
Chapter 8

More About Methods

So far in this book, we’ve been defining and using methods without much thought. Now it’s

time to get into the details.

Defining a Method
As we’ve seen, a method is defined using the keyword def. Method names should begin with

a lowercase letter or underscore,1 followed by letters, digits, and underscores.

A method name may end with one of ?, !, or =. Methods that return a boolean result (so-

called predicate methods) are often named with a trailing ?:

1.even? # => false

2.even? # => true

1.instance_of?(Fixnum) # => true

Methods that are “dangerous,” or that modify their receiver, may be named with a trail-

ing exclamation mark, !. These are sometimes called bang methods. For instance, String

provides both chop and chop! methods. The first one returns a modified string; the second

modifies the receiver in place.

Methods that can appear on the left side of an assignment (a feature we discussed on

page 55) end with an equals sign (=).

?, !, and = are the only “weird” characters allowed as method name suffixes.

Now that we’ve specified a name for our new method, we may need to declare some parame-

ters. These are simply a list of local variable names in parentheses. (The parentheses around

a method’s arguments are optional; our convention is to use them when a method has argu-

ments and omit them when it doesn’t.)

1. You won’t get an immediate error if you start a method name with an uppercase letter, but when Ruby sees

you calling the method, it might guess that it is a constant, not a method invocation, and as a result it may parse the

call incorrectly. By convention, methods names starting with an uppercase letter are used for type conversion. The

Integer method, for example, converts its parameter to an integer.

Report erratum137

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=137

DEFINING A METHOD 138

def my_new_method(arg1, arg2, arg3) # 3 arguments

Code for the method would go here

end

def my_other_new_method # No arguments

Code for the method would go here

end

Ruby lets you specify default values for a method’s arguments—values that will be used if

the caller doesn’t pass them explicitly. You do this using an equals sign (=) followed by a

Ruby expression. That expression can include references to previous arguments in the list:

def cool_dude(arg1="Miles", arg2="Coltrane", arg3="Roach")

"#{arg1}, #{arg2}, #{arg3}."

end

cool_dude # => "Miles, Coltrane, Roach."

cool_dude("Bart") # => "Bart, Coltrane, Roach."

cool_dude("Bart", "Elwood") # => "Bart, Elwood, Roach."

cool_dude("Bart", "Elwood", "Linus") # => "Bart, Elwood, Linus."

Here’s an example where the default argument references a previous argument:

def surround(word, pad_width=word.length/2)

"[" * pad_width + word + "]" * pad_width

end

surround("elephant") # => "[[[[elephant]]]]"

surround("fox") # => "[fox]"

surround("fox", 10) # => "[[[[[[[[[[fox]]]]]]]]]]"

The body of a method contains normal Ruby expressions. The return value of a method is

the value of the last expression executed or the result of an explicit return expression.

Variable-Length Argument Lists

But what if you want to pass in a variable number of arguments or want to capture multiple

arguments into a single parameter? Placing an asterisk before the name of the parame-

ter after the “normal” parameters lets you do just that. This is sometimes called splatting

an argument (presumably because the asterisk looks somewhat like a bug after hitting the

windscreen of a fast moving car).

def varargs(arg1, *rest)

"arg1=#{arg1}. rest=#{rest.inspect}"

end

varargs("one") # => arg1=one. rest=[]

varargs("one", "two") # => arg1=one. rest=[two]

varargs "one", "two", "three" # => arg1=one. rest=[two, three]

In this example, the first argument is assigned to the first method parameter as usual. How-

ever, the next parameter is prefixed with an asterisk, so all the remaining arguments are

bundled into a new Array, which is then assigned to that parameter.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=138

DEFINING A METHOD 139

Folks sometimes use a splat to specify arguments that are not used by the method (but that

are perhaps used by the corresponding method in a superclass. (Note that in this example

we call super with no parameters. This is a special case that means “invoke this method in

the superclass, passing it all the parameters that were given to the original method.”)

class Child < Parent

def do_something(*not_used)

our processing

super

end

end

In this case, you can also leave off the name of the parameter and just write an asterisk:

class Child < Parent

def do_something(*)

our processing

super

end

end

In Ruby 1.91.9 , you can put the splat argument anywhere in a method’s parameter list, allowing

you to write this:

def split_apart(first, *splat, last)

puts "First: #{first.inspect}, splat: #{splat.inspect}, " +

"last: #{last.inspect}"

end

split_apart(1,2)

split_apart(1,2,3)

split_apart(1,2,3,4)

produces:

First: 1, splat: [], last: 2

First: 1, splat: [2], last: 3

First: 1, splat: [2, 3], last: 4

If you cared only about the first and last parameters, you could define this method using

this:

def split_apart(first, *, last)

...

end

You can have only one splat argument in a method—if you had two, it would be ambiguous.

You also can’t put arguments with default values after the splat argument. In all cases, the

splat argument receives the values left over after assigning to the regular argument.

Methods and Blocks

As we discussed in the section on blocks and iterators beginning on page 74, when a method

is called, it may be associated with a block.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=139

CALLING A METHOD 140

Normally, you simply call the block from within the method using yield:

Download samples/tutmethods_10.rb

def double(p1)

yield(p1*2)

end

double(3) {|val| "I got #{val}" } # => "I got 6"

double("tom") {|val| "Then I got #{val}" } # => "Then I got tomtom"

However, if the last parameter in a method definition is prefixed with an ampersand, any

associated block is converted to a Proc object, and that object is assigned to the parameter.

This allows you to store the block for use later.

Download samples/tutmethods_11.rb

class TaxCalculator

def initialize(name, &block)

@name, @block = name, block

end

def get_tax(amount)

"#@name on #{amount} = #{ @block.call(amount) }"

end

end

tc = TaxCalculator.new("Sales tax") {|amt| amt * 0.075 }

tc.get_tax(100) # => "Sales tax on 100 = 7.5"

tc.get_tax(250) # => "Sales tax on 250 = 18.75"

Calling a Method
You call a method by optionally specifying a receiver, giving the name of the method, and

optionally passing some parameters and an optional block. Here’s a code fragment that

shows us calling a method with a receiver, a parameter, and a block:

connection.download_mp3("jitterbug") {|p| show_progress(p) }

In this example, the object connection is the receiver, download_mp3 is the name of the

method, the string "jitterbug" is the parameter, and the stuff between the braces is the asso-

ciated block. During this method call, Ruby first sets self to the receiver and then invokes

the method in that object: For class and module methods, the receiver will be the class or

module name.

File.size("testfile") # => 66

Math.sin(Math::PI/4) # => 0.707106781186547

If you omit the receiver, it defaults to self, the current object.

class InvoiceWriter

def initialize(order)

@order = order

end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutmethods_10.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutmethods_11.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=140

CALLING A METHOD 141

def write_on(output)

write_header_on(output) # called on current object.

write_body_on(output) # self is not changed, as

write_totals_on(output) # there is no receiver

end

def write_header_on(output)

...

end

def write_body_on(output)

...

end

def write_totals_on(output)

...

end

end

writer = InvoiceWriter.new(my_order)

writer.write_on(STDOUT)

This defaulting mechanism is how Ruby implements private methods. Private methods may

not be called with a receiver, so they must be methods available in the current object. In the

previous example, we’d probably want to make the helper methods private, because they

shouldn’t be called from outside the InvoiceWriter class:

class InvoiceWriter

def initialize(order)

@order = order

end

def write_on(output)

write_header_on(output)

write_body_on(output)

write_totals_on(output)

end

private

def write_header_on(output)

...

end

def write_body_on(output)

...

end

def write_totals_on(output)

...

end

end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=141

CALLING A METHOD 142

Passing Parameters to a Method

Any parameters follow the method name. If no ambiguity exists, you can omit the parenthe-

ses around the argument list when calling a method.2 However, except in the simplest cases

we don’t recommend this—some subtle problems can trip you up.3 Our rule is simple: if

you have any doubt, use parentheses.

a = obj.hash # Same as

a = obj.hash() # this.

obj.some_method "Arg1", arg2, arg3 # Same thing as

obj.some_method("Arg1", arg2, arg3) # with parentheses.

Older Ruby versions compounded the problem by allowing you to put spaces between the

method name and the opening parenthesis. This made it hard to parse: is the parenthesis the

start of the parameters or the start of an expression? As of Ruby 1.8 you get a warning if

you put a space between a method name and an open parenthesis.

Method Return Values

Every called method returns a value (although there’s no rule that says you have to use that

value). The value of a method is the value of the last statement executed by the method:

def meth_one

"one"

end

meth_one # => "one"

def meth_two(arg)

case

when arg > 0 then "positive"

when arg < 0 then "negative"

else "zero"

end

end

meth_two(23) # => "positive"

meth_two(0) # => "zero"

Ruby has a return statement, which exits from the currently executing method. The value

of a return is the value of its argument(s). It is idiomatic Ruby to omit the return if it isn’t

needed, as shown by the previous two examples.

2. Other Ruby documentation sometimes calls these method calls without parentheses commands.

3. In particular, you must use parentheses on a method call that is itself a parameter to another method call

(unless it is the last parameter).

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=142

CALLING A METHOD 143

This next example uses return to exit from a loop inside the method:

def meth_three

100.times do |num|

square = num*num

return num, square if square > 1000

end

end

meth_three # => [32, 1024]

As the last case illustrates, if you give return multiple parameters, the method returns them

in an array. You can use parallel assignment to collect this return value:

num, square = meth_three

num # => 32

square # => 1024

Splat! Expanding Collections in Method Calls

Earlier we saw that if you put an asterisk in front of a parameter in a method definition,

multiple arguments in the call to the method will be bundled into an array. Well, the same

thing works in reverse.

When you call a method,1.9 you can convert any collection or enumerable object into its con-

stituent elements and pass those elements as individual parameters to the method. Do this

by prefixing array arguments with an asterisk:

def five(a, b, c, d, e)

"I was passed #{a} #{b} #{c} #{d} #{e}"

end

five(1, 2, 3, 4, 5) # => "I was passed 1 2 3 4 5"

five(1, 2, 3, *['a', 'b']) # => "I was passed 1 2 3 a b"

five(*['a', 'b'], 1, 2, 3) # => "I was passed a b 1 2 3"

five(*(10..14)) # => "I was passed 10 11 12 13 14"

five(*[1,2], 3, *(4..5)) # => "I was passed 1 2 3 4 5"

As of Ruby 1.91.9 , splat arguments can appear anywhere in the parameter list, and you can

intermix splat and regular arguments.

Making Blocks More Dynamic

We’ve already seen how to associate a block with a method call:

for_each_bone(aardvark) do |bone|

...

end

Normally, this is perfectly good enough—you associate a fixed block of code with a method

in the same way you’d have a chunk of code after an if or while statement.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=143

CALLING A METHOD 144

Sometimes, however, you’d like to be more flexible. For example, we may be teaching math

skills.4 The student could ask for an n-plus table or an n-times table. If the student asked for

a 2-times table, we’d output 2, 4, 6, 8, and so on. (This code does not check its inputs for

errors.)

Download samples/tutmethods_23.rb

print "(t)imes or (p)lus: "

operator = gets

print "number: "

number = Integer(gets)

if operator =~ /^t/

puts((1..10).collect {|n| n*number }.join(", "))

else

puts((1..10).collect {|n| n+number }.join(", "))

end

produces:

(t)imes or (p)lus: t

number: 2

2, 4, 6, 8, 10, 12, 14, 16, 18, 20

This works, but it’s ugly, with virtually identical code on each branch of the if statement. It

would be nice if we could factor out the block that does the calculation:

Download samples/tutmethods_24.rb

print "(t)imes or (p)lus: "

operator = gets

print "number: "

number = Integer(gets)

if operator =~ /^t/

calc = lambda {|n| n*number }

else

calc = lambda {|n| n+number }

end

puts((1..10).collect(&calc).join(", "))

produces:

(t)imes or (p)lus: t

number: 2

2, 4, 6, 8, 10, 12, 14, 16, 18, 20

If the last argument to a method is preceded by an ampersand, Ruby assumes that it is a

Proc object. It removes it from the parameter list, converts the Proc object into a block, and

associates it with the method.

4. Of course, Andy and Dave would have to learn math skills first. Conrad Schneiker reminded us that there are

three kinds of people: those who can count and those who can’t.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutmethods_23.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutmethods_24.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=144

CALLING A METHOD 145

Collecting Hash Arguments

Some languages feature keyword arguments. Instead of passing a specific number of argu-

ments in a given order, you can invoke the method with the names of the arguments, each

with a corresponding value, in any order. Ruby 1.9 does not have keyword arguments,

although they might appear in Ruby 2.0. In the meantime, people are using hashes as a

way of achieving the same effect. For example, we could consider adding a search facility

to an MP3 playlist:

class SongList

def search(name, params)

...

end

end

list.search(:titles,

{ :genre => "jazz",

:duration_less_than => 270

})

The first parameter tells the search what to return. The second parameter is a hash literal

containing search parameters. (Note how we used symbols as the keys for this options hash.

This has become idiomatic in Ruby libraries and frameworks.) The use of a hash means we

can simulate keywords: look for songs with a genre of “jazz” and a duration less than 41
2

minutes.

However, this approach is slightly clunky, and that set of braces could easily be mistaken

for a block associated with the method. So, Ruby has a shortcut. You can place key => value

pairs in an argument list, as long as they follow any normal arguments and precede any splat

and block arguments. All these pairs will be collected into a single hash and passed as one

argument to the method. No braces are needed.

list.search(:titles,

:genre => 'jazz',

:duration_less_than => 270)

Option passing is one of the reasons for the new hash literal syntax in Ruby 1.91.9 :

list.search(:titles, genre: 'jazz', duration_less_than: 270)

A well-written Ruby program will typically contain many methods, each quite small, so it’s

worth getting familiar with the options available when defining and using Ruby methods. At

some point you’ll probably want to read the section called Method Arguments on page 353 to

see exactly how arguments in a method call get mapped to the method’s formal parameters

when you have combinations of default parameters and splat parameters.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=145

