
Chapter 10

Exceptions,
Catch, and Throw

So far we’ve been developing code in Pleasantville, a wonderful place where nothing ever,

ever goes wrong. Every library call succeeds, users never enter incorrect data, and resources

are plentiful and cheap. Well, that’s about to change. Welcome to the real world!

In the real world, errors happen. Good programs (and programmers) anticipate them and

arrange to handle them gracefully. This isn’t always as easy as it may sound. Often the code

that detects an error does not have the context to know what to do about it. For example,

attempting to open a file that doesn’t exist is acceptable in some circumstances and is a fatal

error at other times. What’s your file-handling module to do?

The traditional approach is to use return codes. The open method could return some spe-

cific value to say it failed. This value is then propagated back through the layers of calling

routines until someone wants to take responsibility for it. The problem with this approach

is that managing all these error codes can be a pain. If a function calls open, then read, and

finally close and each can return an error indication, how can the function distinguish these

error codes in the value it returns to its caller?

To a large extent, exceptions solve this problem. Exceptions let you package information

about an error into an object. That exception object is then propagated back up the calling

stack automatically until the runtime system finds code that explicitly declares that it knows

how to handle that type of exception.

The Exception Class
The package that contains the information about an exception is an object of class Exception

or one of class Exception’s children. Ruby predefines a tidy hierarchy of exceptions, shown

in Figure 10.1 on page 169. As we’ll see later, this hierarchy makes handling exceptions

considerably easier.

When you need to raise an exception, you can use one of the built-in Exception classes, or

you can create one of your own. Make your own exceptions subclasses of StandardError or

one of its children. If you don’t, your exceptions won’t be caught by default.

Report erratum167

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=167

HANDLING EXCEPTIONS 168

Every Exception has associated with it a message string and a stack backtrace. If you define

your own exceptions, you can add extra information.

Handling Exceptions
Here’s some simple code that uses the open-uri library to download the contents of a web

page and write it to a file, line by line:

Download samples/tutexceptions_1.rb

require 'openuri'

web_page = open("http://pragprog.com/podcasts")

output = File.open("podcasts.html", "w")

while line = web_page.gets

output.puts line

end

output.close

What happens if we get a fatal error halfway through? We certainly don’t want to store an

incomplete page to the output file.

Let’s add some exception-handling code and see how it helps. To do exception handling,

we enclose the code that could raise an exception in a begin/end block and use one or more

rescue clauses to tell Ruby the types of exceptions we want to handle. Because we specified

Exception in the rescue line, we’ll handle all exceptions of class Exception and all of its

subclasses (which covers all Ruby exceptions). In the error-handling block, we report the

error, close and delete the output file, and then reraise the exception:

Download samples/tutexceptions_2.rb

require 'openuri'

page = "podcasts"

file_name = "#{page}.html"

web_page = open("http://pragprog.com/#{page}")

output = File.open(file_name, "w")

begin

while line = web_page.gets

output.puts line

end

output.close

rescue Exception

STDERR.puts "Failed to download #{page}: #{$!}"

output.close

File.delete(file_name)

raise

end

When an exception is raised, and independent of any subsequent exception handling, Ruby

places a reference to the associated Exception object into the global variable $! (the excla-

mation point presumably mirroring our surprise that any of our code could cause errors). In

the previous example, we used the $! variable to format our error message.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutexceptions_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutexceptions_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=168

HANDLING EXCEPTIONS 169

Figure 10.1. Ruby Exception Hierarchy

Exception

fatal used internally by Ruby

NoMemoryError

ScriptError

LoadError

NotImplementedError

SyntaxError

SecurityError was under StandardError in Ruby 1.8

SignalException

Interrupt

StandardError

ArgumentError

FiberError (1.9)

IndexError

KeyError (1.9)

StopIteration (1.9)

IOError

EOFError

LocalJumpError

NameError

NoMethodError

RangeError

FloatDomainError

RegexpError

RuntimeError

SystemCallError

system-dependent exceptions (Errno::xxx)

ThreadError

TypeError

ZeroDivisionError

SystemExit

SystemStackError was under StandardError in Ruby 1.8

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=169

HANDLING EXCEPTIONS 170

After closing and deleting the file, we call raise with no parameters, which reraises the

exception in $!. This is a useful technique, because it allows you to write code that filters

exceptions, passing on those you can’t handle to higher levels. It’s almost like implementing

an inheritance hierarchy for error processing.

You can have multiple rescue clauses in a begin block, and each rescue clause can specify

multiple exceptions to catch. At the end of each rescue clause, you can give Ruby the name

of a local variable to receive the matched exception. Most people find this more readable

than using $! all over the place:

begin

eval string

rescue SyntaxError, NameError => boom

print "String doesn't compile: " + boom

rescue StandardError => bang

print "Error running script: " + bang

end

How does Ruby decide which rescue clause to execute? It turns out that the processing is

pretty similar to that used by the case statement. For each rescue clause in the begin block,

Ruby compares the raised exception against each of the parameters in turn. If the raised

exception matches a parameter, Ruby executes the body of the rescue and stops looking.

The match is made using parameter===$!. For most exceptions, this means that the match

will succeed if the exception named in the rescue clause is the same as the type of the

currently thrown exception or is a superclass of that exception.1 If you write a rescue clause

with no parameter list, the parameter defaults to StandardError.

If no rescue clause matches or if an exception is raised outside a begin/end block, Ruby

moves up the stack and looks for an exception handler in the caller, then in the caller’s

caller, and so on.

Although the parameters to the rescue clause are typically the names of Exception classes,

they can actually be arbitrary expressions (including method calls) that return an Exception

class.

System Errors

System errors are raised when a call to the operating system returns an error code. On

POSIX systems, these errors have names such as EAGAIN and EPERM. (If you’re on a Unix

box, you could type man errno to get a list of these errors.)

Ruby takes these errors and wraps them each in a specific exception object. Each is a sub-

class of SystemCallError, and each is defined in a module called Errno. This means you’ll

find exceptions with class names such as Errno::EAGAIN, Errno::EIO, and Errno::EPERM. If

you want to get to the underlying system error code, Errno exception objects each have a

class constant called (somewhat confusingly) Errno that contains the value.

1. This comparison happens because exceptions are classes, and classes in turn are kinds of Module. The ===

method is defined for modules, returning true if the class of the operand is the same as or is a descendant of the

receiver.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=170

HANDLING EXCEPTIONS 171

Errno::EAGAIN::Errno # => 35

Errno::EPERM::Errno # => 1

Errno::EIO::Errno # => 5

Errno::EWOULDBLOCK::Errno # => 35

Note that EWOULDBLOCK and EAGAIN have the same error number. This is a feature of

the operating system of the computer used to produce this book—the two constants map to

the same error number. To deal with this, Ruby arranges things so that Errno::EAGAIN and

Errno::EWOULDBLOCK are treated identically in a rescue clause. If you ask to rescue one,

you’ll rescue either. It does this by redefining SystemCallError#=== so that if two subclasses

of SystemCallError are compared, the comparison is done on their error number and not on

their position in the hierarchy.

Tidying Up

Sometimes you need to guarantee that some processing is done at the end of a block of

code, regardless of whether an exception was raised. For example, you may have a file open

on entry to the block, and you need to make sure it gets closed as the block exits.

The ensure clause does just this. ensure goes after the last rescue clause and contains a

chunk of code that will always be executed as the block terminates. It doesn’t matter if

the block exits normally, if it raises and rescues an exception, or if it is terminated by an

uncaught exception—the ensure block will get run:

f = File.open("testfile")

begin

.. process

rescue

.. handle error

ensure

f.close

end

Beginners commonly make the mistake of putting the File.open inside the begin block. In

this case, that would be incorrect, because open can itself raise an exception. If that were to

happen, you wouldn’t want to run the code in the ensure block, because there’d be no file

to close.

The else clause is a similar, although less useful, construct. If present, it goes after the

rescue clauses and before any ensure. The body of an else clause is executed only if no

exceptions are raised by the main body of code.

f = File.open("testfile")

begin

.. process

rescue

.. handle error

else

puts "Congratulations no errors!"

ensure

f.close

end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=171

RAISING EXCEPTIONS 172

Play It Again

Sometimes you may be able to correct the cause of an exception. In those cases, you can

use the retry statement within a rescue clause to repeat the entire begin/end block. Clearly,

tremendous scope exists for infinite loops here, so this is a feature to use with caution (and

with a finger resting lightly on the interrupt key).

As an example of code that retries on exceptions, take a look at the following, adapted from

Minero Aoki’s net/smtp.rb library:

@esmtp = true

begin

First try an extended login. If it fails because the

server doesn't support it, fall back to a normal login

if @esmtp then

@command.ehlo(helodom)

else

@command.helo(helodom)

end

rescue ProtocolError

if @esmtp then

@esmtp = false

retry

else

raise

end

end

This code tries first to connect to an SMTP server using the EHLO command, which is not

universally supported. If the connection attempt fails, the code sets the @esmtp variable to

false and retries the connection. If this fails a second time, the exception is raised up to the

caller.

Raising Exceptions
So far we’ve been on the defensive, handling exceptions raised by others. It’s time to turn

the tables and go on the offensive. (Some say your gentle authors are always offensive, but

that’s a different book.)

You can raise exceptions in your code with the Kernel.raise method (or its somewhat judg-

mental synonym, Kernel.fail):

raise

raise "bad mp3 encoding"

raise InterfaceException, "Keyboard failure", caller

The first form simply reraises the current exception (or a RuntimeError if there is no current

exception). This is used in exception handlers that need to intercept an exception before

passing it on.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=172

RAISING EXCEPTIONS 173

The second form creates a new RuntimeError exception, setting its message to the given

string. This exception is then raised up the call stack.

The third form uses the first argument to create an exception and then sets the associated

message to the second argument and the stack trace to the third argument. Typically the

first argument will be either the name of a class in the Exception hierarchy or a reference to

an object instance of one of these classes.2 The stack trace is normally produced using the

Kernel.caller method.

Here are some typical examples of raise in action:

raise

raise "Missing name" if name.nil?

if i >= names.size

raise IndexError, "#{i} >= size (#{names.size})"

end

raise ArgumentError, "Name too big", caller

In the last example, we remove the current routine from the stack backtrace, which is often

useful in library modules. We do this using the caller method, which returns the current stack

trace. We can take this further; the following code removes two routines from the backtrace

by passing only a subset of the call stack to the new exception:

raise ArgumentError, "Name too big", caller[1..1]

Adding Information to Exceptions

You can define your own exceptions to hold any information that you need to pass out from

the site of an error. For example, certain types of network errors may be transient depending

on the circumstances. If such an error occurs and the circumstances are right, you could set

a flag in the exception to tell the handler that it may be worth retrying the operation:

class RetryException < RuntimeError

attr :ok_to_retry

def initialize(ok_to_retry)

@ok_to_retry = ok_to_retry

end

end

Somewhere down in the depths of the code, a transient error occurs:

def read_data(socket)

data = socket.read(512)

if data.nil?

raise RetryException.new(true), "transient read error"

end

.. normal processing

end

2. Technically, this argument can be any object that responds to the message exception by returning an object

such that object.kind_of?(Exception) is true.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=173

CATCH AND THROW 174

Higher up the call stack, we handle the exception:

begin

stuff = read_data(socket)

.. process stuff

rescue RetryException => detail

retry if detail.ok_to_retry

raise

end

Catch and Throw
Although the exception mechanism of raise and rescue is great for abandoning execution

when things go wrong, it’s sometimes nice to be able to jump out of some deeply nested

construct during normal processing. This is where catch and throw come in handy. Here’s

a trivial example—this code reads a list of words one at a time and adds them to an array.

When done, it prints the array in reverse order. However, if any of the lines in the file doesn’t

contain a valid word, we want to abandon the whole process.

Download samples/tutexceptions_14.rb

word_list = File.open("wordlist")

catch (:done) do

result = []

while line = word_list.gets

word = line.chomp

throw :done unless word =~ /^\w+$/

result << word

end

puts result.reverse

end

catch defines a block that is labeled with the given name (which may be a Symbol or a

String). The block is executed normally until a throw is encountered.

When Ruby encounters a throw, it zips back up the call stack looking for a catch block with

a matching symbol. When it finds it, Ruby unwinds the stack to that point and terminates the

block. So, in the previous example, if the input does not contain correctly formatted lines,

the throw will skip to the end of the corresponding catch, not only terminating the while

loop but also skipping the code that writes the reversed list. If the throw is called with the

optional second parameter, that value is returned as the value of the catch. In this example,

our word list incorrectly contains the line “*wow*.” Without the second parameter to throw,

the corresponding catch returns nil.

Download samples/tutexceptions_15.rb

word_list = File.open("wordlist")

word_in_error = catch(:done) do

result = []

while line = word_list.gets

word = line.chomp

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutexceptions_14.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutexceptions_15.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=174

CATCH AND THROW 175

throw(:done, word) unless word =~ /^\w+$/

result << word

end

puts result.reverse

end

if word_in_error

puts "Failed: '#{word_in_error}' found, but a word was expected"

end

produces:

Failed: '*wow*' found, but a word was expected

The following example uses a throw to terminate interaction with the user if ! is typed in

response to any prompt:

Download samples/tutexceptions_16.rb

def prompt_and_get(prompt)

print prompt

res = readline.chomp

throw :quit_requested if res == "!"

res

end

catch :quit_requested do

name = prompt_and_get("Name: ")

age = prompt_and_get("Age: ")

sex = prompt_and_get("Sex: ")

..

process information

end

As this example illustrates, the throw does not have to appear within the static scope of the

catch.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutexceptions_16.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=175

