
Chapter 11

Basic Input and Output

Ruby provides what at first sight looks like two separate sets of I/O routines. The first is the

simple interface—we’ve been using it pretty much exclusively so far:

print "Enter your name: "

name = gets

A whole set of I/O-related methods is implemented in the Kernel module—gets, open, print,

printf, putc, puts, readline, readlines, and test—that makes it simple and convenient to write

straightforward Ruby programs. These methods typically do I/O to standard input and stan-

dard output, which makes them useful for writing filters. You’ll find them documented start-

ing on page 564.

The second way, which gives you a lot more control, is to use IO objects.

What Is an IO Object?
Ruby defines a single base class, IO, to handle input and output. This base class is subclassed

by classes File and BasicSocket to provide more specialized behavior, but the principles

are the same. An IO object is a bidirectional channel between a Ruby program and some

external resource.1 An IO object may have more to it than meets the eye, but in the end you

still simply write to it and read from it.

In this chapter, we’ll be concentrating on class IO and its most commonly used subclass,

class File. For more details on using the socket classes for networking, see the section begin-

ning on page 878.

1. For those who just have to know the implementation details, this means that a single IO object can sometimes

be managing more than one operating system file descriptor. For example, if you open a pair of pipes, a single IO

object contains both a read pipe and a write pipe.

Report erratum176

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=176

OPENING AND CLOSING FILES 177

Opening and Closing Files
As you may expect, you can create a new file object using File.new:

file = File.new("testfile", "r")

... process the file

file.close

The first parameter is the filename. The second is the mode string, which lets you open the

file for reading, writing, or both. (Here we opened testfile for reading with an "r". We could

also have used "w" for write or "r+" for read-write. The full list of allowed modes appears

on page 547.) You can also optionally specify file permissions when creating a file; see the

description of File.new on page 512 for details. After opening the file, we can work with

it, writing and/or reading data as needed. Finally, as responsible software citizens, we close

the file, ensuring that all buffered data is written and that all related resources are freed.

But here Ruby can make life a little bit easier for you. The method File.open also opens a

file. In regular use, it behaves just like File.new. However, if you associate a block with the

call, open behaves differently. Instead of returning a new File object, it invokes the block,

passing the newly opened File as a parameter. When the block exits, the file is automatically

closed.

File.open("testfile", "r") do |file|

... process the file

end # << file automatically closed here

This second approach has an added benefit. In the earlier case, if an exception is raised

while processing the file, the call to file.close may not happen. Once the file variable goes

out of scope, then garbage collection will eventually close it, but this may not happen for a

while. Meanwhile, resources are being held open.

This doesn’t happen with the block form of File.open. If an exception is raised inside the

block, the file is closed before the exception is propagated on to the caller. It’s as if the open

method looks like the following:

class File

def File.open(*args)

result = f = File.new(*args)

if block_given?

begin

result = yield f

ensure

f.close

end

end

return result

end

end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=177

READING AND WRITING FILES 178

Reading and Writing Files
The same methods that we’ve been using for “simple” I/O are available for all file objects.

So, gets reads a line from standard input (or from any files specified on the command line

when the script was invoked), and file.gets reads a line from the file object file.

For example, we could create a program called copy.rb:

while line = gets

puts line

end

If we run this program with no arguments, it will read lines from the console and copy them

back to the console. Note that each line is echoed once the Return key is pressed. (In this

and later examples, we show user input in a bold font.)

% ruby copy.rb

These are lines

These are lines

that I am typing

that I am typing

^D

We can also pass in one or more filenames on the command line, in which case gets will

read from each in turn:

% ruby copy.rb testfile

This is line one

This is line two

This is line three

And so on...

Finally, we can explicitly open the file and read from it:

File.open("testfile") do |file|

while line = file.gets

puts line

end

end

produces:

This is line one

This is line two

This is line three

And so on...

As well as gets, I/O objects enjoy an additional set of access methods, all intended to make

our lives easier.

Iterators for Reading

As well as using the usual loops to read data from an IO stream, you can also use various

Ruby iterators. IO#each_byte invokes a block with the next 8-bit byte from the IO object (in

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=178

READING AND WRITING FILES 179

this case, an object of type File). The chr method converts an integer to the corresponding

ASCII character:

File.open("testfile") do |file|

file.each_byte {|ch| print "#{ch.chr}:#{ch} " }

end

produces:

T:84 h:104 i:105 s:115 :32 i:105 s:115 :32 l:108 i:105 ...

T:84 h:104 i:105 s:115 :32 i:105 s:115 :32 l:108 i:105 ...

T:84 h:104 i:105 s:115 :32 i:105 s:115 :32 l:108 i:105 ...

A:65 n:110 d:100 :32 s:115 o:111 :32 o:111 n:110 .:46 ...

IO#each_line calls the block with each line from the file. In the next example, we’ll make

the original newlines visible using String#dump so you can see that we’re not cheating:

File.open("testfile") do |file|

file.each_line {|line| puts "Got #{line.dump}" }

end

produces:

Got "This is line one\n"

Got "This is line two\n"

Got "This is line three\n"

Got "And so on...\n"

You can pass each_line any sequence of characters as a line separator, and it will break up

the input accordingly, returning the line ending at the end of each line of data. That’s why

you see the \n characters in the output of the previous example. In the next example, we’ll

use the character e as the line separator:

File.open("testfile") do |file|

file.each_line("e") {|line| puts "Got #{ line.dump }" }

end

produces:

Got "This is line"

Got " one"

Got "\nThis is line"

Got " two\nThis is line"

Got " thre"

Got "e"

Got "\nAnd so on...\n"

If you combine the idea of an iterator with the autoclosing block feature, you get IO.foreach.

This method takes the name of an I/O source, opens it for reading, calls the iterator once for

every line in the file, and then closes the file automatically:

IO.foreach("testfile") {|line| puts line }

produces:

This is line one

This is line two

This is line three

And so on...

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=179

READING AND WRITING FILES 180

Or, if you prefer, you can retrieve an entire file into a string or into an array of lines:

read into string

str = IO.read("testfile")

str.length # => 66

str[0, 30] # => "This is line one\nThis is line "

read into an array

arr = IO.readlines("testfile")

arr.length # => 4

arr[0] # => "This is line one\n"

Don’t forget that I/O is never certain in an uncertain world—exceptions will be raised on

most errors, and you should be ready to rescue them and take appropriate action.

Writing to Files

So far, we’ve been merrily calling puts and print, passing in any old object and trusting that

Ruby will do the right thing (which, of course, it does). But what exactly is it doing?

The answer is pretty simple. With a couple of exceptions, every object you pass to puts and

print is converted to a string by calling that object’s to_s method. If for some reason the to_s

method doesn’t return a valid string, a string is created containing the object’s class name

and ID, something like #<ClassName:0x123456>:

Note the "w", which opens the file for writing

File.open("output.txt", "w") do |file|

file.puts "Hello"

file.puts "1 + 2 = #{1+2}"

end

Now read the file in and print its contents to STDOUT

puts File.read("output.txt")

produces:

Hello

1 + 2 = 3

The exceptions are simple, too. The nil object will print as the empty string1.9 , and an array

passed to puts will be written as if each of its elements in turn were passed separately to

puts.

What if you want to write binary data and don’t want Ruby messing with it? Well, normally

you can simply use IO#print and pass in a string containing the bytes to be written. How-

ever, you can get at the low-level input and output routines if you really want—look at the

documentation for IO#sysread and IO#syswrite on page 562.

And how do you get the binary data into a string in the first place? The three common ways

are to use a literal, poke it in byte by byte, or use Array#pack:

str1 = "\001\002\003" # => "\x01\x02\x03"

str2 = ""

str2 << 1 << 2 << 3 # => "\x01\x02\x03"

[1, 2, 3].pack("c*") # => "\x01\x02\x03"

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=180

TALKING TO NETWORKS 181

But I Miss My C++ iostream

Sometimes there’s just no accounting for taste. . . . However, just as you can append an object

to an Array using the << operator, you can also append an object to an output IO stream:

endl = "\n"

STDOUT << 99 << " red balloons" << endl

produces:

99 red balloons

Again, the << method uses to_s to convert its arguments to strings before sending them on

their merry way.

Although we started off disparaging the poor << operator, there are actually some good

reasons for using it. Because other classes (such as String and Array) also implement a <<

operator with similar semantics, you can quite often write code that appends to something

using << without caring whether it is added to an array, a file, or a string. This kind of

flexibility also makes unit testing easy. We discuss this idea in greater detail in the chapter

on duck typing, starting on page 370.

Doing I/O with Strings

There are often times where you need to work with code that assumes it’s reading from

or writing to one or more files. But you have a problem: the data isn’t in files. Perhaps

it’s available instead via a SOAP service, or it has been passed to you as command-line

parameters. Or maybe you’re running unit tests, and you don’t want to alter the real file

system.

Enter StringIO objects. They behave just like other I/O objects, but they read and write

strings, not files. If you open a StringIO object for reading, you supply it with a string. All

read operations on the StringIO object then read from this string. Similarly, when you want

to write to a StringIO object, you pass it a string to be filled.

require 'stringio'

ip = StringIO.new("now is\nthe time\nto learn\nRuby!")

op = StringIO.new("", "w")

ip.each_line do |line|

op.puts line.reverse

end

op.string # => "\nsi won\n\nemit eht\n\nnrael ot\n!ybuR\n"

Talking to Networks
Ruby is fluent in most of the Internet’s protocols, both low-level and high-level.

For those who enjoy groveling around at the network level, Ruby comes with a set of classes

in the socket library (documented starting on page 878). These classes give you access

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=181

TALKING TO NETWORKS 182

to TCP, UDP, SOCKS, and Unix domain sockets, as well as any additional socket types

supported on your architecture. The library also provides helper classes to make writing

servers easier. Here’s a simple program that gets information about the “mysql” user on our

local machine using the finger protocol:

require 'socket'

client = TCPSocket.open('127.0.0.1', 'finger')

client.send("mysql\n", 0) # 0 means standard packet

puts client.readlines

client.close

produces:

Login: _mysql Name: MySQL Server

Directory: /var/empty Shell: /usr/bin/false

Never logged in.

No Mail.

No Plan.

At a higher level, the lib/net set of library modules provides handlers for a set of appli-

cation-level protocols (currently FTP, HTTP, POP, SMTP, and telnet). These are docu-

mented starting on page 773. For example, the following program lists the images that are

displayed on this book’s home page:

Download samples/tutio_18.rb

require 'net/http'

h = Net::HTTP.new('www.pragprog.com', 80)

response = h.get('/titles/ruby3/programmingruby3')

if response.message == "OK"

puts response.body.scan(/<img alt=".*?" src="(.*?)"/m).uniq

end

produces:

http://assets1.pragprog.com/images/logo.gif?1239424264

http://assets0.pragprog.com/images/loginbutton.gif?1239424264

http://assets1.pragprog.com/images/covers/190x228/betas/ruby3.jpg?1236205316

http://assets1.pragprog.com/images/covers/40x48/fr_rr.jpg?1184184147

...

Although attractively simple, this example could be improved significantly. In particular, it

doesn’t do much in the way of error handling. It should really report “Not Found” errors

(the infamous 404) and should handle redirects (which happen when a web server gives the

client an alternative address for the requested page).

We can take this to a higher level still. By bringing the open-uri library into a program, the

Kernel.open method suddenly recognizes http:// and ftp:// URLs in the filename. Not just

that—it also handles redirects automatically.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutio_18.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=182

TALKING TO NETWORKS 183

Download samples/tutio_19.rb

require 'openuri'

open('http://pragprog.com') do |f|

puts f.read.scan(/<img alt=".*?" src="(.*?)"/m).uniq

end

produces:

http://assets1.pragprog.com/images/logo.gif?1239424264

http://assets0.pragprog.com/images/loginbutton.gif?1239424264

http://assets1.pragprog.com/images/front_page.png?1239424264

http://assets3.pragprog.com/images/covers/75x90/ltp2.jpg?1236205271

http://assets0.pragprog.com/images/covers/75x90/jrport.jpg?1236205229

...

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutio_19.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=183

