

end

end

However, this behavior exposes us to a risk. A mixin’s instance variables can clash with

those of the host class or with those of other mixins. The example that follows shows a

class that uses our Observer module but that unluckily also uses an instance variable called

@observer_list. At runtime, this program will go wrong in some hard-to-diagnose ways:

class TelescopeScheduler

other classes can register to get notifications

when the schedule changes

include Observable

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_19.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=102

COMPOSING MODULES 103

def initialize

@observer_list = [] # folks with telescope time

end

def add_viewer(viewer)

@observer_list << viewer

end

...

end

For the most part, mixin modules don’t use instance variables directly—they use accessors

to retrieve data from the client object. But if you need to create a mixin that has to have its

own state, ensure that the instance variables have unique names to distinguish them from

any other mixins in the system (perhaps by using the module’s name as part of the variable

name). Alternatively, the module could use a module-level hash, indexed by the current

object ID, to store instance-specific data without using Ruby instance variables:

Download samples/tutmodules_22.rb

module Test

State = {}

def state=(value)

State[object_id] = value

end

def state

State[object_id]

end

end

Download samples/tutmodules_23.rb

class Client

include Test

end

c1 = Client.new

c2 = Client.new

c1.state = 'cat'

c2.state = 'dog'

c1.state # => "cat"

c2.state # => "dog"

A downside of this approach is that the data associated with a particular object will not get

automatically deleted if the object is deleted.

Resolving Ambiguous Method Names

One of the other questions folks ask about mixins is, how is method lookup handled? In

particular, what happens if methods with the same name are defined in a class, in that class’s

parent class, and in a mixin included into the class?

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_22.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_23.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=103

INHERITANCE, MIXINS, AND DESIGN 104

The answer is that Ruby looks first in the immediate class of an object, then in the mixins

included into that class, and then in superclasses and their mixins. If a class has multiple

modules mixed in, the last one included is searched first.

Inheritance, Mixins, and Design
Inheritance and mixins both allow you to write code in one place and effectively inject that

code into multiple classes. So, when do you use each?

As is usual with most questions of design, the answer is, to some extent, it depends. How-

ever, over the years developers have come up with some pretty clear general guidelines to

help us decide.

First, let’s look at subclassing. Classes in Ruby are related to the idea of types. It would be

natural to say that "cat" is a string and [1,2] is an array. And that’s another way of saying that

the class of "cat" is String and the class of [1,2] is Array. When we create our own classes,

you can think of it as adding new types to the language. And when we subclass either a

built-in class or our own class, we’re creating a subtype.

Now, a lot of research has been done on type theories. One of the more famous results is

the Liskov Substitution Principle. Formally, this states: “Let q(x) be a property provable

about objects x of type T. Then q(y) should be true for objects y of type S where S is a

subtype of T.” What this means is that you should be able to substitute an object of a child

class wherever you use an object of the parent class—the child should honor the parent’s

contract. There’s another way of looking at this: we should be able to say that the child

object is a kind of the parent. We’re used to saying this in English: a car is a vehicle, a cat

is an animal, and so on. This means that a cat should, at the very least, be capable of doing

everything we say that an animal can do.

So, when you’re looking for subclassing relationships while designing your application, be

on the lookout for these is-a relationships.

But...here’s the bad news. In the real world, there really aren’t that many true is a relation-

ships. Instead, it’s far more common to have has a or uses a relationships between things.

The real world is built using composition, not strict hierarchies.

In the past, we’ve tended to gloss over that fact when programming. Because inheritance was

the only scheme available for sharing code, we got lazy and said things like “My Person

class is a subclass of my DatabaseWrapper class.”8 But a person object is not a kind of

database wrapper object. A person object uses a database wrapper to provide persistence

services.

Is this just a theoretical issue? No! Inheritance represents an incredibly tight coupling of two

components. Change a parent class, and you risk breaking the child class. But, even worse, if

code that uses objects of the child class relies on those objects also having methods defined

8. Indeed, the Rails framework makes just this mistake.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=104

INHERITANCE, MIXINS, AND DESIGN 105

in the parent, then all that code will break, too. The parent class’s implementation leaks

through the child classes and out into the rest of the code. With a decent-sized program, this

becomes a serious inhibitor to change.

And that’s where we need to move away from inheritance in our designs. Instead, we need

to be using composition wherever we see a case of A uses a B or A has a B. Our persisted

Person object won’t subclass DataWrapper. Instead, it’ll construct a reference to a database

wrapper object and use that object reference to save and restore itself.

But that can also make code messy. And that’s where a combination of mixins and metapro-

gramming comes to the rescue, because we can say this:

class Person

include Persistable

...

end

instead of

class Person < DataWrapper

...

end

If you’re new to object-oriented programming, this discussion probably feels remote and

abstract. But as you start to code larger and larger programs, I urge you to think about the

issues discussed here. Try to reserve inheritance for the times where it is justified. And try

to explore all the cool ways that mixins let you write decoupled, flexible code.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=105

