
Chapter 14

When Trouble Strikes

It’s sad to say, but it is possible to write buggy programs using Ruby. Sorry about that.

But not to worry! Ruby has several features that will help debug your programs. We’ll look

at these features, and then we’ll show some common mistakes you can make in Ruby and

how to fix them.

Ruby Debugger
Ruby comes with a debugger, which is conveniently built into the base system. You can

run the debugger by invoking the interpreter with the -r debug option, along with any other

Ruby options and the name of your script:

ruby r debug [debug-options] [programfile] [program-arguments]

The debugger supports the usual range of features you’d expect, including the ability to

set breakpoints, to step into and step over method calls, and to display stack frames and

variables. It can also list the instance methods defined for a particular object or class, and it

allows you to list and control separate threads within Ruby. Table 14.1 on page 231 lists all

the commands that are available under the debugger.

If your Ruby installation has readline support enabled, you can use cursor keys to move back

and forth in command history and use line-editing commands to amend previous input.

To give you an idea of what the Ruby debugger is like, here is a sample session (with user

input in bold type):

% ruby -r debug t.rb
Debug.rb

Emacs support available.

t.rb:1:def fact(n)

(rdb:1) list 1-9
[1, 9] in t.rb

=> 1 def fact(n)

2 if n <= 0

3 1

4 else

5 n * fact(n1)

Report erratum220

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=220

INTERACTIVE RUBY 221

6 end

7 end

8

9 p fact(5)

(rdb:1) b 2
Set breakpoint 1 at t.rb:2

(rdb:1) c
breakpoint 1, fact at t.rb:2

t.rb:2: if n <= 0

(rdb:1) disp n
1: n = 5

(rdb:1) del 1
(rdb:1) watch n==1
Set watchpoint 2

(rdb:1) c
watchpoint 2, fact at t.rb:fact

t.rb:1:def fact(n)

1: n = 1

(rdb:1) where
> #1 t.rb:1:in `fact'

#2 t.rb:5:in `fact'

#3 t.rb:5:in `fact'

#4 t.rb:5:in `fact'

#5 t.rb:5:in `fact'

#6 t.rb:9

(rdb:1) del 2
(rdb:1) c
120

Interactive Ruby
If you want to play with Ruby, we recommend Interactive Ruby—irb, for short. irb is essen-

tially a Ruby “shell” similar in concept to an operating system shell (complete with job

control). It provides an environment where you can “play around” with the language in real

time. You launch irb at the command prompt:

irb [irb-options] [ruby_script] [program-arguments]

irb will display the value of each expression as you complete it. For instance:

% irb

irb(main):001:0> a = 1 +
irb(main):002:0* 2 * 3 /
irb(main):003:0* 4 % 5
=> 2

irb(main):004:0> 2+2
=> 4

irb(main):005:0> def test
irb(main):006:1> puts "Hello, world!"
irb(main):007:1> end
=> nil

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=221

EDITOR SUPPORT 222

irb(main):008:0> test
Hello, world!

=> nil

irb(main):009:0>

irb also allows you to create subsessions, each one of which may have its own context.

For example, you can create a subsession with the same (top-level) context as the original

session or create a subsession in the context of a particular class or instance. The sample

session shown in Figure 14.1 on the following page is a bit longer but shows how you can

create subsessions and switch between them.

For a full description of all the commands that irb supports, see the reference beginning on

page 278.

As with the debugger, if your version of Ruby was built with GNU readline support, you

can use Emacs- or vi-style key bindings to edit individual lines or to go back and reexecute

or edit a previous line—just like a command shell.

irb is a great learning tool. It’s very handy if you want to try an idea quickly and see whether

it works.

Editor Support
The Ruby interpreter is designed to read a program in one pass; this means you can pipe an

entire program to the interpreter’s standard input, and it will work just fine.

We can take advantage of this feature to run Ruby code from inside an editor. In Emacs, for

instance, you can select a region of Ruby text and use the command Meta-| to execute Ruby.

The Ruby interpreter will use the selected region as standard input, and output will go to a

buffer named *Shell Command Output*. This feature has come in quite handy for us while

writing this book—just select a few lines of Ruby in the middle of a paragraph, and try it!

You can do something similar in the vi editor using :%!ruby, which replaces the program text

with its output, or :w !ruby, which displays the output without affecting the buffer. Other

editors have similar features.1

Some Ruby developers look for IDE support. Several decent alternatives came to the fore

during 2007 and 2008. Arachno Ruby, NetBeans, Ruby in Steel, Idea, and so on, all have

their devotees. It’s a rapidly changing field, so I’d recommend a quick web search rather

than rely on my advice here.

While we are on the subject, this would probably be a good place to mention that a Ruby

mode for Emacs is included in the Ruby source distribution as ruby-mode.el in the misc/

subdirectory. Many other editors now include support for Ruby; check your documentation

for details.

1. If you use a Mac, take a look at Textmate (http://macromates.com). It isn’t free, but it is a great Ruby

environment.

Report erratum

http://macromates.com
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=222

EDITOR SUPPORT 223

Figure 14.1. Sample irb Session

In this same irb session,

we’ll create a new

subsession in the context of

class VolumeKnob.

We can use fg 0 to switch

back to the main session,

take a look at all current

jobs, and see what instance

methods VolumeKnob

defines.

Make a new VolumeKnob

object, and create a new

subsession with that object

as the context.

% irb
irb(main):001:0> irb
irb#1(main):001:0> jobs
#0>irb on main (#<Thread:0x401bd654>: stop)

#1>irb#1 on main (#<Thread:0x401d5a28>: running)

irb#1(main):002:0> fg 0
#<IRB::Irb:@scanner=#<RubyLex:0x401ca7>,@signal_status=:IN_EVAL,

@context=#<IRB::Context:0x401ca86c>>

irb(main):002:0> class VolumeKnob
irb(main):003:1> end
=> nil

irb(main):004:0> irb VolumeKnob
irb#2(VolumeKnob):001:0> def initialize
irb#2(VolumeKnob):002:1> @vol=50
irb#2(VolumeKnob):003:1> end
=> nil

irb#2(VolumeKnob):004:0> def up
irb#2(VolumeKnob):005:1> @vol += 10
irb#2(VolumeKnob):006:1> end
=> nil

irb#2(VolumeKnob):007:0> fg 0
#<IRB::Irb:@scanner=#<RubyLex:0x401ca7>,@signal_status=:IN_EVAL,

@context=#<IRB::Context:0x401ca86c>>

irb(main):005:0> jobs
#0>irb on main (#<Thread:0x401bd654>: running)

#1>irb#1 on main (#<Thread:0x401d5a28>: stop)

#2>irb#2 on VolumeKnob (#<Thread:0x401c400c>: stop)

irb(main):006:0> VolumeKnob.instance_methods
=> ["up"]

irb(main):007:0> v = VolumeKnob.new
#<VolumeKnob: @vol=50>

irb(main):008:0> irb v
irb#3(#<VolumeKnob:0x401e7d40>):001:0> up
=> 60

irb#3(#<VolumeKnob:0x401e7d40>):002:0> up
=> 70

irb#3(#<VolumeKnob:0x401e7d40>):003:0> up
=> 80

irb#3(VolumeKnob):004:0> fg 0
#<IRB::Irb:@scanner=#<RubyLex:0x401ca7>,@signal_status=:IN_EVAL,

@context=#<IRB::Context:0x401ca86c>>

irb(main):009:0> kill 1,2,3
=> [1, 2, 3]

irb(main):010:0> jobs
#0>irb on main (#<Thread:0x401bd654>: running)

irb(main):011:0> exit

Switch back to the main

session, kill the

subsessions, and exit.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=223

BUT IT DOESN’T WORK! 224

But It Doesn’t Work!
So, you’ve read through enough of the book, you start to write your very own Ruby program,

and it doesn’t work. Here’s a list of common gotchas and other tips:

• First and foremost, run your scripts with warnings enabled (the -w command-line

option).

• If you happen to forget a comma (,) in an argument list—especially to print—you can

produce some very odd error messages.

• A parse error at the last line of the source often indicates a missing end keyword,

sometimes quite a bit earlier.

• This ugly message:

syntax error, unexpected $end, expecting keyword_end

means that you have an end missing somewhere in your code. (The $end in the message

means end-of-file, so the message simply means that Ruby hit the end of your code

before finding all the end keywords it was expecting.) Try running with -w, which will

warn when it finds ends that aren’t aligned with their opening if/while/class....

• An attribute setter is not being called. Within a class definition, Ruby will parse setter=

as an assignment to a local variable, not as a method call. Use the form self.setter= to

indicate the method call:

class Incorrect

attr_accessor :one, :two

def initialize

one = 1 # incorrect sets local variable

self.two = 2

end

end

obj = Incorrect.new

obj.one # => nil

obj.two # => 2

• Objects that don’t appear to be properly set up may have been victims of an incorrectly

spelled initialize method:

class Incorrect

attr_reader :answer

def initialise # < spelling error

@answer = 42

end

end

ultimate = Incorrect.new

ultimate.answer # => nil

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=224

BUT IT DOESN’T WORK! 225

The same kind of thing can happen if you misspell the instance variable name:

class Incorrect

attr_reader :answer

def initialize

@anwser = 42 #< spelling error

end

end

ultimate = Incorrect.new

ultimate.answer # => nil

• As of Ruby 1.91.9 , block parameters are no longer in the same scope as local variables.

This may cause compatibility problems with older code. Run with the -w flag to spot

these issues:

entry = "wibble"

[1, 2, 3].each do |entry|

do something with entry

end

puts "Last entry = #{entry}"

produces:

/tmp/prog.rb:2: warning: shadowing outer local variable entry

Last entry = wibble

• Watch out for precedence issues, especially when using {} instead of do/end:

def one(arg)

if block_given?

"block given to 'one' returns #{yield}"

else

arg

end

end

def two

if block_given?

"block given to 'two' returns #{yield}"

end

end

result1 = one two {

"three"

}

result2 = one two do

"three"

end

puts "With braces, result = #{result1}"

puts "With do/end, result = #{result2}"

produces:

With braces, result = block given to 'two' returns three

With do/end, result = block given to 'one' returns three

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=225

BUT IT DOESN’T WORK! 226

• Output written to a terminal may be buffered. This means you may not see a mes-

sage you write immediately. In addition, if you write messages to both STDOUT and

STDERR, the output may not appear in the order you were expecting. Always use

nonbuffered I/O (set sync=true) for debug messages.

• If numbers don’t come out right, perhaps they’re strings. Text read from a file will

be a String and will not be automatically converted to a number by Ruby. A call to

Integer will work wonders (and will throw an exception if the input isn’t a well-formed

integer). The following is a common mistake Perl programmers make:

while line = gets

num1, num2 = line.split(/,/)

...

end

You can rewrite this as follows:

while line = gets

num1, num2 = line.split(/,/)

num1 = Integer(num1)

num2 = Integer(num2)

...

end

Or, you could convert all the strings using map:

while line = gets

num1, num2 = line.split(/,/).map {|val| Integer(val) }

...

end

• Unintended aliasing—if you are using an object as the key of a hash, make sure it

doesn’t change its hash value (or arrange to call Hash#rehash if it does):

Download samples/trouble_10.rb

arr = [1, 2]

hash = { arr => "value" }

hash[arr] # => "value"

arr[0] = 99

hash[arr] # => nil

hash.rehash # => {[99, 2]=>"value"}

hash[arr] # => "value"

• Make sure the class of the object you are using is what you think it is. If in doubt, use

puts my_obj.class.

• Make sure your method names start with a lowercase letter and class and constant

names start with an uppercase letter.

• If method calls aren’t doing what you’d expect, make sure you’ve put parentheses

around the arguments.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/trouble_10.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=226

BUT IT’S TOO SLOW! 227

• Make sure the open parenthesis of a method’s parameter list butts up against the end

of the method name with no intervening spaces.

• Use irb and the debugger.

• Use Object#freeze. If you suspect that some unknown portion of code is setting a vari-

able to a bogus value, try freezing the variable. The culprit will then be caught during

the attempt to modify the variable.

One major technique makes writing Ruby code both easier and more fun. Develop your

applications incrementally. Write a few lines of code, and then write tests (perhaps using

Test::Unit). Write a few more lines of code, and then exercise them. One of the major

benefits of a dynamically typed language is that things don’t have to be complete before

you use them.

But It’s Too Slow!
Ruby is an interpreted, high-level language, and as such it may not perform as fast as a

lower-level language such as C. In the following sections, we’ll list some basic things you

can do to improve performance; also take a look in the index under Performance for other

pointers.

Typically, slow-running programs have one or two performance graveyards, places where

execution time goes to die. Find and improve them, and suddenly your whole program

springs back to life. The trick is finding them. The Benchmark module and the Ruby profil-

ers can help.

Benchmark

You can use the Benchmark module, also described on page 731, to time sections of code.

For example, we may wonder what the overhead of method invocation is. How to use Bench-

mark to find out is shown in Figure 14.2 on the next page.

You have to be careful when benchmarking, because oftentimes Ruby programs can run

slowly because of the overhead of garbage collection. Because this garbage collection can

happen any time during your program’s execution, you may find that benchmarking gives

misleading results, showing a section of code running slowly when in fact the slowdown

was caused because garbage collection happened to trigger while that code was executing.

The Benchmark module has the bmbm method that runs the tests twice, once as a rehearsal

and once to measure performance, in an attempt to minimize the distortion introduced by

garbage collection. The benchmarking process itself is relatively well mannered—it doesn’t

slow down your program much.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=227

BUT IT’S TOO SLOW! 228

Figure 14.2. Determining Method Calling Costs Using Benchmark

Download samples/trouble_11.rb

require 'benchmark'

include Benchmark

LOOP_COUNT = 1_000_000

bmbm(12) do |test|

test.report("inline:") do

LOOP_COUNT.times do |x|

nothing

end

end

test.report("method:") do

def method

nothing

end

LOOP_COUNT.times do |x|

method

end

end

end
produces:

Rehearsal

inline: 0.080000 0.000000 0.080000 (0.083641)

method: 0.140000 0.000000 0.140000 (0.137155)

 total: 0.220000sec

user system total real

inline: 0.080000 0.000000 0.080000 (0.083544)

method: 0.140000 0.000000 0.140000 (0.136044)

The Profiler

Ruby comes with a code profiler (documentation begins on page 792). The profiler shows

you the number of times each method in the program is called and the average and cumula-

tive time that Ruby spends in those methods.

You can add profiling to your code using the command-line option -r profile or from within

the code using require 'profile'.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/trouble_11.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=228

BUT IT’S TOO SLOW! 229

For example:

Download samples/trouble_12.rb

require 'profile'

count = 0

words = File.open("/usr/share/dict/words")

while word = words.gets

word = word.chomp!

if word.length == 12

count += 1

end

end

puts "#{count} twelvecharacter words"

The first time we ran this (without profiling) against a dictionary of almost 235,000 words,

it took a noticeable time to complete. Wondering if we could improve on this, we added the

-r profile command-line option and tried again. Eventually we saw output that looked like

the following:

20460 twelvecharacter words

% cumulative self self total

time seconds seconds calls ms/call ms/call name

0.00 0.00 0.00 1 0.00 0.00 File#initialize

0.00 0.00 0.00 1 0.00 0.00 IO#open

0.00 0.00 0.00 2 0.00 0.00 IO#write

0.00 0.00 0.00 1 0.00 0.00 Fixnum#to_s

0.00 0.00 0.00 1 0.00 0.00 Kernel.puts

16.05 1.25 1.25 234936 0.01 0.01 String#chomp!

20.67 2.86 1.61 234937 0.01 0.01 IO#gets

0.00 7.79 0.00 1 0.00 7790.00 #toplevell

The first thing to notice is that the timings shown are a lot slower than when the program runs

without the profiler. Profiling has a serious overhead, but the assumption is that it applies

across the board, and therefore the relative numbers are still meaningful. This particular

program clearly spends a lot of time in the loop, which executes almost 235,000 times.

Each time, it invokes both gets and chomp!. We could probably improve performance if we

could either make the stuff in the loop less expensive or eliminate the loop altogether. One

way of doing the latter is to read the word list into one long string and then use a pattern to

match and extract all twelve character words:

Download samples/trouble_13.rb

words = File.read("/usr/share/dict/words")

count = words.scan(/^............\n/).size

puts "#{count} twelvecharacter words"

Our profile numbers are now a lot better (and the program runs more than five times faster

when we take the profiling back out):

% cumulative self self total

time seconds seconds calls ms/call ms/call name

95.45 0.21 0.21 1 210.00 210.00 String#scan

4.55 0.22 0.01 1 10.00 10.00 IO#read

0.00 0.22 0.00 1 0.00 0.00 Fixnum#to_s

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/trouble_12.rb
http://media.pragprog.com/titles/ruby3/code/samples/trouble_13.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=229

BUT IT’S TOO SLOW! 230

0.00 0.22 0.00 1 0.00 0.00 Array#size

0.00 0.22 0.00 2 0.00 0.00 IO#write

0.00 0.22 0.00 1 0.00 0.00 IO#puts

0.00 0.22 0.00 1 0.00 0.00 Kernel.puts

0.00 0.22 0.00 1 0.00 220.00 #toplevel

20460 twelvecharacter words

Remember to check the code without the profiler afterward, though—sometimes the slow-

down the profiler introduces can mask other problems.

Ruby is a wonderfully transparent and expressive language, but it does not relieve the pro-

grammer of the need to apply common sense: creating unnecessary objects, performing

unneeded work, and creating bloated code will slow down your programs regardless of the

language.

Code Execution Coverage

Ruby 1.9.1 comes with experimental support for code coverage analysis—it will track

which lines of code were executed in your code. However, the support is currently labeled

as experimental and is by default disabled in the VM. By the time you read this, it may have

settled down. Try doing this:

$ ri coverage

Of course, there’s a good chance it may never make it to production. In that case, feel free

to cut out this section of your book and use the words in your next writing project.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=230

BUT IT’S TOO SLOW! 231

Table 14.1. Debugger Commands

b [reak] [file|class:]line Sets breakpoint at given line in file (default current file) or class.

b [reak] [file|class:]name Sets breakpoint at method in file or class.

b [reak] Displays breakpoints and watchpoints.

wat [ch] expr Breaks when expression becomes true.

del [ete] [nnn] Deletes breakpoint nnn (default all).

cat [ch] exception Stops when exception is raised.

cat [ch] Lists current catches.

tr [ace] (on|off) [all] Toggles execution trace of current or all threads.

disp [lay] expr Displays value of nnn every time debugger gets control.

disp [lay] Shows current displays.

undisp [lay] [nnn] Removes display (default all).

c [ont] Continues execution.

s [tep] nnn=1 Executes next nnn lines, stepping into methods.

n [ext] nnn=1 Executes next nnn lines, stepping over methods.

fin [ish] Finishes execution of the current function.

q [uit] Exits the debugger.

w [here] Displays current stack frame.

f [rame] Synonym for where.

l [ist] [start–end] Lists source lines from start to end.

up nnn=1 Moves up nnn levels in the stack frame.

down nnn=1 Moves down nnn levels in the stack frame.

v [ar] g [lobal] Displays global variables.

v [ar] l [ocal] Displays local variables.

v [ar] i [stance] obj Displays instance variables of obj.

v [ar] c [onst] Name Displays constants in class or module name.

m [ethod] i [nstance] obj Displays instance methods of obj.

m [ethod] Name Displays instance methods of the class or module name.

th [read] l [ist] Lists all threads.

th [read] [c[ur[rent]]] Displays status of current thread.

th [read] [c[ur[rent]]] nnn Makes thread nnn current and stops it.

th [read] stop nnn Makes thread nnn current and stops it.

th [read] resume nnn Resumes thread nnn.

th [read] [sw[itch]] nnn Switches thread context to nnn.

[p] expr Evaluates expr in the current context. expr may include assignment to

variables and method invocations.

h[elp] Shows summary of commands.

empty A null command repeats the last command.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=231

