
Chapter 15

Ruby and Its World

It’s an unfortunate fact of life that our applications have to deal with the big, bad world.

In this chapter, we’ll look at how Ruby interacts with its environment. Microsoft Win-

dows users will probably also want to look at platform-specific information beginning on

page 316.

Command-Line Arguments
“In the beginning was the command line.”1 Regardless of the system in which Ruby is

deployed, whether it be a super high-end scientific graphics workstation or an embedded

PDA device, you have to start the Ruby interpreter somehow, and that gives us the opportu-

nity to pass in command-line arguments.

A Ruby command line consists of three parts: options to the Ruby interpreter, optionally

the name of a program to run, and optionally a set of arguments for that program:

ruby [options] [] [programfile] [arguments]

The Ruby options are terminated by the first word on the command line that doesn’t start

with a hyphen or by the special flag -- (two hyphens).

If no filename is present on the command line or if the filename is a single hyphen (-), Ruby

reads the program source from standard input.

Arguments for the program itself follow the program name. For example, the following:

% ruby w "Hello World"

will enable warnings, read a program from standard input, and pass it the string "Hello World"

as an argument.

1. This is the title of a marvelous essay by Neal Stephenson (available online at

http://www.spack.org/index.cgi/InTheBeginningWasTheCommandLine).

Report erratum233

http://www.spack.org/index.cgi/InTheBeginningWasTheCommandLine
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=233

COMMAND-LINE ARGUMENTS 234

Command-Line Options

-0[octal]

The 0 flag (the digit zero) specifies the record separator character (\0, if no digit fol-

lows). -00 indicates paragraph mode: records are separated by two successive default

record separator characters. -0777 reads the entire file at once (as it is an illegal char-

acter). Sets $/.

-a Autosplit mode when used with -n or -p; equivalent to executing $F = $_.split at the top

of each loop iteration.

-C directory

Changes working directory to directory before executing.

-c Checks syntax only; does not execute the program.

--copyright

Prints the copyright notice and exits.

-d, --debug

Sets $DEBUG and $VERBOSE to true. This can be used by your programs to enable

additional tracing.

--disable-gems

Stops1.9 Ruby automatically loading RubyGems from require.

-E encoding, --encoding encoding, --encoding=encoding

Specifies1.9 the default character encoding for data read from and written to the outside

world. This can be used to set both the external encoding (the encoding to be assumed

for file contents) and optionally the default internal encoding (the file contents are

transcoded to this when read and transcoded from this when written). The format of

the encoding parameter is -E external, -E external:internal, or -E :internal. See 17 on

page 264 for details. See also -U.

-e 'command '

Executes command as one line of Ruby source. Several -e’s are allowed, and the com-

mands are treated as multiple lines in the same program. If programfile is omitted when

-e is present, execution stops after the -e commands have been run. Programs run using

-e have access to the old behavior of ranges and regular expressions in conditions—

ranges of integers compare against the current input line number, and regular expres-

sions match against $_.

-F pattern

Specifies the input field separator ($;) used as the default for split() (affects the -a

option).

-h, --help

Displays a short help screen.

-I directories

Specifies directories to be prepended to $LOAD_PATH ($:). Multiple -I options may be

present. Multiple directories may appear following each -I, separated by a colon (:) on

Unix-like systems and by a semicolon (;) on DOS/Windows systems.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=234

COMMAND-LINE ARGUMENTS 235

-i [extension]

Edits ARGV files in place. For each file named in ARGV, anything you write to standard

output will be saved back as the contents of that file. A backup copy of the file will be

made if extension is supplied.

% ruby pi.bak e "gsub(/Perl/, 'Ruby')" *.txt

-l Enables automatic line-ending processing; sets $\ to the value of $/ and chops every

input line automatically.

-n Assumes a while gets; . . . ; end loop around your program. For example, a simple grep

command could be implemented as follows:

% ruby n e "print if /wombat/" *.txt

-p Places your program code within the loop while gets; . . . ; print; end.

% ruby p e "$_.downcase!" *.txt

-r library

requires the named library or gem1.9 before executing.

-S Looks for the program file using the RUBYPATH or PATH environment variable.

-s Any command-line switches found after the program filename, but before any filename

arguments or before a --, are removed from ARGV and set to a global variable named

for the switch. In the following example, the effect of this would be to set the variable

$opt to "electric":

% ruby s prog opt=electric ./mydata

-T[level]

Sets the safe level, which among other things enables tainting and untrusted1.9 checks

(see page 436). Sets $SAFE.

-U Sets the default internal encoding to UTF-8. See 17 on page 264 for details. See also

-E.

-v, --verbose

Sets $VERBOSE to true, which enables verbose mode. Also prints the version number.

In verbose mode, compilation warnings are printed. If no program filename appears on

the command line, Ruby exits.

--version

Displays the Ruby version number and exits.

-w Enables verbose mode. Unlike -v, reads program from standard input if no program

files are present on the command line. We recommend running your Ruby programs

with -w.

-W level

Sets the level of warnings issued. With a level or two (or with no level specified), equiv-

alent to -w—additional warnings are given. If level is 1, runs at the standard (default)

warning level. With -W0, absolutely no warnings are given (including those issued

using Kernel.warn).

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=235

PROGRAM TERMINATION 236

-X directory

Changes working directory to directory before executing. This is the same as -C direc-

tory.

-x [directory]

Strips off text before #!ruby line and changes working directory to directory if given.

-y, --yydebug

Enables yacc debugging in the parser (waaay too much information).

ARGV

Any command-line arguments after the program filename are available to your Ruby pro-

gram in the global array ARGV. For instance, assume test.rb contains the following pro-

gram:

ARGV.each {|arg| p arg }

Invoke it with the following command line:

% ruby w test.rb "Hello World" a1 1.6180

It’ll generate the following output:

"Hello World"

"a1"

"1.6180"

There’s a gotcha here for all you C programmers—ARGV[0] is the first argument to the

program, not the program name. The name of the current program is available in the global

variable $0, which is aliased to $PROGRAM_NAME.1.9 Notice that all the values in ARGV are

strings.

If your program reads from standard input (or uses the special object ARGF, described on

page 342), the program arguments in ARGV will be taken to be filenames, and Ruby will

read from these files. If your program takes a mixture of arguments and filenames, make

sure you empty the nonfilename arguments from the ARGV array before reading from the

files.

Program Termination
The method Kernel#exit terminates your program, returning a status value to the operating

system. However, unlike some languages, exit doesn’t terminate the program immediately.

Kernel#exit first raises a SystemExit exception, which you may catch, and then performs

a number of cleanup actions, including running any registered at_exit methods and object

finalizers. See the reference for Kernel#exit beginning on page 569 for details.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=236

ENVIRONMENT VARIABLES 237

Environment Variables
You can access operating system environment variables using the predefined variable ENV.

It responds to the same methods as Hash.2

ENV['SHELL'] # => "/bin/bash"

ENV['HOME'] # => "/Users/dave"

ENV['USER'] # => "dave"

ENV.keys.size # => 38

ENV.keys[0, 4] # => ["MANPATH", "TERM_PROGRAM", "SHELL", "TERM"]

The values of some environment variables are read by Ruby when it first starts. These vari-

ables modify the behavior of the interpreter, as shown in Table 15.1 on the following page.

Writing to Environment Variables

A Ruby program may write to the ENV object. On most systems, this changes the values of

the corresponding environment variables. However, this change is local to the process that

makes it and to any subsequently spawned child processes. This inheritance of environment

variables is illustrated in the code that follows. A subprocess changes an environment vari-

able, and this change is inherited by a process that it then starts. However, the change is not

visible to the original parent. (This just goes to prove that parents never really know what

their children are doing.)

As of Ruby 1.91.9 , setting an environment variable’s value to nil removes the variable from the

environment:

Download samples/rubyworld_3.rb

puts "In parent, term = #{ENV['TERM']}"

fork do

puts "Start of child 1, term = #{ENV['TERM']}"

ENV['TERM'] = "ansi"

fork do

puts "Start of child 2, term = #{ENV['TERM']}"

end

Process.wait

puts "End of child 1, term = #{ENV['TERM']}"

end

Process.wait

puts "Back in parent, term = #{ENV['TERM']}"

produces:

In parent, term = xtermcolor

Start of child 1, term = xtermcolor

Start of child 2, term = ansi

End of child 1, term = ansi

Back in parent, term = xtermcolor

2. ENV is not actually a hash, but if you need to, you can convert it into a Hash using ENV#to_hash.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/rubyworld_3.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=237

WHERE RUBY FINDS ITS LIBRARIES 238

Table 15.1. Environment Variables Used by Ruby

Variable Name Description

DLN_LIBRARY_PATH Specifies the search path for dynamically loaded modules.

HOME Points to user’s home directory. This is used when expanding ~ in

file and directory names.

LOGDIR Specifies the fallback pointer to the user’s home directory if

$HOME is not set. This is used only by Dir.chdir.

OPENSSL_CONF Specifies the location of OpenSSL configuration file.

RUBYLIB Specifies an additional search path for Ruby programs ($SAFE

must be 0).

RUBYLIB_PREFIX (Windows only) Mangles the RUBYLIB search path by adding this

prefix to each component.

RUBYOPT Specifies additional command-line options to Ruby; examined

after real command-line options are parsed ($SAFE must be 0).

RUBYPATH With -S option, specifies the search path for Ruby programs

(defaults to PATH).

RUBYSHELL Specifies shell to use when spawning a process under Windows; if

not set, will also check SHELL or COMSPEC.

RUBY_TCL_DLL Overrides default name for TCL shared library or DLL.

RUBY_TK_DLL Overrides default name for Tk shared library or DLL. Both this

and RUBY_TCL_DLL must be set for either to be used.

Where Ruby Finds Its Libraries1.9

You use require or load to bring a library into your Ruby program. Some of these libraries

are supplied with Ruby, some you may have installed from the Ruby Application Archive,

some may have been packaged as RubyGems (of which more later), and some you may

have written yourself. How does Ruby find them?

Let’s start with the basics. When Ruby is built for your particular machine, it predefines a

set of standard directories to hold library stuff. Where these are depends on the machine in

question. You can determine this from the command line with something like this:

% ruby e 'puts $:'

On my OS X box, this produces the following list (note that I have my Ruby installed in a

nonstandard place while I’m writing this book):

/usr/local/rubybook/lib/ruby/gems/1.9.0/gems/BlueCloth1.0.0/lib

/usr/local/rubybook/lib/ruby/gems/1.9.0/gems/BlueCloth1.0.0/bin

/usr/local/rubybook/lib/ruby/site_ruby/1.9

/usr/local/rubybook/lib/ruby/site_ruby/1.9.0/i686darwin8.11.1

/usr/local/rubybook/lib/ruby/site_ruby

/usr/local/rubybook/lib/ruby/vendor_ruby/1.9

/usr/local/rubybook/lib/ruby/vendor_ruby/1.9.0/i686darwin8.11.1

/usr/local/rubybook/lib/ruby/vendor_ruby /usr/local/rubybook/lib/ruby/1.9

/usr/local/rubybook/lib/ruby/1.9.0/i686darwin8.11.1

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=238

RUBYGEMS INTEGRATION 239

Let’s skip the gems directory for now.

The site_ruby directories are intended to hold modules and extensions that you’ve added.

The architecture-dependent directories (i686-darwin8.11.1 in this case) hold executables

and other things specific to this particular machine. All these directories are automatically

included in Ruby’s search for libraries.

Sometimes this isn’t enough. Perhaps you’re working on a large project written in Ruby and

you and your colleagues have built a substantial library of Ruby code. You want everyone

on the team to have access to all this code. You have a couple of options to accomplish this.

If your program runs at a safe level of zero (see Chapter 26 beginning on page 436), you can

set the environment variable RUBYLIB to a list of one or more directories to be searched.3

If your program is not setuid, you can use the command-line parameter -I to do the same

thing.

The Ruby variable $: is an array of places to search for loaded files. As we’ve seen, this

variable is initialized to the list of standard directories, plus any additional ones you spec-

ified using RUBYLIB and -I. You can always add directories to this array from within your

running program.

RubyGems Integration1.9

This section is based on the start of the chapter on RubyGems written by Chad Fowler for the second

edition of this book.

RubyGems is a standardized packaging and installation framework for Ruby libraries and

applications. RubyGems makes it easy to locate, install, upgrade, and uninstall Ruby pack-

ages.

Before RubyGems came along, installing a new library involved searching the Web, down-

loading a package, and attempting to install it—only to find that its dependencies haven’t

been met. If the library you want is packaged using RubyGems, however, you can now

simply ask RubyGems to install it (and all its dependencies). Everything is done for you.

In the RubyGems world, developers bundle their applications and libraries into single files

called gems. These files conform to a standardized format and typically are stored in repos-

itories on the ’net (but you can also create your own repositories if you want).

The RubyGems system provides a command-line tool, appropriately named gem, for manip-

ulating these gem files. It also provides integration into Ruby so that your programs can

access gems as libraries.

Prior to Ruby 1.9, it was your responsibility to install the RubyGems software on your

computer. Now, however, Ruby comes with RubyGems baked right in.

3. The separator between entries depends on your platform. For Windows, it’s a semicolon; for Unix, it’s a colon.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=239

RUBYGEMS INTEGRATION 240

Installing Gems on Your Machine

Your latest project calls for a lot of XML generation. You could just hard-code it, but

you’ve heard great things about Jim Weirich’s Builder library, which lets you construct

XML directly from Ruby code.

Let’s start by seeing whether Builder is available as a gem:

% gem query details remote namematches build

*** REMOTE GEMS ***

AntBuilder (0.4.3)

Author: JRubyextras

Homepage: http://jrubyextras.rubyforge.org/

AntBuilder: Use ant from JRuby. Only usable within JRuby

builder (2.1.2)

Author: Jim Weirich

Homepage: http://onestepback.org

Builders for MarkUp.

...

The --details option displays the description of any gems it finds. The --remote option

searches the remote repository. And the --name-matches option says to search the central

gem repository for any gem whose name matches the regular expression /build/. (We could

have used the short-form options -d, -r, and -n.) The result shows a number of gems have

build in their name; the one we want is just plain Builder.

The number after the name shows the latest version. You can see a list of all available

versions using the --all option. We’ll also use the list command, because it lets us match on

an exact name:

% gem list details remote all builder

*** REMOTE GEMS ***

builder (2.1.2, 2.1.1, 2.0.0, 1.2.4, 1.2.3, 1.2.2, 1.2.1, 1.2.0, 1.1.0,

1.0.0, 0.1.1, 0.1.0)

Author: Jim Weirich

Homepage: http://onestepback.org

Builders for MarkUp.

Because we want to install the most recent one, we don’t have to state an explicit version

on the install command; the latest is downloaded by default:

% gem install builder

Successfully installed builder2.1.2

1 gem installed

Installing ri documentation for builder2.1.2...

ERROR: While generating documentation for builder2.1.2

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=240

RUBYGEMS INTEGRATION 241

... MESSAGE: Unhandled special: Special: type=17, text="<! HI >"

... RDOC args: ri op /usr/local/rubybook/lib/ruby/gems/1.9.0/...

(continuing with the rest of the installation)

Installing RDoc documentation for builder2.1.2...

...

Several things happened here. First, we see that the latest version of the Builder gem (2.1.2)

has been installed. Next we see that RubyGems has determined that Jim has created doc-

umentation for his gem, so it sets about extracting it using RDoc. During the extraction,

RDoc encounters a construct it can’t handle and complains. You’ll see this happen every

now and then. It’s annoying, but you can ignore the message.

If you’re running gem install on a Unix platform, you’ll need to prefix the command with

sudo, because by default the local gems are installed into shared system directories.

During installation, you can add the -t option to the RubyGems install command, causing

RubyGems to run the gem’s test suite (if one has been created). If the tests fail, the installer

will prompt you to either keep or discard the gem. This is a good way to gain a little more

confidence that the gem you’ve just downloaded works on your system the way the author

intended.

Let’s see what gems we now have installed on our local box:

% gem list

*** LOCAL GEMS ***
builder (2.1.2)

Reading the Gem Documentation

Being that this is your first time using Builder, you’re not exactly sure how to use it. Fortu-

nately, RubyGems installed the documentation for Builder on your local machine. We just

have to find it.

As with most things in RubyGems, the documentation for each gem is stored in a cen-

tral, protected, RubyGems-specific place. This will vary by system and by where you may

explicitly choose to install your gems. The most reliable way to find the documents is to ask

the gem command where your RubyGems main directory is located:

% gem environment gemdir

/usr/local/lib/ruby/gems/1.9.0

RubyGems stores generated documentation beneath the doc/ subdirectory of this directory,

in this case /usr/local/lib/ruby/gems/1.9.0/doc. Each gem has its own documentation

directory. Inside this directory, you’ll find the HTML in the subdirectory rdoc/. You can

open index.html and view the documentation (the full path is /usr/local/lib/ruby/

gems/1.9.0/doc/builder2.1.2/rdoc/index.html. The result will look something like

Figure 15.1 on the following page.

If you find yourself using this path often, you can create a shortcut.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=241

RUBYGEMS INTEGRATION 242

Figure 15.1. Installed Documentation for Builder

Here’s one way to do that on Mac OS X boxes:

% gemdoc=`gem environment gemdir`/doc

% ls $gemdoc

builder2.1.2

% open $gemdoc/builder2.1.2/rdoc/index.html

To save time, you could declare $gemdoc in your login shell’s profile or .rc file.

The second (and easier) way to view gems’ RDoc documentation is to use RubyGems’

included gem server utility. To start gem server, simply type this:1.9

% gem server

Starting gem server on http://localhost:8808/

gem server starts a web server running on whatever computer you run it on. By default,

it will start on port 8808 and will serve gems and their documentation from the default

RubyGems installation directory. Both the port and the gem directory are overridable via

command-line options, using the -p and -d options, respectively.

Once you’ve started the gem server program, if you are running it on your local computer,

you can access the documentation for your installed gems by pointing your web browser

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=242

RUBYGEMS INTEGRATION 243

to http://localhost:8808. There, you will see a list of the gems you have installed with

their descriptions and links to their RDoc documentation.

Using a Gem

Once a gem is installed, you use require to load it into your own code, just as you would

any other Ruby library:4

Download samples/rubyworld_5.rb

require 'builder'

xml = Builder::XmlMarkup.new(target: STDOUT, indent: 2)

xml.person(type: "programmer") do

xml.name do

xml.first "Dave"

xml.last "Thomas"

end

xml.location "Texas"

xml.preference("ruby")

end

produces:

<person type="programmer">

<name>

<first>Dave</first>

<last>Thomas</last>

</name>

<location>Texas</location>

<preference>ruby</preference>

</person>

Gems and Versions

Maybe you first started using Builder a few years ago. Back then the interface was a little

bit different—with versions prior to Build 1.0, you could say this:

xml = Builder::XmlMarkup.new(STDOUT, 2)

xml.person do

name("Dave Thomas")

location("Texas")

end

Note that the constructor takes positional parameters. Also, in the do block, we can say just

name(...) (whereas the current Builder requires xml.name(...)).

4. Prior to Ruby 1.9, before you could use a gem in your code, you first had to load a support library called

rubygems. Ruby now integrates that support directly, so this step is no longer needed.

Report erratum

http://localhost:8808
http://media.pragprog.com/titles/ruby3/code/samples/rubyworld_5.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=243

RUBYGEMS INTEGRATION 244

We could go through our old code and update it all to work with the new-style Builder—

that’s probably the best long-term solution. But we can also let RubyGems handle the issue

for us.

When we asked for a listing of the Builder gems in the repository, we saw that multiple

versions were available:

% gem list ra builder

*** REMOTE GEMS ***

builder (2.1.2, 2.1.1, 2.0.0, 1.2.4, 1.2.3, 1.2.2, 1.2.1,

1.2.0, 1.1.0, 1.0.0, 0.1.1, 0.1.0)

When we installed Builder previously, we didn’t specify a version, so RubyGems automat-

ically installed the latest. But we can also get it to install a specific version or a version

meeting some given criteria. Let’s install the most recent release of Builder whose version

number is less than 1:

% gem install builder version '< 1'

Successfully installed builder0.1.1

1 gem installed

Installing ri documentation for builder0.1.1...

Installing RDoc documentation for builder0.1.1...

Have we just overwritten the 2.1.2 release of Builder that we’d previously installed? Let’s

find out by listing our locally installed gems:

% gem list builder

*** LOCAL GEMS ***
builder (2.1.2, 0.1.1)

Now that we have both versions installed locally, how do we tell our legacy code to use

the old one while still having our new code use the latest version? It turns out that require

automatically loads the latest version of a gem, so the code from page 243 will work fine.

If we want to specify a version number when we load a gem, we have to do a little bit more

work, making it explicit that we’re using RubyGems:

gem 'builder', '< 1.0'

require 'builder'

xml = Builder::XmlMarkup.new(STDOUT, 2)

xml.person do

name("Dave Thomas")

location("Texas")

end

The magic is the gem line, which says, “When looking for the builder gem, consider only

those versions less than 1.0.” The subsequent require honors this, so the code loads the

correct version of Builder and runs. The ’< 1.0’ part of the gem line is a version predicate.

Table 15.2 on page 246 shows the various predicates that RubyGems supports. You can

specify multiple version predicates, so the following is valid:

gem 'builder', '> 0.1', '< 0.1.5'

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=244

THE RAKE BUILD TOOL 245

Unfortunately, after all this work, there’s a problem. Older versions of Builder don’t run

under 1.9 anyway. You can still run this code in Ruby 1.8, but you’d have to update your

code to use the new-style Builder if you want to use Ruby 1.9.

Gems Can Be More Than Libraries

As well as installing libraries that can be used inside your application code, RubyGems can

also install utility programs that you can invoke from the command line. Often these util-

ities are wrappers around the libraries included in the gem. For example, Marcel Molina’s

AWS:S3 gem is a library that gives you programmatic access to Amazon’s S3 storage facil-

ity. As well as the library itself, Marcel provided a command-line utility, s3sh, which lets

you interact with your S3 assets. When you install the gem, s3sh is automatically loaded

into the same bin/ directory that holds the Ruby interpreter.

There’s a small problem with these installed utilities. Although gems supports versioning

of libraries, it does not version command-line utilities. With these, it’s “last one in wins.”

The Rake Build Tool
As well as the Builder gem, Jim Weirich wrote an incredibly useful utility program called

Rake. Prior to Ruby 1.91.9 , you had to install Rake as a separate gem, but it is now included in

the base Ruby installation.

Rake was initially implemented as a Ruby version of Make, the common build utility. How-

ever, calling Rake a build utility is to miss its true power. Really, Rake is an automation

tool—it’s a way of putting all those tasks that you perform in a project into one neat and

tidy place.

Let’s start with a trivial example. As you edit files, you often accumulate backup files in

your working directories. On Unix systems, these files often have the same name as the

original files, but with a tilde character appended. On Windows boxes, the files often have a

.bak extension.

We could write a trivial Ruby program that deletes these files. For a Unix box, it might look

something like this:

require 'fileutils'

files = Dir['*~']

FileUtils::rm files, verbose: true

The FileUtils module defines methods for manipulating files and directories (see the descrip-

tion on page 755). Our code uses its rm method. We use the Dir class to return a list of

filenames matching the given pattern and pass that list to rm.

Let’s package this code as a task—a chunk of code that Rake can execute for us.

By default, Rake searches the current directory (and its parents) for a file called Rakefile.

This file contains definitions for the tasks that Rake can run.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=245

THE RAKE BUILD TOOL 246

Table 15.2. Version Operators

Both the gem method and the add_dependency attribute in a Gem::Specification accept arguments

that specify a version dependency. RubyGems version dependencies are of the form operator

major.minor.patch_level. Listed next is a table of all the possible version operators.

Operator Description

= Exact version match. Major, minor, and patch level must be identical.

!= Any version that is not the one specified.

> Any version that is greater (even at the patch level) than the one specified.

< Any version that is less than the one specified.

>= Any version greater than or equal to the specified version.

<= Any version less than or equal to the specified version.

~> “Boxed” version operator. Version must be greater than or equal to the specified

version and less than the specified version after having its minor version number

increased by 1. This is to avoid API incompatibilities between minor version

releases.

So, put the following code into a file called Rakefile:

desc "Remove files whose names end with a tilde"

task :delete_unix_backups do

files = Dir['*~']

rm(files, verbose: true) unless files.empty?

end

Although it doesn’t have an .rb extension, this is actually just a file of Ruby code. Rake

defines an environment containing methods such as desc and task and then executes the

Rakefile.

The desc method provides a single line of documentation for the task that follows it. The

task method defines a Rake task that can be executed from the command line. The parameter

is the name of the task (a symbol), and the block that follows is the code to be executed.

Here we can just use rm—all the methods in FileUtils are automatically available inside

Rake files.

We can invoke this task from the command line:

% rake delete_unix_backups

(in /Users/dave/BS2/titles/RUBY3/Book/code/rake)

rm entry~

The first line shows us the name of the directory where Rake found the Rakefile (remember

that this might be in a directory above our current working directory). The next line is the

output of the rm method, in this case showing it deleted the single file entry~.

OK, now let’s write a second task in the same Rakefile. This one deletes Windows backup

files.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=246

THE RAKE BUILD TOOL 247

desc "Remove files whose names end with a tilde"

task :delete_unix_backups do

files = Dir['*~']

rm(files, verbose: true) unless files.empty?

end

desc "Remove files with a .bak extension"

task :delete_windows_backups do

files = Dir['*.bak']

rm(files, verbose: true) unless files.empty?

end

We can run this with rake delete_windows_backups.

But let’s say that our application could be used on both platforms, and we wanted to let our

users delete backup files on either. We could write a combined task, but Rake gives us a

better way—it lets us compose tasks. Here, for example, is a new task:

desc "Remove Unix and Windows backup files"

task :delete_backups =>

[:delete_unix_backups, :delete_windows_backups] do

puts "All backups deleted"

end

The task’s name is delete_backups, and it depends on two other tasks. This isn’t some

special Rake syntax: we’re simply passing the task method a Ruby hash containing a single

entry whose key is the task name and whose value is the list of antecedent tasks. What

this means is that Rake will execute the two platform-specific tasks before executing the

delete_backups task:

% rake delete_backups

(in /Users/dave/OldWork/BS2/titles/RUBY3/Book/code/rake)

rm entry~

rm index.bak list.bak

All backups deleted

Our current Rakefile contains some duplication between the Unix and Windows deletion

tasks. As it is just Ruby code, we can simply define a Ruby method to eliminate this:

def delete(pattern)

files = Dir[pattern]

rm(files, verbose: true) unless files.empty?

end

desc "Remove files whose names end with a tilde"

task :delete_unix_backups do

delete "*~"

end

desc "Remove files with a .bak extension"

task :delete_windows_backups do

delete "*.bak"

end

desc "Remove Unix and Windows backup files"

task :delete_backups => [:delete_unix_backups, :delete_windows_backups] do

puts "All backups deleted"

end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=247

BUILD ENVIRONMENT 248

If a Rake task is named default, it will be executed if you invoke Rake with no parameters.

You can find the tasks implemented by a Rakefile (or, more accurately, the tasks for which

there is a description) using this:

% rake T

(in /Users/dave/BS2/titles/RUBY3/Book/code/rake)

rake delete_backups # Remove Unix and Windows backup files

rake delete_unix_backups # Remove files whose names end with a tilde

rake delete_windows_backups # Remove files with a .bak extension

This section only touches on the full power of Rake. It can handle dependencies between

files (for example, rebuilding an executable file if one of the source files has changed), it

knows about running tests and generating documentation, and it can even package gems

for you. Martin Fowler has written a good overview of Rake if you’re interested in digging

deeper.5 You might also want to investigate Sake, a tool that makes Rake tasks available no

matter what directory you’re in.6

Build Environment
When Ruby is compiled for a particular architecture, all the relevant settings used to build

it (including the architecture of the machine on which it was compiled, compiler options,

source code directory, and so on) are written to the module Config within the library file

rbconfig.rb. After installation, any Ruby program can use this module to get details on

how Ruby was compiled:

require 'rbconfig'

include Config

CONFIG["host"] # => "i386appledarwin9.6.0"

CONFIG["libdir"] # => "/usr/local/rubybook/lib"

Extension libraries use this configuration file in order to compile and link properly on any

given architecture. See Chapter 29 beginning on page 833 and the reference for mkmf begin-

ning on page 874 for details.

5. http://martinfowler.com/articles/rake.html

6. http://errtheblog.com/posts/60sakebomb

Report erratum

http://martinfowler.com/articles/rake.html
http://errtheblog.com/posts/60-sake-bomb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=248

