
Chapter 13

Unit Testing

Unit testing is testing that focuses on small chunks (units) of code, typically individual

methods or lines within methods. This is in contrast to most other forms of testing, which

consider the system as a whole.

Why focus in so tightly? It’s because ultimately all software is constructed in layers; code

on one layer relies on the correct operation of the code in the layers below. If this underlying

code turns out to contain bugs, then all higher layers are potentially affected. This is a big

problem. Fred may write some code with a bug one week, and then you may end up calling

it, indirectly, two months later. When your code generates incorrect results, it will take you

a while to track down the problem in Fred’s method. And when you ask Fred why he wrote

it that way, the likely answer will be “I don’t remember. That was months ago.”

If instead Fred had unit tested his code when he wrote it, two things would have happened.

First, he’d have found the bug while the code was still fresh in his mind. Second, because

the unit test was only looking at the code he’d just written, when the bug did appear, he’d

only have to look through a handful of lines of code to find it, rather than doing archaeology

on the rest of the code base.

Unit testing helps developers write better code. It helps before the code is actually written,

because thinking about testing leads you naturally to create better, more decoupled designs.

It helps as you’re writing the code, because it gives you instant feedback on how accurate

your code is. And it helps after you’ve written code, both because it gives you the ability to

check that the code still works and because it helps others understand how to use your code.

Unit testing is a Good Thing.

But why have a chapter on unit testing in the middle of a book on Ruby? Well, it’s because

unit testing and languages such as Ruby seem to go hand in hand. The flexibility of Ruby

makes writing tests easy, and the tests make it easier to verify that your code is working.

Once you get into the swing of it, you’ll find yourself writing a little code, writing a test or

two, verifying that everything is copacetic, and then writing some more code.

Unit testing is also pretty trivial—run a program that calls part of your application’s code,

get back some results, and then check the results are what you expected.

Report erratum198

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=198

199

Let’s say we’re testing a Roman number class. So far the code is pretty simple: it just lets us

create an object representing a certain number and display that object in Roman numerals:

Download samples/unittesting_1.rb

NOTE: This code has bugs!

class Roman

MAX_ROMAN = 4999

def initialize(value)

if value <= 0 || value > MAX_ROMAN

fail "Roman values must be > 0 and <= #{MAX_ROMAN}"

end

@value = value

end

FACTORS = [["m", 1000], ["cm", 900], ["d", 500], ["cd", 400],

["c", 100], ["xc", 90], ["l", 50], ["xl", 40],

["x", 10], ["ix", 9], ["v", 5], ["iv", 4],

["i", 1]]

def to_s

value = @value

roman = ""

for code, factor in FACTORS

count, value = value.divmod(factor)

roman << code unless count.zero?

end

roman

end

end

We could test this code by writing another program, like this:

require 'roman'

r = Roman.new(1)

fail "'i' expected" unless r.to_s == "i"

r = Roman.new(9)

fail "'ix' expected" unless r.to_s == "ix"

However, as the number of tests in a project grows, this kind of ad hoc approach can start to

get complicated to manage. Over the years, various unit testing frameworks have emerged

to help structure the testing process. Ruby comes with one preinstalled. In Ruby 1.8, this

used to be Nathaniel Talbott’s Test::Unit framework. Ruby 1.91.9 instead comes with Ryan

Davis’ MiniTest.

MiniTest is largely compatible with Test::Unit but without a lot of bells and whistles (test-

case runners, GUI support, and so on). However, because there are areas where it is different

and because there are tens of thousands of tests out there that assume the Test::Unit API,

Ryan has also added a compatibility layer to MiniTest. For a little bit more information on

the differences between the two, see the sidebar on the following page. In this chapter, we’ll

be using the Test::Unit wrapper, because it automatically runs tests for us. But we’ll also be

using some of the new assertions available in MiniTest.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/unittesting_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=199

THE TESTING FRAMEWORK 200

MiniTest::Unit vs. Test::Unit

Folks have been using Test::Unit with Ruby for a good number of years
now. However, the core team decided to replace the testing frame-
work that comes as standard with Ruby with something a little leaner.
Ryan Davis and Eric Hodel wrote MiniTest::Unit as a partial drop-in
replacement for Test::Unit.

Most of the assertions in MiniTest mirror those in Test::Unit::TestCase.
The major differences are the absence of assert_not_raises and
assert_not_throws and the renaming of all the negative assertions.
Whereas in Test::Unit you’d say assert_not_nil(x) and assert_not(x), in
MiniTest you’d use refute_nil(x) and refute(x).

MiniTest also drops most of the little-used features of Test::Unit,
including test cases, GUI runners, and some assertions.

And, probably most significantly, MiniTest does not automatically
invoke the test cases when you execute a file that contains them.

So, you have three basic options with this style of unit testing:

• require ’minitest/unit’ and use the MiniTest functionality.

• require ’test/unit’ and use Minitest with the Test::Unit compatibility
layer. This adds in the assertions in Figure 13.2 on page 219 and
reenables the autorun functionality.

• You can install the test-unit gem and get all the original Test::Unit
functionality back.

The Testing Framework
The Ruby testing framework is basically three facilities wrapped into a neat package:

• It gives you a way of expressing individual tests.

• It provides a framework for structuring the tests.

• It gives you flexible ways of invoking the tests.

Assertions == Expected Results

Rather than have you write series of individual if statements in your tests, the testing frame-

work provides a set of assertions that achieve the same thing. Although a number of different

styles of assertion exist, they all follow basically the same pattern. Each assertion gives you

a way of specifying a desired result or outcome and a way of passing in the actual outcome.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=200

THE TESTING FRAMEWORK 201

If the actual doesn’t equal the expected, the assertion outputs a nice message and records

the fact as a failure.

For example, we could rewrite our previous test of the Roman class using the testing

framework. For now, ignore the scaffolding code at the start and end, and just look at the

assert_equal methods:

Download samples/unittesting_3.rb

require 'roman'

require 'test/unit'

class TestRoman < MiniTest::Unit::TestCase

def test_simple

assert_equal("i", Roman.new(1).to_s)

assert_equal("ix", Roman.new(9).to_s)

end

end

produces:

Loaded suite /tmp/prog

Started

.

Finished in 0.000499 seconds.

1 tests, 2 assertions, 0 failures, 0 errors, 0 skips

The first assertion says that we’re expecting the Roman number string representation of 1

to be “i,” and the second test says we expect 9 to be “ix.” Luckily for us, both expectations

are met, and the tracing reports that our tests pass. Let’s add a few more tests:

Download samples/unittesting_4.rb

require 'roman'

require 'test/unit'

class TestRoman < Test::Unit::TestCase

def test_simple

assert_equal("i", Roman.new(1).to_s)

assert_equal("ii", Roman.new(2).to_s)

assert_equal("iii", Roman.new(3).to_s)

assert_equal("iv", Roman.new(4).to_s)

assert_equal("ix", Roman.new(9).to_s)

end

end

produces:

Loaded suite /tmp/prog

Started

F

Finished in 0.000594 seconds.

1) Failure:

<"ii"> expected but was

<"i">.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/unittesting_3.rb
http://media.pragprog.com/titles/ruby3/code/samples/unittesting_4.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=201

THE TESTING FRAMEWORK 202

1 tests, 2 assertions, 1 failures, 0 errors, 0 skips

test_simple(TestRoman) [/tmp/prog.rb:8]:

Uh-oh! The second assertion failed. See how the error message uses the fact that the assert

knows both the expected and actual values: it expected to get “ii” but instead got “i.” Look-

ing at our code, you can see a clear bug in to_s. If the count after dividing by the factor is

greater than zero, then we should output that many Roman digits. The existing code outputs

just one. The fix is easy:

Download samples/unittesting_5.rb

def to_s

value = @value

roman = ""

for code, factor in FACTORS

count, value = value.divmod(factor)

roman << (code * count)

end

roman

end

Now let’s run our tests again:

Loaded suite /tmp/prog

Started

.

Finished in 0.000462 seconds.

1 tests, 5 assertions, 0 failures, 0 errors, 0 skips

Looking good. We can now go a step further and remove some of that duplication:

Download samples/unittesting_7.rb

require 'roman'

require 'test/unit'

class TestRoman < Test::Unit::TestCase

NUMBERS = [

[1, "i"], [2, "ii"], [3, "iii"],

[4, "iv"], [5, "v"], [9, "ix"]

]

def test_simple

NUMBERS.each do |arabic, roman|

r = Roman.new(arabic)

assert_equal(roman, r.to_s)

end

end

end

produces:

Loaded suite /tmp/prog

Started

.

Finished in 0.000469 seconds.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/unittesting_5.rb
http://media.pragprog.com/titles/ruby3/code/samples/unittesting_7.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=202

THE TESTING FRAMEWORK 203

1 tests, 6 assertions, 0 failures, 0 errors, 0 skips

What else can we test? Well, the constructor checks that the number we pass in can be

represented as a Roman number, throwing an exception if it can’t. Let’s test the exception:

Download samples/unittesting_8.rb

require 'roman'

require 'test/unit'

class TestRoman < Test::Unit::TestCase

def test_range

no exception for these two...

Roman.new(1)

Roman.new(4999)

but an exception for these

assert_raises(RuntimeError) { Roman.new(0) }

assert_raises(RuntimeError) { Roman.new(5000) }

end

end

produces:

Loaded suite /tmp/prog

Started

.

Finished in 0.000583 seconds.

1 tests, 2 assertions, 0 failures, 0 errors, 0 skips

We could do a lot more testing on our Roman class, but let’s move on to bigger and better

things. Before we go, though, we should say that we’ve only scratched the surface of the

set of assertions available inside the testing framework. For example, for every positive

assertion, such as assert_equal, there’s a negative refutation (in this case refute_equal).

Figure 13.2 on page 219 lists the additional assertions you get if you load the Test::Unit

shim (which we do in this chapter), and Figure 13.1 on page 218 gives a full list of the

MiniTest assertions.

The final parameter to every assertion is a message that will be output before any failure

message. This normally isn’t needed, because the failure messages are normally pretty rea-

sonable. The one exception is the test refute_nil (or assert_not_nil in Test::Unit), where the

message “Expected nil to not be nil” doesn’t help much. In that case, you may want to add

some annotation of your own. (This code assumes the existence of some kind of User class.)

Download samples/unittesting_9.rb

require 'test/unit'

class ATestThatFails < Test::Unit::TestCase

def test_user_created

user = User.find(1)

refute_nil(user, "User with ID=1 should exist")

end

end

produces:

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/unittesting_8.rb
http://media.pragprog.com/titles/ruby3/code/samples/unittesting_9.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=203

STRUCTURING TESTS 204

Loaded suite /tmp/prog

Started

F

Finished in 0.000568 seconds.

1) Failure:

User with ID=1 should exist.

Expected nil to not be nil.

1 tests, 1 assertions, 1 failures, 0 errors, 0 skips

test_user_created(ATestThatFails) [/tmp/prog.rb:10]:

Structuring Tests
Earlier we asked you to ignore the scaffolding around our tests. Now it’s time to look at it.

You include the testing framework facilities in your unit test with either this:

require 'test/unit'

or, for raw MiniTest, with this:

require 'minitest/unit'

Unit tests seem to fall quite naturally into high-level groupings, called test cases, and lower-

level groupings, the test methods themselves. The test cases generally contain all the tests

relating to a particular facility or feature. Our Roman number class is fairly simple, so all the

tests for it will probably be in a single test case. Within the test case, you’ll probably want

to organize your assertions into a number of test methods, where each method contains the

assertions for one type of test; one method could check regular number conversions, another

could test error handling, and so on.

The classes that represent test cases must be subclasses of Test::Unit::TestCase. The meth-

ods that hold the assertions must have names that start with test. This is important: the

testing framework uses reflection to find tests to run, and only methods whose names start

with test are eligible.

Quite often you’ll find all of the test methods within a test case start by setting up a particular

scenario. Each test method then probes some aspect of that scenario. Finally, each method

may then tidy up after itself. For example, we could be testing a class that extracts jukebox

playlists from a database:

Download samples/unittesting_12.rb

require 'test/unit'

require 'dbi'

require 'playlist_builder'

class TestPlaylistBuilder < Test::Unit::TestCase

def test_empty_playlist

db = DBI.connect('DBI:mysql:playlists')

pb = PlaylistBuilder.new(db)

assert_empty(pb.playlist)

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/unittesting_12.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=204

STRUCTURING TESTS 205

db.disconnect

end

def test_artist_playlist

db = DBI.connect('DBI:mysql:playlists')

pb = PlaylistBuilder.new(db)

pb.include_artist("krauss")

refute_empty(pb.playlist, "Playlist shouldn't be empty")

pb.playlist.each do |entry|

assert_match(/krauss/i, entry.artist)

end

db.disconnect

end

def test_title_playlist

db = DBI.connect('DBI:mysql:playlists')

pb = PlaylistBuilder.new(db)

pb.include_title("midnight")

refute_empty(pb.playlist, "Playlist shouldn't be empty")

pb.playlist.each do |entry|

assert_match(/midnight/i, entry.title)

end

db.disconnect

end

...

end

produces:

Loaded suite /tmp/prog

Started

...

Finished in 0.000629 seconds.

3 tests, 46 assertions, 0 failures, 0 errors, 0 skips

Each test starts by connecting to the database and creating a new playlist builder. Each test

ends by disconnecting from the database. (The idea of using a real database in unit tests is

questionable, because unit tests are supposed to be fast running, context independent, and

easy to set up, but it illustrates a point.)

We can extract all this common code into setup and teardown methods. Within a TestCase

class, a method called setup will be run before each and every test method, and a method

called teardown will be run after each test method finishes. Let’s emphasize that: the setup

and teardown methods bracket each test, rather than being run once per test case. Our test

would then become this:

Download samples/unittesting_13.rb

require 'test/unit'

require 'dbi'

require 'playlist_builder'

class TestPlaylistBuilder < Test::Unit::TestCase

def setup

@db = DBI.connect('DBI:mysql:playlists')

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/unittesting_13.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=205

ORGANIZING AND RUNNING TESTS 206

@pb = PlaylistBuilder.new(@db)

end

def teardown

@db.disconnect

end

def test_empty_playlist

assert_empty(@pb.playlist)

end

def test_artist_playlist

@pb.include_artist("krauss")

refute_empty(@pb.playlist, "Playlist shouldn't be empty")

@pb.playlist.each do |entry|

assert_match(/krauss/i, entry.artist)

end

end

def test_title_playlist

@pb.include_title("midnight")

refute_empty(@pb.playlist, "Playlist shouldn't be empty")

@pb.playlist.each do |entry|

assert_match(/midnight/i, entry.title)

end

end

...

end

produces:

Loaded suite /tmp/prog

Started

...

Finished in 0.000619 seconds.

3 tests, 46 assertions, 0 failures, 0 errors, 0 skips

Inside the teardown method, you can detect whether the preceding test succeeded with the

passed? method.

Organizing and Running Tests
The test cases we’ve shown so far are all runnable Test::Unit programs. If, for example, the

test case for the Roman class was in a file called test_roman.rb, we could run the tests from

the command line using this:

% ruby test_roman.rb

Loaded suite test_roman

Started

..

Finished in 0.000883 seconds.

2 tests, 7 assertions, 0 failures, 0 errors, 0 skips

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=206

ORGANIZING AND RUNNING TESTS 207

Test::Unit is clever enough to run the tests even though there’s no main program. It collects

all the test case classes and runs each in turn.

If we want, we can ask it to run just a particular test method:

% ruby test_roman.rb n test_range

Loaded suite test_roman

Started

.

Finished in 0.000600 seconds.

1 tests, 2 assertions, 0 failures, 0 errors, 0 skips

or tests whose names match a regular expression:

% ruby test_roman.rb n /range/

Loaded suite test_roman

Started

.

Finished in 0.001036 seconds.

1 tests, 2 assertions, 0 failures, 0 errors, 0 skips

This last capability is a great way of grouping your tests. Use meaningful names, and you’ll

be able to run (for example) all the shopping-cart-related tests by simply running tests with

names matching /cart/.

Where to Put Tests

Once you get into unit testing, you may well find yourself generating almost as much test

code as production code. All of those tests have to live somewhere. The problem is that if

you put them alongside your regular production code source files, your directories start to

get bloated—effectively you end up with two files for every production source file.

A common solution is to have a test/ directory where you place all your test source files.

This directory is then placed parallel to the directory containing the code you’re developing.

For example, for our Roman numeral class, we may have this:

roman

lib/

roman.rb

other files. . .

test/

test_roman.rb

other tests. . .

other stuff

This works well as a way of organizing files but leaves you with a small problem: how do

you tell Ruby where to find the library files to test? For example, if our TestRoman test code

was in a test/ subdirectory, how does Ruby know where to find the roman.rb source file,

the thing we’re trying to test?

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=207

ORGANIZING AND RUNNING TESTS 208

An option that doesn’t work reliably is to build the path into require statements in the test

code and run the tests from the test/ subdirectory:

require 'test/unit'

require '../lib/roman'

class TestRoman < Test::Unit::TestCase

...

end

Why doesn’t it work? Because our roman.rb file may itself require other source files in the

library we’re writing. It’ll load them using require (without the leading ../lib/), and because

they aren’t in Ruby’s $LOAD_PATH, they won’t be found. Our test just won’t run. A sec-

ond, less immediate problem is that we won’t be able to use these same tests to test our

classes once installed on a target system, because then they’ll be referenced simply using

require 'roman'.

A better solution is to assume that your Ruby program is packaged according to the con-

ventions we’ll be discussing in Section 16 on page 251. In this arrangement, the top-level

directory of your application is assumed to be in Ruby’s load path by all other components

of the application. Given that, your unit tests can assume that they can find the components

they are testing using the path lib/xxx.rb.

Your test code would then be as follows:

require 'test/unit'

require 'lib/roman'

class TestRoman < Test::Unit::TestCase

...

end

And you’d run it using this:

% ruby I path/to/app path/to/app/test/test_roman.rb

The normal case, where you’re already in the application’s directory, would be as follows:

% ruby I . test/test_roman.rb

This would be a good time to investigate using Rake to automate your testing....

Test Suites

After a while, you’ll grow a decent collection of test cases for your application. You may

well find that these tend to cluster: one group of cases tests a particular set of functions, and

another group tests a different set of functions. If so, you can group those test cases together

into test suites, letting you run them all as a group.

This is easy to do—just create a Ruby file that requires test/unit and then requires each of

the files holding the test cases you want to group. This way, you build yourself a hierarchy

of test material.

• You can run individual tests by name.

• You can run all the tests in a file by running that file.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=208

RSPEC AND SHOULDA 209

• You can group a number of files into a test suite and run them as a unit.

• You can group test suites into other test suites.

This gives you the ability to run your unit tests at a level of granularity that you control,

testing just one method or testing the entire application.

At this point, it’s worthwhile to think about naming conventions. Nathaniel Talbott, the

author of Test::Unit, uses the convention that test cases are in files named tc_xxx and test

suites are in files named ts_xxx. Most people seem to use test_ as the test-case filename

prefix:

file ts_dbaccess.rb

require 'test/unit'

require 'test_connect'

require 'test_query'

require 'test_update'

require 'test_delete'

Now, if you run Ruby on the file ts_dbaccess.rb, you execute the test cases in the four files

you’ve required.

RSpec and Shoulda
The built-in testing framework has a lot going for it. It is simple, and it is compatible in

style with frameworks from other languages (such as JUnit for Java and NUnit for C#).

However, there’s a growing movement in the Ruby community to use a different style of

testing. So-called behavior-driven development encourages people to write tests in terms

of your expectations of the program’s behavior in a given set of circumstances. In many

ways, this is like testing according to the content of user stories, a common requirements-

gathering technique in agile methodologies. With these testing frameworks, the focus is not

on assertions. Instead, you write expectations.

Although both RSpec and Shoulda allow this style of testing, they focus on different things.

RSpec is very much concerned with driving the design side of things. You can write and

execute specs with RSpec well before you’ve written a line of application code. These specs,

when run, will output the user stories that describe your application. Then, as you fill in the

code, the specs mutate into tests that validate that your code meets your expectations.

Shoulda, on the other hand, is really more focused on the testing side. Whereas RSpec is

a complete framework, Shoulda works inside Test::Unit—you can even mix Shoulda tests

with regular Test::Unit test methods.

Let’s start with a simple example of RSpec in action.

Starting to Score Tennis Matches

The scoring system used in lawn tennis originated in the middle ages. As players win suc-

cessive points, their scores are shown as 15, 30, and 40. The next point is a win unless your

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=209

RSPEC AND SHOULDA 210

opponent also has 40. If you’re both tied at 40, then different rules apply—the first player

with a clear two-point advantage is the winner.1

We’re tasked with writing a class that handles this scoring system. Let’s use RSpec specifi-

cations to drive the process. We install RSpec with gem install rspec. We’ll then create our

first specification file:

Download samples/unittesting_20.rb

describe "TennisScorer", "basic scoring" do

it "should start with a score of 00"

it "should be 150 if the server wins a point"

it "should be 015 if the receiver wins a point"

it "should be 1515 after they both win a point"

...

end

This file contains nothing more than a description of an aspect of the tennis scoring class

(that we haven’t yet written, by the way). It contains a description of the basic scoring

system. Inside the description are a set of four expectations (it "should start..." and so on).

We can run this specification using the spec command:

$ spec ts_spec.rb

produces:

Pending:

TennisScorer basic scoring should start with a score of 00 (Not Yet

Implemented)

ts_spec.rb:2:in `block in <top (required)>'

TennisScorer basic scoring should be 150 if the server wins a point

(Not Yet Implemented)

ts_spec.rb:3:in `block in <top (required)>'

TennisScorer basic scoring should be 015 if the receiver wins a point

(Not Yet Implemented)

ts_spec.rb:4:in `block in <top (required)>'

TennisScorer basic scoring should be 1515 after they both win a point

(Not Yet Implemented)

ts_spec.rb:5:in `block in <top (required)>'

Finished in 0.038935 seconds

4 examples, 0 failures, 4 pending

1. Some say the 0, 15, 30, 40 system is a corruption of the fact that scoring used to be done using the quarters of

a clock face. Me, I just think those medieval folks enjoyed a good joke.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/unittesting_20.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=210

RSPEC AND SHOULDA 211

That’s pretty cool. Executing the tests echoes our expectations back at us, telling us that

each has yet to be implemented. Coding, like life, is full of these disappointments. How-

ever, unlike life, fixing things is just a few keystrokes away. Let’s start by meeting the first

expectation—when a game starts, the score should be 0 to 0. We’ll start by fleshing out the

test:

Download samples/unittesting_22.rb

require "tennis_scorer"

describe TennisScorer do

it "should start with a score of 00" do

ts = TennisScorer.new

ts.score.should == "00"

end

it "should be 150 if the server wins a point"

it "should be 015 if the receiver wins a point"

it "should be 1515 after they both win a point"

end

Note that we’ve assumed we have a class TennisScorer in a file called tennis_scorer.rb. Our

first expectation now has a code block associated with it. Inside that block, we create a

TennisScorer and then use a funky RSpec syntax to validate that the score starts out at 0 to

0. This particular aspect of RSpec probably generates the most controversy—some people

love it, others find it awkward. Either way, ts.score.should == "0-0" is basically the same as

an assertion in Test::Unit.

We’ll beef up our TennisScorer class, but only enough to let it satify this assertion:

Download samples/unittesting_23.rb

class TennisScorer

def score

"00"

end

end

Well run our spec again:

$ spec ts_spec.rb

produces:

.***

Pending:

TennisScorer should be 150 if the server wins a point (Not Yet

Implemented)

ts_spec.rb:9:in `block in <top (required)>'

TennisScorer should be 015 if the receiver wins a point (Not Yet

Implemented)

ts_spec.rb:10:in `block in <top (required)>'

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/unittesting_22.rb
http://media.pragprog.com/titles/ruby3/code/samples/unittesting_23.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=211

RSPEC AND SHOULDA 212

TennisScorer should be 1515 after they both win a point (Not Yet

Implemented)

ts_spec.rb:11:in `block in <top (required)>'

Finished in 0.015241 seconds

4 examples, 0 failures, 3 pending

Note that we now have three pending expectations; the first one has been satisfied.

Let’s flesh out the next expectation:

Download samples/unittesting_25.rb

require "tennis_scorer"

describe TennisScorer, "basic scoring" do

it "should start with a score of 00" do

ts = TennisScorer.new

ts.score.should == "00"

end

it "should be 150 if the server wins a point" do

ts = TennisScorer.new

ts.give_point_to(:server)

ts.score.should == "150"

end

it "should be 015 if the receiver wins a point"

it "should be 1515 after they both win a point"

end

This won’t run, because our TennisScorer class doesn’t implement a give_point_to method.

Let’s rectify that. Our code isn’t finished, but it lets the test pass:

Download samples/unittesting_26.rb

class TennisScorer

OPPOSITE_SIDE_OF_NET = {

:server => :receiver,

:receiver => :server

}

def initialize

@score = { :server => 0, :receiver => 0 }

end

def score

"#{@score[:server]*15}#{@score[:receiver]*15}"

end

def give_point_to(player)

other = OPPOSITE_SIDE_OF_NET[player]

fail "Unknown player #{player}" unless other

@score[player] += 1

end

end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/unittesting_25.rb
http://media.pragprog.com/titles/ruby3/code/samples/unittesting_26.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=212

RSPEC AND SHOULDA 213

Again, we’ll run the specification:

$ spec ts_spec.rb

produces:

..**

Pending:

TennisScorer basic scoring should be 015 if the receiver wins a point

(Not Yet Implemented)

ts_spec.rb:16:in `block in <top (required)>'

TennisScorer basic scoring should be 1515 after they both win a point

(Not Yet Implemented)

ts_spec.rb:17:in `block in <top (required)>'

Finished in 0.016136 seconds

4 examples, 0 failures, 2 pending

We’re now meeting two of the four initial expectations. But, before we move on, note there’s

a bit of duplication in the specification: both our expections create a new TennisScorer

object. We can fix that by using a before stanza in the specification. This works a bit like the

setup method in Test::Unit, allowing us to run code before expecations are executed. Let’s

use this feature and, at the same time, build out the last two expectations:

Download samples/unittesting_28.rb

require "tennis_scorer"

describe TennisScorer, "basic scoring" do

before(:each) do

@ts = TennisScorer.new

end

it "should start with a score of 00" do

@ts.score.should == "00"

end

it "should be 150 if the server wins a point" do

@ts.give_point_to(:server)

@ts.score.should == "150"

end

it "should be 015 if the receiver wins a point" do

@ts.give_point_to(:receiver)

@ts.score.should == "015"

end

it "should be 1515 after they both win a point" do

@ts.give_point_to(:receiver)

@ts.give_point_to(:server)

@ts.score.should == "1515"

end

end

Let’s run it:

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/unittesting_28.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=213

RSPEC AND SHOULDA 214

$ spec ts_spec.rb

produces:

....

Finished in 0.016362 seconds

4 examples, 0 failures

We’re going to stop here, but I suggest that you might want to take this code and continue

to develop it. Write expectations such as these:

Download samples/unittesting_30.rb

it "should be 400 after the server wins three points"

it "should be WL after the server wins four points"

it "should be LW after the receiver wins four points"

it "should be Deuce after each wins three points"

it "should be Aserver after each wins three points and the server

gets one more"

it "should be Areceiver after each wins three points and the receiver

gets one more"

and so on. Note that none of these expectations is met by our current implementation.

RSpec has a lot more depth than just the description of expectations. In particular, it has

an entire language for describing and running complete user stories. But that’s beyond the

scope of this book.

Anyone for Shoulda?

RSpec is testing with attitude. On the other hand, Shoulda takes many of the ideas from

RSpec and humbly offers them to you for integration into your regular unit tests. For many

developers, particularly those with existing Test::Unit tests, this is a good compromise. You

get much of the descriptive power of RSpec-style expectations without having to commit to

the full framework.

Install Shoulda using this:

% gem install thoughtbotshoulda source=http://gems.github.com

Then, unlike RSpec, write a regular Test::Unit test case. Inside it, though, you can use the

Shoulda mini-language to describe your tests.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/unittesting_30.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=214

RSPEC AND SHOULDA 215

Let’s recast our final RSpec tennis scoring tests using Shoulda:

Download samples/unittesting_31.rb

require 'rubygems'

require 'test/unit'

require 'shoulda'

require 'tennis_scorer.rb'

class TennisScorerTest < Test::Unit::TestCase

def assert_score(target)

assert_equal(target, @ts.score)

end

context "Tennis scores" do

setup do

@ts = TennisScorer.new

end

should "start with a score of 00" do

assert_score("00")

end

should "be 150 if the server wins a point" do

@ts.give_point_to(:server)

assert_score("150")

end

should "be 015 if the receiver wins a point" do

@ts.give_point_to(:receiver)

assert_score("015")

end

should "be 1515 after they both win a point" do

@ts.give_point_to(:receiver)

@ts.give_point_to(:server)

assert_score("1515")

end

end

end

$ ruby ts_spec.rb

produces:

Loaded suite ts_shoulda

Started

....

Finished in 0.000689 seconds.

4 tests, 4 assertions, 0 failures, 0 errors, 0 skips

Behind the scenes, Shoulda is creating Test::Unit test methods for each should block in your

tests. This is why we can use regular test::Unit assertions in Shoulda code. But Shoulda also

works hard to maintain the right context for our tests. For example, I can nest contexts and

their setup blocks, allowing me to have some initialization that’s common to all tests and

some that’s common to just a subset. We can apply this to our tennis example. We’ll write

nested contexts and put setup blocks at each level. When Shoulda executes our tests, it runs

all the appropriate setup blocks for the should blocks.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/unittesting_31.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=215

RSPEC AND SHOULDA 216

Download samples/unittesting_33.rb

require 'rubygems'

require 'test/unit'

require 'shoulda'

require 'tennis_scorer.rb'

class TennisScorerTest < Test::Unit::TestCase

def assert_score(target)

assert_equal(target, @ts.score)

end

context "Tennis scores" do

setup do

@ts = TennisScorer.new

end

should "start with a score of 00" do

assert_score("00")

end

context "where the server wins a point" do

setup do

@ts.give_point_to(:server)

end

should "be 150" do

assert_score("150")

end

context "and the oponent wins a point" do

setup do

@ts.give_point_to(:receiver)

end

should "be 1515" do

assert_score("1515")

end

end

end

should "be 015 if the receiver wins a point" do

@ts.give_point_to(:receiver)

assert_score("015")

end

end

end

Let’s run it:

$ ruby ts_spec.rb

produces:

Loaded suite ts_shoulda_1

Started

....

Finished in 0.000806 seconds.

4 tests, 4 assertions, 0 failures, 0 errors, 0 skips

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/unittesting_33.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=216

RSPEC AND SHOULDA 217

Would I use these nested contexts for this tennis scoring example? I probably wouldn’t as it

stands, because the linear form is easier to read. But I use them all the time when I have tests

where I want to run through a complex and building scenario. This nesting lets me set up an

environment, run some tests, then change the environment, run more tests, change it again,

run even more tests, and so on. It ends up making tests far more compact and removes a lot

of duplication.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=217

RSPEC AND SHOULDA 218

Figure 13.1. Testing Framework Assertions

assert | refute(boolean, [message])

Fails if boolean is (is not) false or nil.

assert_block { block }

Expects the block to return true.

assert_ | refute_empty(collection, [message])

Expects empty? on collection to return true (false).

assert_ | refute_equal(expected, actual, [message])

Expects actual to equal/not equal expected, using ==.

assert_ | refute_in_delta(expected_float, actual_float, delta, [message])

Expects that the actual floating-point value is (is not) within delta of the expected value.

assert_ | refute_in_epsilon(expected_float, actual_float, epsilon=0.001, [message])

Calculates a delta value as epsilon * min(expected, actual), then calls the _in_delta test.

assert_ | refute_includes(collection, obj, [message])

Expects include?(obj) on collection to return true (false).

assert_ | refute_instance_of(klass, obj, [message])

Expects obj to be (not to be) a instance of klass.

assert_ | refute_kind_of(klass, obj, [message])

Expects obj to be (not to be) a kind of klass.

assert_ | refute_match(regexp, string, [message])

Expects string to (not) match regexp.

assert_ | refute_nil(obj, [message])

Expects obj to be (not) nil.

assert_ | refute_operator(obj1, operator, obj2, [message])

Expects the result of sending the message operator to obj1 with parameter obj2 to be (not to be) true.

assert_raises(Exception, . . .) { block }

Expects the block to raise one of the listed exceptions.

assert_ | refute_respond_to(obj, message, [message])

Expects obj to respond to (not respond to) message (a symbol).

assert_ | refute_same(expected, actual, [message])

Expects expected.equal?(actual).

assert_send(send_array, [message])
Sends the message in send_array[1] to the receiver in send_array[0], passing the rest of send_array

as arguments. Expects the return value to be true.

assert_throws(expected_symbol, [message]) { block }

Expects the block to throw the given symbol.

flunk(message="Epic Fail!")

Always fails.

skip(message)

Indicates that a test is deliberately not run.

pass

Always passes.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=218

Figure 13.2. Additional Test::Unit Assertions

assert_not_equal(expected, actual, [message])

Expects actual not to equal expected, using ==. Like refute_equal.

assert_not_match(regexp, string, [message])

Expects string not to match regexp. Like refute_match.

assert_not_nil(obj, [message])

Expects obj not to be nil. Like refute_nil.

assert_not_same(expected, actual, [message])

Expects !expected.equal?(actual). Like refute_same.

assert_nothing_raised(Exception, . . .) { block }

Expects the block not to raise one of the listed exceptions.

assert_nothing_thrown(expected_symbol, [message]) { block }

Expects the block not to throw the given symbol.

assert_raise(Exception, . . .) { block }

Synonym for assert_raises.

