
Chapter 12

Fibers, Threads,
and Processes

Ruby gives you two basic ways to organize your program so that you can run different parts

of it apparently “at the same time.” Fibers let you suspend execution of one part of your pro-

gram and run some other part. For more decoupled execution, you can split up cooperating

tasks within the program, using multiple threads, or you can split up tasks between different

programs, using multiple processes. Let’s look at each in turn.

Fibers
Ruby 1.91.9 introduced fibers to the language. Although the name suggests some kind of

lightweight thread, in reality Ruby’s fibers are really just a very simple coroutine mecha-

nism. They allow you to write programs that look like you are manually scheduling threads

without incurring any of the complexity inherent in threading. Let’s look at a simple exam-

ple. We’d like to analyze a text file, counting the occurrence of each word. We could do this

(without using fibers) in a simple loop:

Download samples/tutthreads_1.rb

counts = Hash.new(0)

File.foreach("testfile") do |line|

line.scan(/\w+/) do |word|

word = word.downcase

counts[word] += 1

end

end

counts.keys.sort.each {|k| print "#{k}:#{counts[k]} "}

produces:

and:1 is:3 line:3 on:1 one:1 so:1 this:3 three:1 two:1

However, this code is messy because it conflates the concepts of finding words with the

counting of the words.

Report erratum184

http://media.pragprog.com/titles/ruby3/code/samples/tutthreads_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=184

FIBERS 185

We could fix this by writing a method that reads the file and yields each successive word.

But fibers give us a simpler solution:

Download samples/tutthreads_2.rb

words = Fiber.new do

File.foreach("testfile") do |line|

line.scan(/\w+/) do |word|

Fiber.yield word.downcase

end

end

end

counts = Hash.new(0)

while word = words.resume

counts[word] += 1

end

counts.keys.sort.each {|k| print "#{k}:#{counts[k]} "}

produces:

and:1 is:3 line:3 on:1 one:1 so:1 this:3 three:1 two:1

The constructor for the Fiber class takes a block and returns a fiber object. For now, the code

in the block is not executed.

Subsequently, we can call resume on the fiber object. This causes the block to start execu-

tion. The file is opened, and the scan method starts extracting individual words. However, at

this point, Fiber.yield is invoked. This suspends execution of the block—the resume method

that we called to run the block returns any value given to Fiber.yield.

Our main program enters the body of the loop and increments the count for the first word

returned by the fiber. It then loops back up to the top of the while loop, which again calls

words.resume while evaluating the condition. The resume call goes back into the block,

continuing just after it left off (at the line after the Fiber.yield call).

When the fiber runs out of words in the file, the block exits. The next time resume is called,

it returns nil (because the block has exited). (You’ll get a FiberError if you attempt to call

resume again after this.)

Fibers are often used to generate values from infinite sequences on demand. Here’s a fiber

that returns successive integers divisible by 2 and not divisible by 3:

Download samples/tutthreads_3.rb

twos = Fiber.new do

num = 2

loop do

Fiber.yield(num) unless num % 3 == 0

num += 2

end

end

10.times { print twos.resume, " " }

produces:

2 4 8 10 14 16 20 22 26 28

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutthreads_2.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutthreads_3.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=185

MULTITHREADING 186

Because fibers are just objects, you can pass them around, store them in variables, and so

on. Fibers can be resumed only in the thread that created them.

Fibers, Coroutines, and Continuations

The basic fiber support in Ruby is limited—fibers can yield control only back to the code

that resumed them. However, Ruby comes with two standard libraries that extend this behav-

ior. The fiber library (described on page 754) adds full coroutine support. Once it is loaded,

fibers gain a transfer method, allowing them to transfer control to arbitrary other fibers.

A related but more general mechanism is the continuation. A continuation is a way of

recording the state of your running program (where it is, the current binding, and so on)

and then resuming from that state at some point in the future. You can use continuations to

implement coroutines (and other new control structures). Continuations have also been used

to store the state of a running web application between requests—a continuation is created

when the application sends a response to the browser; then, when the next request arrives

from that browser, the continuation is invoked, and the application continues from where it

left off. You enable continuations in Ruby by requiring the continuation library, described

on page 738.

Multithreading
Often the simplest way to do two things at once is by using Ruby threads. Prior to Ruby 1.9,

these were implemented as so-called green threads—threads were switched totally within

the interpreter. In Ruby 1.91.9 , threading is now performed by the operating system. This is

an improvement, but not quite as big an improvement as you might want. Although threads

can now take advantage of multiple processors (and multiple cores in a single processor),

there’s a major catch. Many Ruby extension libraries are not thread safe (because they were

written for the old threading model). So, Ruby compromises: it uses native operating system

threads but operates only a single thread at a time. You’ll never see two threads in the same

application running Ruby code truly concurrently. (You will, however, see threads busy

doing (say) I/O while another thread executes Ruby code. That’s part of the point....)

Creating Ruby Threads

Creating a new thread is pretty straightforward. The code that follows is a simple example.

It downloads a set of web pages in parallel. For each URL that it is asked to download, the

code creates a separate thread that handles the HTTP transaction.

Download samples/tutthreads_4.rb

require 'net/http'

pages = %w(www.rubycentral.com slashdot.org www.google.com)

threads = []

for page_to_fetch in pages

threads << Thread.new(page_to_fetch) do |url|

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutthreads_4.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=186

MULTITHREADING 187

h = Net::HTTP.new(url, 80)

print "Fetching: #{url}\n"

resp = h.get('/')

print "Got #{url}: #{resp.message}\n"

end

end

threads.each {|thr| thr.join }

produces:

Fetching: www.rubycentral.com

Fetching: slashdot.org

Fetching: www.google.com

Got www.google.com: OK

Got www.rubycentral.com: OK

Got slashdot.org: OK

Let’s look at this code in more detail, because a few subtle things are happening.

New threads are created with the Thread.new call. It is given a block that contains the code

to be run in a new thread. In our case, the block uses the net/http library to fetch the top page

from each of our nominated sites. Our tracing clearly shows that these fetches are going on

in parallel.

When we create the thread, we pass the required URL as a parameter. This parameter is

passed to the block as url. Why do we do this, rather than simply using the value of the

variable page_to_fetch within the block?

A thread shares all global, instance, and local variables that are in existence at the time the

thread starts. As anyone with a kid brother can tell you, sharing isn’t always a good thing.

In this case, all three threads would share the variable page_to_fetch. The first thread gets

started, and page_to_fetch is set to "www.rubycentral.com". In the meantime, the loop cre-

ating the threads is still running. The second time around, page_to_fetch gets set to "slash-

dot.org". If the first thread has not yet finished using the page_to_fetch variable, it will

suddenly start using this new value. These kinds of bugs are difficult to track down.

However, local variables created within a thread’s block are truly local to that thread—each

thread will have its own copy of these variables. In our case, the variable url will be set at

the time the thread is created, and each thread will have its own copy of the page address.

You can pass any number of arguments into the block via Thread.new.

This code also illustrates a gotcha. Inside the loop, the threads use print to write out the

messages, rather than puts. Why? Because behind the scenes, puts splits its work into two

chunks: it writes its argument, and then it writes a newline. Between these two, a thread

could get scheduled, and the output would be interleaved. Calling print with a single string

that already contains the newline gets around the problem.

Manipulating Threads

Another subtlety occurs on the last line in our download program. Why do we call join on

each of the threads we created?

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=187

MULTITHREADING 188

When a Ruby program terminates, all threads are killed, regardless of their states. However,

you can wait for a particular thread to finish by calling that thread’s Thread#join method.

The calling thread will block until the given thread is finished. By calling join on each

of the requester threads, you can make sure that all three requests have completed before

you terminate the main program. If you don’t want to block forever, you can give join a

timeout parameter—if the timeout expires before the thread terminates, the join call returns

nil. Another variant of join, the method Thread#value, returns the value of the last statement

executed by the thread.

In addition to join, a few other handy routines are used to manipulate threads. The current

thread is always accessible using Thread.current. You can obtain a list of all threads using

Thread.list, which returns a list of all Thread objects that are runnable or stopped. To deter-

mine the status of a particular thread, you can use Thread#status and Thread#alive?.

In addition, you can adjust the priority of a thread using Thread#priority= . Higher-priority

threads will run before lower-priority threads. We’ll talk more about thread scheduling, and

stopping and starting threads, in just a bit.

Thread Variables

A thread can normally access any variables that are in scope when the thread is created.

Variables local to the block containing the thread code are local to the thread and are not

shared.

But what if you need per-thread variables that can be accessed by other threads—including

the main thread? Class Thread features a special facility that allows thread-local variables

to be created and accessed by name. You simply treat the thread object as if it were a Hash,

writing to elements using []= and reading them back using []. In the example that follows,

each thread records the current value of the variable count in a thread-local variable with the

key mycount. To do this, the code uses the string "mycount" when indexing thread objects.

(A race condition1 exists in this code, but we haven’t talked about synchronization yet, so

we’ll just quietly ignore it for now.)

Download samples/tutthreads_6.rb

count = 0

threads = []

10.times do |i|

threads[i] = Thread.new do

sleep(rand(0.1))

Thread.current["mycount"] = count

count += 1

end

end

threads.each {|t| t.join; print t["mycount"], ", " }

puts "count = #{count}"

1. A race condition occurs when two or more pieces of code (or hardware) both try to access some shared

resource, and the outcome changes depending on the order in which they do so. In the example here, it is possible

for one thread to set the value of its mycount variable to count, but before it gets a chance to increment count, the

thread gets descheduled and another thread reuses the same value of count. These issues are fixed by synchronizing

the access to shared resources (such as the count variable).

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutthreads_6.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=188

MULTITHREADING 189

produces:

7, 0, 8, 6, 5, 4, 1, 9, 3, 2, count = 10

The main thread waits for the subthreads to finish and then prints out the value of count

captured by each. Just to make it more interesting, we have each thread wait a random time

before recording the value.

Threads and Exceptions
What happens if a thread raises an unhandled exception? It depends on the setting of the

abort_on_exception flag (documented on pages 705 and 707) and on the setting of the inter-

preter’s debug flag (described on page 234).

If abort_on_exception is false and the debug flag is not enabled (the default condition), an

unhandled exception simply kills the current thread—all the rest continue to run. In fact,

you don’t even hear about the exception until you issue a join on the thread that raised it.

In the following example, thread 2 blows up and fails to produce any output. However, you

can still see the trace from the other threads.

Download samples/tutthreads_7.rb

threads = []

4.times do |number|

threads << Thread.new(number) do |i|

raise "Boom!" if i == 2

print "#{i}\n"

end

end

sleep 1

produces:

0

1

3

You normally don’t use sleep to wait for threads to terminate. Instead, you’ll use the join

method. If you join to a thread that has raised an exception, then that exception will be

raised in the thread that does the joining:

Download samples/tutthreads_8.rb

threads = []

4.times do |number|

threads << Thread.new(number) do |i|

raise "Boom!" if i == 2

print "#{i}\n"

end

end

threads.each do |t|

begin

t.join

rescue RuntimeError => e

puts "Failed: #{e.message}"

end

end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutthreads_7.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutthreads_8.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=189

CONTROLLING THE THREAD SCHEDULER 190

produces:

0

1

3

Failed: Boom!

However, set abort_on_exception to true or use -d to turn on the debug flag, and an unhan-

dled exception kills all running threads. Once thread 2 dies, no more output is produced.

Download samples/tutthreads_9.rb

Thread.abort_on_exception = true

threads = []

4.times do |number|

threads << Thread.new(number) do |i|

raise "Boom!" if i == 2

print "#{i}\n"

end

end

threads.each {|t| t.join }

produces:

0

1

3

prog.rb:5:in `block (2 levels) in <main>': Boom! (RuntimeError)

Controlling the Thread Scheduler
In a well-designed application, you’ll normally just let threads do their thing; building tim-

ing dependencies into a multithreaded application is generally considered to be bad form,

because it makes the code far more complex and also prevents the thread scheduler from

optimizing the execution of your program.

Class Thread provides a number of methods that control the scheduler. Invoking Thread.stop

stops the current thread, and invoking Thread#run arranges for a particular thread to be run.

Thread.pass deschedules the current thread, allowing others to run, and Thread#join and

Thread#value suspend the calling thread until a given thread finishes. These last two are the

only low-level thread control methods that the average program should use. In fact, I now

consider most of the other low-level thread control methods too dangerous to use correctly

in programs I write.2 Fortunately, Ruby has support for higher-level thread synchronization.

2. And, worse, some of these primitives are unsafe in use. Charles Nutter of JRuby fame has a blog post that

illustrates one problem:

http://headius.blogspot.com/2008/02/rubysthreadraisethreadkilltimeoutrb.html

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutthreads_9.rb
http://headius.blogspot.com/2008/02/rubys-threadraise-threadkill-timeoutrb.html
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=190

MUTUAL EXCLUSION 191

Mutual Exclusion
Let’s start by looking at a simple example of a race condition—two threads updating a

shared variable:

Download samples/tutthreads_10.rb

def inc(n)

n + 1

end

sum = 0

threads = (1..10).map do

Thread.new do

10_000.times do

sum = inc(sum)

end

end

end

threads.each(&:join)

p sum

produces:

17335

We create 10 threads, and each increments the shared sum variable 10,000 times. And yet,

when the threads all finish, the final value in sum is considerably less than 100,000. Clearly

we have a race condition. In one thread, we call inc, passing it the current value in sum—

let’s say that value is 99. It returns the new value 100, which we assign back into sum. But

what happens if, during that sequence, another thread gets scheduled? It also passes the

value 99 to inc. Let’s say the second thread finishes the call to inc first. It assigns 100 back

into sum. Then the first thread gets rescheduled and finishes its call to inc. That call returns

100 as well, which gets assigned into sum. So, we had two calls, in two threads, but the

overall effect was that sum changed only from 99 to 100. We lost data.

Fortunately, that’s easy to fix. We can use the built-in class Mutex to create synchronized

regions—areas of code that only one thread may enter at a time.

Some schools coordinate students’ access to the bathrooms during class time using a system

of bathroom passes. Each room has two passes, one for girls and one for boys. To visit the

bathroom, you have to take the appropriate pass with you. If someone else already has that

pass, you have to cross your legs and wait for them to return. The bathroom pass controls

access to the critical resource—you have to own the pass to use the resource, and only one

person can own it at a time.

A mutex is like that bathroom pass. You create a mutex to control access to a resource and

then lock it when you want to use that resource. If no one else has it locked, your thread

continues to run. If someone else has already locked that particular mutex, your thread

suspends until they unlock it.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutthreads_10.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=191

MUTUAL EXCLUSION 192

Here’s a version of our counting code that uses a mutex to ensure that only one thread

updates the count at a time:

Download samples/tutthreads_11.rb

def inc(n)

n + 1

end

sum = 0

mutex = Mutex.new

threads = (1..10).map do

Thread.new do

10_000.times do

mutex.lock ####

sum = inc(sum) # one at a time, please

mutex.unlock ####

end

end

end

threads.each(&:join)

p sum

produces:

100000

This pattern is so common that the Mutex class provides Mutex#synchronize, which locks

the mutex, runs the code in a block, then unlocks the mutex. This also ensures that the mutex

will get unlocked even if an exception is thrown while it is locked.

Download samples/tutthreads_12.rb

def inc(n)

n + 1

end

sum = 0

mutex = Mutex.new

threads = (1..10).map do

Thread.new do

10_000.times do

mutex.synchronize do ####

sum = inc(sum) # one at a time, please

end ####

end

end

end

threads.each(&:join)

p sum

produces:

100000

There are times when you want to claim a mutex lock if the mutex is currently unlocked, but

you don’t want to suspend the current thread if it isn’t. The Mutex#try_lock method does just

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutthreads_11.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutthreads_12.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=192

MUTUAL EXCLUSION 193

that, taking the lock if it can, but returning false if the lock is already taken. The following

code illustrates a hypothetical currency converter. The ExchangeRates class caches rates

from an online feed, and a background thread updates that cache once an hour. This update

takes a minute or so. In the main thread, we interact with our user. However, rather than just

go dead if we can’t claim the mutex that protects the rate object, we use try_lock and print a

status message if the update is in process.

rate_mutex = Mutex.new

exchange_rates = ExchangeRates.new

exchange_rates.update_from_online_feed

Thread.new do

loop do

sleep 3600

rate_mutex.synchronize do

exchange_rates.update_from_online_feed

end

end

end

loop do

print "Enter currency code and amount: "

line = gets

if rate_mutex.try_lock

begin

puts exchange_rates.convert(line)

ensure

rate_mutex.unlock

end

else

puts "Sorry, rates being updated. Try again in a minute"

end

end

If you are holding the lock on a mutex and you want to temporarily unlock it, allowing others

to use it, you can call Mutex#sleep. We could use this to rewrite the previous example:

rate_mutex = Mutex.new

exchange_rates = ExchangeRates.new

exchange_rates.update_from_online_feed

Thread.new do

rate_mutex.lock

loop do

rate_mutex.sleep 3600

exchange_rates.update_from_online_feed

end

end

loop do

print "Enter currency code and amount: "

line = gets

if rate_mutex.try_lock

begin

puts exchange_rates.convert(line)

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=193

RUNNING MULTIPLE PROCESSES 194

ensure

rate_mutex.unlock

end

else

puts "Sorry, rates being updated. Try again in a minute"

end

end

Queues and Condition Variables

Most of the examples in this chapter use the Mutex class for synchronization. However,

another technique is useful, particularly when you need to synchronize work between pro-

ducers and consumers. The Queue class, located in the thread library, implements a thread-

safe queuing mechanism. Multiple threads can add and remove objects from each queue,

and each addition and removal is guaranteed to be atomic. For an example, see the descrip-

tion of the thread library on page 817.

A condition variable is a controlled way of communicating an event (or a condition) between

two threads. One thread can wait on the condition, and the other can signal it. The thread

library extends threads with condition variables. Again, see the library description for an

example.

Running Multiple Processes
Sometimes you may want to split a task into several process-sized chunks—maybe to take

advantage of all those cores in your shiny new processor. Or perhaps you need to run a sep-

arate process that was not written in Ruby. Not a problem: Ruby has a number of methods

by which you may spawn and manage separate processes.

Spawning New Processes

You have several ways to spawn a separate process; the easiest is to run some command and

wait for it to complete. You may find yourself doing this to run some separate command or

retrieve data from the host system. Ruby does this for you with the system and backquote

(or backtick) methods:

system("tar xzf test.tgz") # => true

result = `date`

result # => "Mon Apr 13 13:26:03 CDT 2009\n"

The method Kernel.system executes the given command in a subprocess; it returns true if the

command was found and executed properly. It raises an exception if the command cannot

be found.1.9 It returns false if the command ran but returned an error. In case of failure, you’ll

find the subprocess’s exit code in the global variable $?.

One problem with system is that the command’s output will simply go to the same desti-

nation as your program’s output, which may not be what you want. To capture the standard

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=194

RUNNING MULTIPLE PROCESSES 195

output of a subprocess, you can use the backquote characters, as with `date` in the previ-

ous example. Remember that you may need to use String#chomp to remove the line-ending

characters from the result.

OK, this is fine for simple cases—we can run some other process and get the return status.

But many times we need a bit more control than that. We’d like to carry on a conversation

with the subprocess, possibly sending it data and possibly getting some back. The method

IO.popen does just this. The popen method runs a command as a subprocess and connects

that subprocess’s standard input and standard output to a Ruby IO object. Write to the IO

object, and the subprocess can read it on standard input. Whatever the subprocess writes is

available in the Ruby program by reading from the IO object.

For example, on our systems one of the more useful utilities is pig, a program that reads

words from standard input and prints them in pig latin (or igpay atinlay). We can use this

when our Ruby programs need to send us output that our five-year-olds shouldn’t be able to

understand:

pig = IO.popen("/usr/local/rubybook/bin/pig", "w+")

pig.puts "ice cream after they go to bed"

pig.close_write

puts pig.gets

produces:

iceway eamcray afterway eythay ogay otay edbay

This example illustrates both the apparent simplicity and the more subtle real-world com-

plexities involved in driving subprocesses through pipes. The code certainly looks simple

enough: open the pipe, write a phrase, and read back the response. But it turns out that the

pig program doesn’t flush the output it writes. Our original attempt at this example, which

had a pig.puts followed by a pig.gets, hung forever. The pig program processed our input,

but its response was never written to the pipe. We had to insert the pig.close_write line. This

sends an end-of-file to pig’s standard input, and the output we’re looking for gets flushed as

pig terminates.

popen has one more twist. If the command you pass it is a single minus sign (–), popen

will fork a new Ruby interpreter. Both this and the original interpreter will continue running

by returning from the popen. The original process will receive an IO object back, and the

child will receive nil. This works only on operating systems that support the fork(2) call (and

for now this excludes Windows).

Download samples/tutthreads_17.rb

pipe = IO.popen("","w+")

if pipe

pipe.puts "Get a job!"

STDERR.puts "Child says '#{pipe.gets.chomp}'"

else

STDERR.puts "Dad says '#{gets.chomp}'"

puts "OK"

end

produces:

Dad says 'Get a job!'

Child says 'OK'

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutthreads_17.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=195

RUNNING MULTIPLE PROCESSES 196

In addition to the popen method, some platforms support the methods Kernel.fork, Ker-

nel.exec, and IO.pipe. The filenaming convention of many IO methods and Kernel.open will

also spawn subprocesses if you put a | as the first character of the filename (see the introduc-

tion to class IO on page 546 for details). Note that you cannot create pipes using File.new;

it’s just for files.

Independent Children

Sometimes we don’t need to be quite so hands-on; we’d like to give the subprocess its

assignment and then go on about our business. Sometime later, we’ll check to see whether

it has finished. For instance, we may want to kick off a long-running external sort:

exec("sort testfile > output.txt") if fork.nil?

The sort is now running in a child process

carry on processing in the main program

... dum di dum ...

then wait for the sort to finish

Process.wait

The call to Kernel.fork returns a process ID in the parent, and nil in the child, so the child pro-

cess will perform the Kernel.exec call and run sort. Sometime later, we issue a Process.wait

call, which waits for the sort to complete (and returns its process ID).

If you’d rather be notified when a child exits (instead of just waiting around), you can set

up a signal handler using Kernel.trap (described on page 579). Here we set up a trap on

SIGCLD, which is the signal sent on “death of child process”:

trap("CLD") do

pid = Process.wait

puts "Child pid #{pid}: terminated"

end

fork { exec("sort testfile > output.txt") }

Do other stuff...

produces:

Child pid 83170: terminated

For more information on using and controlling external processes, see the documentation

for Kernel.open, IO.popen, and the section on the Process module on page 641.

Blocks and Subprocesses

IO.popen works with a block in pretty much the same way as File.open does. If you pass it

a command, such as date, the block will be passed an IO object as a parameter:

Download samples/tutthreads_20.rb

IO.popen("date") {|f| puts "Date is #{f.gets}" }

produces:

Date is Mon Apr 13 13:26:03 CDT 2009

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutthreads_20.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=196

RUNNING MULTIPLE PROCESSES 197

The IO object will be closed automatically when the code block exits, just as it is with

File.open.

If you associate a block with Kernel.fork, the code in the block will be run in a Ruby sub-

process, and the parent will continue after the block:

Download samples/tutthreads_21.rb

fork do

puts "In child, pid = #$$"

exit 99

end

pid = Process.wait

puts "Child terminated, pid = #{pid}, status = #{$?.exitstatus}"

produces:

In child, pid = 83177

Child terminated, pid = 83177, status = 99

$? is a global variable that contains information on the termination of a subprocess. See the

section on Process::Status beginning on page 650 for more information.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/tutthreads_21.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=197

