
Chapter 17

Character Encoding

Prior to Ruby 1.91.9 , Ruby programs were basically written using the ASCII character encod-

ing. You could always override this with the -K command-line option, but this led to incon-

sistencies when manipulating strings and doing file I/O.

Ruby 1.9 changes all this. Ruby now supports the idea of character encodings. And, what’s

more, these encodings can be applied relatively independently to your program source files,

to objects in your running programs, and to the interpretation of I/O streams.

Before delving into the details, let’s spend a few minutes thinking about why we need to

separate the encodings of source files, variables, and I/O streams. Let’s imagine Yui is a

developer in Japan who wants to code in her native language. Her editor lets her write code

using Shift JIS (which we’ll call SJIS from now on), a Japanese character encoding, so

she writes her variable names using katakana and kanji characters. But, by default, Ruby

assumes that source files are written in ASCII, and the SJIS characters would not be recog-

nized as such. However, by setting the encoding to be used when compiling the source file,

Ruby can now parse her program.

She converts her program into a gem, and users around the world try it out. Dan, in the

United States, doesn’t read Japanese, so the content of her source files makes no sense to

him. However, because the source files carry their encoding around with them, there’s no

problem; his Ruby happily compiles her code. But Dan wants to test her code against a file

that contains regular old ASCII characters. That’s no problem, because the file encoding is

determined by Dan’s locale, not by the encoding of the Ruby source. Similarly, Sophie in

Paris uses the same library, but her data file is encoded in ISO-8859-1 (which is basically

ASCII plus a useful subset of accented European characters in character positions above

127). Again, no problem.

But, back in Japan, Yui has a new feature to add to her library. Users want to create short

PDF summaries of the data she reads, but the PDF writing library she’s using supports only

ISO-8859-1 characters. So, regardless of the encoding of the source code of her program

and the encoding of the files she reads, she needs to be able to create strings at runtime

with 8859-1 encoding. So, again, we need to be able to decouple the encoding of individual

objects from the encoding of everything else.

Report erratum264

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=264

ENCODINGS 265

If this sounds complex, well...it is. But the good news is that the Ruby team spent a long

time thinking up ways to make it all relatively easy to use when you’re writing code. In

this section, we’ll look at how to work with the various encodings, and I’ll try to list some

conventions that will make your code work in the brave new multinational world.

Encodings
At the heart of the Ruby encoding system is the new Encoding class. Objects of class Encod-

ing each represent a different character encoding. The Encoding.list method returns a list of

the built-in encodings, and the Encoding.aliases method returns a hash where the keys are

aliases and the values are the corresponding base encoding. We can use these two methods

to build a table of known encoding names:

Download samples/encoding_1.rb

encodings = {}

Encoding.list.each {|enc| encodings[enc.name] = [enc.name] }

Encoding.aliases.each do |alias_name, base_name|

fail "#{base_name} #{alias_name}" unless encodings[base_name]

encodings[base_name] << alias_name

end

names = encodings

.values

.sort_by {|base_name, *| base_name.downcase}

.map do |base_name, *rest|

if rest.empty?

base_name

else

"#{base_name} (#{rest.join(', ')})"

end

end

puts names

We can see the output, wrapped into columns, in Figure 17.1 on the next page:

However, that’s not the full story. Encodings in Ruby can be dynamically loaded—Ruby

actually comes with more encodings than those shown in the output from this code.

Strings, regular expressions, symbols, I/O streams, and program source files are all associ-

ated with one of these encoding objects.

Encodings commonly used in Ruby programs include ASCII (7 bit characters), ASCII-

8BIT,1 UTF-8, and Shift JIS.

1. There isn’t actually a character encoding called ASCII-8BIT. It’s a Ruby fantasy, but a useful one. We’ll talk

about it shortly.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/encoding_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=265

SOURCE FILES 266

Figure 17.1. Encodings and Their Aliases

ASCII-8BIT (BINARY) Big5 (CP950) CP51932
CP850 (IBM850) CP852 CP855
CP949 Emacs-Mule EUC-JP (eucJP)
EUC-KR (eucKR) EUC-TW (eucTW) eucJP-ms (euc-jp-ms)
GB12345 GB18030 GB1988
GB2312 (EUC-CN, eucCN) GBK (CP936) IBM437 (CP437)
IBM737 (CP737) IBM775 (CP775) IBM852
IBM855 IBM857 (CP857) IBM860 (CP860)
IBM861 (CP861) IBM862 (CP862) IBM863 (CP863)
IBM864 (CP864) IBM865 (CP865) IBM866 (CP866)
IBM869 (CP869) ISO-2022-JP (ISO2022-JP) ISO-2022-JP-2 (ISO2022-JP2)
ISO-8859-1 (ISO8859-1) ISO-8859-10 (ISO8859-10) ISO-8859-11 (ISO8859-11)
ISO-8859-13 (ISO8859-13) ISO-8859-14 (ISO8859-14) ISO-8859-15 (ISO8859-15)
ISO-8859-16 (ISO8859-16) ISO-8859-2 (ISO8859-2) ISO-8859-3 (ISO8859-3)
ISO-8859-4 (ISO8859-4) ISO-8859-5 (ISO8859-5) ISO-8859-6 (ISO8859-6)
ISO-8859-7 (ISO8859-7) ISO-8859-8 (ISO8859-8) ISO-8859-9 (ISO8859-9)
KOI8-R (CP878) KOI8-U macCentEuro
macCroatian macCyrillic macGreek
macIceland MacJapanese (MacJapan) macRoman
macRomania macThai macTurkish
macUkraine Shift_JIS (SJIS) stateless-ISO-2022-JP
TIS-620 US-ASCII (ASCII, ANSI_X3.4-1968, 646) UTF-16BE (UCS-2BE)
UTF-16LE UTF-32BE (UCS-4BE) UTF-32LE (UCS-4LE)
UTF-7 (CP65000) UTF-8 (CP65001, locale, external) UTF8-MAC (UTF-8-MAC)
Windows-1250 (CP1250) Windows-1251 (CP1251) Windows-1252 (CP1252)
Windows-1253 (CP1253) Windows-1254 (CP1254) Windows-1255 (CP1255)
Windows-1256 (CP1256) Windows-1257 (CP1257) Windows-1258 (CP1258)
Windows-31J (CP932, csWindows31J) Windows-874 (CP874)

Source Files
First and foremost, there’s a simple rule: if you only ever use 7-bit ASCII characters in your

source, then the source file encoding is irrelevant. So, the simplest way to write Ruby source

files that just work everywhere is to stick to boring old ASCII.

However, once a source file contains a byte whose top bit is set, you’ve just left the com-

fortable world of ASCII and entered the wild and wacky nightmare of character encodings.

Here’s how it works.

If your source files are not written using 7-bit ASCII, you probably want to tell Ruby about

it. Because the encoding is an attribute of the source file, and not anything to do with the

environment where the file is used, Ruby has a way of setting the encoding on a file-by-file

basis using a new magic comment. If the first line of a file2 is a comment (or the second line

if the first line is a #! shebang line), Ruby scans it looking for the string coding:. If it finds it,

Ruby then skips any spaces and looks for the (case-insensitive) name of an encoding. Thus,

to specify that a source file is in UTF-8 encoding, you can write this:

coding: utf8

As Ruby is just scanning for coding:, you could also write this:

encoding: ascii

2. Or a string passed to eval.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=266

SOURCE FILES 267

Emacs users might like the fact that this also works:

* encoding: shift_jis *

(Your favorite editor may also support some kind of flag comment to set a file’s encoding.)

If there’s a shebang line, the encoding comment must be the second line of the file:

#!/usr/local/rubybook/bin/ruby

encoding: utf8

Additionally, Ruby detects any files that start with a UTF-8 byte order mark (BO). If Ruby

sees the byte sequence \xEF\xBB\xBF at the start of a source file, it assumes that file is UTF-8

encoded.

The special constant __ENCODING__ returns the encoding of the current source file.

Source Elements That Have Encodings

If nothing overrides the setting, the default encoding for source is US-ASCII. This is basi-

cally the same as Ruby 1.8—you write your programs using 7-bit ASCII characters. How-

ever, unlike Ruby 1.8, if any characters with the top bit set (that is, with a character code

greater than 127) do sneak into your source, Ruby will report an error, probably saying

something like “invalid multibyte char.” Here’s an example where we typed some UTF-8

characters into a Ruby program:

π = 3.14159

puts "π = #{π}"

produces:

prog.rb:1: invalid multibyte char (USASCII)

The character π actually consists of the two bytes: \xcf \x80. In the default Ruby source

encoding of US-ASCII, these characters raise an error because the top bit is set and Ruby

doesn’t know how to handle them.

We can fix that by setting the encoding:

encoding: utf8

π = 3.14159

puts "π = #{π}"

produces:

π = 3.14159

Note that Ruby is correctly interpreting π as a single character:

encoding: utf8

PI = "π"
puts "The size of a string containing π is #{PI.size}"

produces:

The size of a string containing π is 1

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=267

SOURCE FILES 268

Now, let’s get perverse. The two-byte sequence “\xcf\x8” represents π in UTF-8 but is not

a valid byte sequence in the SJIS encoding. Let’s see what happens if we tell Ruby that

this same source file is SJIS encoded. (Remember: when we do this, we’re not changing the

actual bytes in the string—we’re just telling Ruby to interpret them with a different set of

encoding rules.)

encoding: sjis

PI = "π"
puts "The size of a string containing π is #{PI.size}"

produces:

puts "The size of a string containing π is #{PI.size}"

^

prog.rb:2: invalid multibyte char (Shift_JIS)

prog.rb:3: syntax error, unexpected tCONSTANT, expecting $end

This time, Ruby complains because the file contains byte sequences that are illegal in the

given encoding. And, to make matters even more confusing, the parser swallowed up the

double quote after the π character, presumably while trying to build a valid SJIS character.

This led to the second error message, because the word The is now interpreted as program

text.

String literals are always encoded using the encoding of the source file that contains them,

regardless of the content of the string:

encoding: utf8

def show_encoding(str)

puts "'#{str}' (size #{str.size}) is #{str.encoding.name}"

end

show_encoding "cat" # latin 'c', 'a', 't'

show_encoding "δog" # greek delta, latin 'o', 'g'

produces:

'cat' (size 3) is UTF8

'δog' (size 3) is UTF8

Symbols and regular expression literals that contain only 7-bit characters are encoded using

US-ASCII. Otherwise, they will have the encoding of the file that contains them.

encoding: utf8

def show_encoding(str)

puts "#{str.inspect} is #{str.encoding.name}"

end

show_encoding :cat

show_encoding :δog

show_encoding /cat/

show_encoding /δog/

produces:

:cat is USASCII

:δog is UTF8

/cat/ is USASCII

/δog/ is UTF8

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=268

SOURCE FILES 269

You can create arbitrary Unicode characters in strings and regular expressions using the \u

escape. This has two forms: \uxxxx lets you encode a character using four hex digits, and

\u{x... x... x...} lets you specify a variable number of characters, each with a variable number

of hex digits:

encoding: utf8

"Greek pi: \u03c0" # => "Greek pi: π"
"Greek pi: \u{3c0}" # => "Greek pi: π"
"Greek \u{70 69 3a 20 3c0}" # => "Greek pi: π"

Literals containing a \u sequence will always be encoded UTF-8, regardless of the source

file encoding.

The String#bytes method is a convenient way to inspect the bytes in a string object. Notice

that in the following code, the 16-bit codepoint is converted to a two-byte UTF-8 encoding:

encoding: utf8

"pi: \u03c0".bytes.to_a # => [112, 105, 58, 32, 207, 128]

Eight-bit Clean Encodings

Ruby supports a virtual encoding called ASCII-8BIT. Despite the ASCII in the name, this

is really intended to be used on data streams that contain binary data (hence its alias of

BINARY). However, you can also use this as an encoding for source files. If you do, Ruby

interprets all characters with codes below 128 as regular ASCII and all other characters as

valid constituents of variable names. This is basically a neat hack, because it allows you to

compile a file written in an encoding you don’t know—the characters with the high-order

bit set will be assumed to be printable.

Download samples/encoding_15.rb

encoding: ascii8bit

π = 3.14159

puts "π = #{π}"
puts "Size of 'π' = #{'π'.size}"

produces:

π = 3.14159

Size of 'π' = 2

The last line of output illustrates why ASCII-8BIT is a dangerous encoding for source files.

Because it doesn’t know to use UTF-8 encoding, the π character looks to Ruby like two

separate characters.

Source Encoding Is Per-File

Clearly, a large application will be built from many source files. Some of these files may

come from other people (possibly as libraries or gems). In these cases, you may not have

control over the encoding used in a file.

Ruby supports this by allowing different encodings in the files that make up a project. Each

file starts with the default encoding of US-ASCII. The file’s encoding may then be set with

either a coding: comment or a UTF-8 BOM.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/encoding_15.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=269

TRANSCODING 270

Here’s a file called iso88591.rb. Notice the explicit encoding.

* encoding: iso88591 *

STRING_ISO = "olé" # \x6f \x6c \xe9

And here’s its UTF-8 counterpart:

file: utf.rb, encoding: utf8

STRING_U = "δog" # \xe2\x88\x82\x6f\x67

Now let’s require both of these files into a third file. Just for the heck of it, let’s declare the

third file to have SJIS encoding:

encoding: sjis

require 'iso88591'

require 'utf'

def show_encoding(str)

puts "'#{str}' (size #{str.size}) is #{str.encoding.name}"

end

show_encoding(STRING_ISO)

show_encoding(STRING_U)

show_encoding("cat")

produces:

'olé' (size 3) is ISO88591

'δog' (size 3) is UTF8

'cat' (size 3) is Shift_JIS

Notice how each file has an independent encoding. String literals in each retain their own

encoding, even when used in a different file. All the encoding directive does is tell Ruby

how to interpret the characters in the file and what encoding to use on literal strings and

regular expressions containing non-ASCII characters. Ruby will never change the actual

bytes in a source file when reading them in.

Transcoding
As we’ve already seen, strings, symbols, and regular expressions are now labeled with their

encoding. You can convert a string from one encoding to another using the String#encode

method. For example, we can convert the word olé from UTF-8 to ISO-8859-1:

encoding: utf8

ole_in_utf = "olé"

ole_in_utf.encoding # => #<Encoding:UTF8>

ole_in_utf.bytes.to_a # => [111, 108, 195, 169]

ole_in_8859 = ole_in_utf.encode("iso88591")

ole_in_8859.encoding # => #<Encoding:ISO88591>

ole_in_8859.bytes.to_a # => [111, 108, 233]

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=270

TRANSCODING 271

You have to be careful when using encode—if the target encoding doesn’t contain charac-

ters that appear in your source string, Ruby will throw an exception. For example, the π

character is available in UTF-8 but not in ISO-8859-1:

encoding: utf8

pi = "pi = π"
pi.encode("iso88591")

produces:

prog.rb:3:in `encode': "\xCF\x80" from UTF8 to ISO88591 (Encoding::UndefinedConversionErro

from /tmp/prog.rb:3:in `<main>'

You can, however, override this behavior, for example supplying a placeholder character to

use when no direct translation is possible. (See the description of String#encode on page 678

for more details.)

encoding: utf8

pi = "pi = π"
puts pi.encode("iso88591", undef: :replace, replace: "??")

produces:

pi = ??

Sometimes you’ll have a string containing binary data and you want that data to be inter-

preted as if it had a particular encoding. You can’t use the encode method for this, because

you don’t want to change the byte contents of the string—you’re just changing the encoding

associated with those bytes. Use the String#force_encoding method to do this:

Download samples/encoding_22.rb

encoding: ascii8bit

str = "\xc3\xa9" # eacute in UTF8

str.encoding # => #<Encoding:ASCII8BIT>

str.force_encoding("utf8")

str.bytes.to_a # => [195, 169]

str.encoding # => #<Encoding:UTF8>

Finally, you can use encode (with two parameters) to convert between two encodings if

your source string is ASCII-8BIT. This might happen if, for example, you’re reading data

in binary mode from a file and choose not to encode it at the time you read it. Here we

fake that out by creating an ASCII-8BIT string that contains an ISO-8859-1 sequence (our

old friend olé). We then convert the string to UTF-8. To do this, we have to tell encode the

actual encoding of the bytes by passing it a second parameter:

Download samples/encoding_23.rb

encoding: ascii8bit

original = "ol\xe9" # eacute in ISO88591

original.bytes.to_a # => [111, 108, 233]

original.encoding # => #<Encoding:ASCII8BIT>

new = original.encode("utf8", "iso88591")

new.bytes.to_a # => [111, 108, 195, 169]

new.encoding # => #<Encoding:UTF8>

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/encoding_22.rb
http://media.pragprog.com/titles/ruby3/code/samples/encoding_23.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=271

INPUT AND OUTPUT ENCODING 272

If you’re writing programs that will support multiple encodings, you probably want to read

the section on Default Internal Encoding on page 274—it will greatly simplify your life.

Input and Output Encoding
Playing around with encodings within a program is all very well, but in most code we’ll

want to read data from and write data to external files. And, often, that data will be in a

particular encoding.

Ruby’s I/O objects support both encoding and transcoding of data. What does this mean?

Every I/O object has an associated external encoding. This is the encoding of the data

being read from or written to the outside world. Through a piece of magic I’ll describe

on page 274, all Ruby programs run with the concept of a default external encoding. This

is the external encoding that will be used by I/O objects unless you override it when you

create the object (for example, by opening a file).

Now, your program may want to operate internally in a different encoding. For example,

some of my files may be encoded with ISO-8859-1, but I want my Ruby program to work

internally using UTF-8. Ruby I/O objects manage this by having an optional associated

internal encoding. If set, then input will be transcoded from the external to the internal

encodings on read operations, and output will be transcoded from internal to external encod-

ing on write operations.

Let’s start with the simple cases. On my OS X box, the default external encoding is UTF-8.

If I don’t override it, all my file I/O will therefore also be in UTF-8. I can query the external

encoding of an I/O object using the IO#external_encoding method:

f = File.open("/etc/passwd")

puts "File encoding is #{f.external_encoding}"

line = f.gets

puts "Data encoding is #{line.encoding}"

produces:

File encoding is UTF8

Data encoding is UTF8

Notice that the data is tagged with a UTF-8 encoding even though it (presumably) con-

tains just 7-bit ASCII characters. Only literals in your Ruby source files have the “change

encoding if they contain 8-bit data” rule.

You can force the external encoding associated with an I/O object when you open it—simply

add the name of the encoding, preceded by a colon, to the mode string. Note that this in no

way changes the data that’s read—it simply tags it with the encoding you specify:

f = File.open("/etc/passwd", "r:ascii")

puts "File encoding is #{f.external_encoding}"

line = f.gets

puts "Data encoding is #{line.encoding}"

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=272

INPUT AND OUTPUT ENCODING 273

produces:

File encoding is USASCII

Data encoding is USASCII

You can force Ruby to transcode—change the encoding—of data it reads and writes by

putting two encoding names in the mode string, again with a colon before each. For exam-

ple, the file iso88591.txt contains the word olé in ISO-8859-1 encoding. In this encod-

ing, the e-acute character is encoded by the single byte \xe9. I can view this file’s contents

in hex using the od command-line tool. (Windows users can use the d command in debug

to do the same.)

% od t x1 iso88591.txt

0000000 6f 6c e9 0a

0000004

If we try to read it with our default external encoding of UTF-8, we’ll encounter a problem:

f = File.open("iso88591.txt")

puts f.external_encoding.name

line = f.gets

puts line.encoding

puts line

produces:

UTF8

UTF8

ol?

The problem is that the binary sequence for the e-acute isn’t the same in ISO-8859-1 and

UTF-8. Ruby just assumed the file contained UTF-8 characters, tagging the string it read

accordingly.

We can tell the program that the file contains ISO-8859-1:

f = File.open("iso88591.txt", "r:iso88591")

puts f.external_encoding.name

line = f.gets

puts line.encoding

puts line

produces:

ISO88591

ISO88591

ol?

This doesn’t help us much. The string is now tagged with the correct encoding, but our

operating system is still expecting UTF-8 output.

The solution is to map the ISO-8859-1 to UTF-8 on input:

f = File.open("iso88591.txt", "r:iso88591:utf8")

puts f.external_encoding.name

line = f.gets

puts line.encoding

puts line

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=273

DEFAULT EXTERNAL ENCODING 274

produces:

ISO88591

UTF8

olé

If you specify two encoding names when opening an I/O object, the first is the external

encoding, and the second is the internal encoding. Data is transcoded from the former to the

latter on reading and the opposite way on writing. That’s how I created the file containing

olé in the first place:

% ruby -e ’File.open("iso-8859-1.txt", "w:iso-8859-1:utf-8") { |f| f.puts "olé"}’

Binary Files

In the old days, we Unix users used to make little snide comments about the way that

Windows users had to open binary files using a special binary mode. Well, now the Windows

folks can get their own back. If you want to open a file containing binary data in Ruby, you

must now specify the binary flag, which will automatically select the 8-bit clean ASCII-

8BIT encoding. To make things explicit, you can use “binary” as an alias for the encoding:

Download samples/encoding_31.rb

f = File.open("iso88591.txt", "rb")

puts "Implicit encoding is #{f.external_encoding.name}"

f = File.open("iso88591.txt", "rb:binary")

puts "Explicit encoding is #{f.external_encoding.name}"

line = f.gets

puts "String encoding is #{line.encoding.name}"

produces:

Implicit encoding is ASCII8BIT

Explicit encoding is ASCII8BIT

String encoding is ASCII8BIT

Default External Encoding
If you look at the text files on your computer, the chances are that they’ll all use the same

encoding. In the United States, that’ll probably be UTF-8 or ASCII. In Europe, it might

be UTF-8 or ISO-8859-x. If you use a Windows box, you may be using a different set of

encodings (use the console chcp command to find your current code page). But whatever

encoding you use, the chances are good that you’ll stick with it for the majority of your

work.

On Unix-like boxes, you’ll probably find you have the LANG environment variable set. On

my OS X box, I have this:

% echo $LANG

en_US.UTF8

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/encoding_31.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=274

ENCODING COMPATIBILITY 275

This says that I’m using the English language in the U.S. territory and my default codeset is

UTF-8. On startup, Ruby looks for this environment variable and, if present, sets the default

external encoding from the codeset component. Thus, on my box, Ruby 1.9 programs run

with a default external encoding of UTF-8. If instead I were in Japan and my LANG variable

were set to ja_JP.sjis, my encoding would be set to Shift JIS. We can look at the default

external encoding by querying the Encoding class. While we’re at it, we’ll experiment with

different values in the LANG environment variable:

% echo $LANG

en_US.UTF8

% ruby e 'p Encoding.default_external.name'

"UTF8"

% LANG=ja_JP.sjis ruby e 'p Encoding.default_external.name'

"Shift_JIS"

% LANG= ruby e 'p Encoding.default_external.name'

"USASCII"

The encoding set from the environment does not affect the encoding Ruby uses for source

files—it affects only the encoding of data read and written by your programs.

Finally, you can use the -E command-line option (or the long-form --encoding) to set the

default external encoding of your I/O objects:

% ruby E utf8 e 'p Encoding.default_external.name'

"UTF8"

% ruby E sjis e 'p Encoding.default_external.name'

"Shift_JIS"

% ruby E sjis:iso88591 e 'p Encoding.default_internal.name'

"ISO88591"

Encoding Compatibility
Before Ruby performs operations involving strings or regular expressions, it first has to

check that the operation makes sense. For example, it is valid to perform an equality test

between two strings with different encodings, but it is not valid to append one to the other.

The basic steps in this checking are as follows:

1. If the two objects have the same encoding, the operation is valid.

2. If the two objects each contain only 7-bit characters, the operation is permitted regard-

less of the encodings.

3. If the encodings in the two objects are compatible (which we’ll discuss next), the oper-

ation is permitted.

4. Otherwise, an exception is raised.

Let’s say you have a set of text files containing markup. In some of the files, authors used the

sequence \dots to represent an ellipsis. In other files, which have UTF-8 encoding, authors

used an actual ellipsis character (\u2026). We want to convert both forms to three periods.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=275

DEFAULT INTERNAL ENCODING 276

We can start off with a simplistic solution:

encoding: utf8

while line = gets

result = line.gsub(/\\dots/, "...")

.gsub(/ . . ./, "...") # unicode ellipsis

puts result

end

In my environment, the content of files is by default assumed to be UTF-8. Feed our code

ASCII files and UTF-encoded files, and it works just fine. But what happens when we feed

it a file that contains ISO-8859-1 characters?

dots.rb:4:in `gsub': broken UTF8 string (ArgumentError)

Ruby tried to interpret the input text, which is ISO-8859-1 encoded, as UTF-8. Because the

byte sequences in the file aren’t valid UTF, it failed.

There are three solutions to this problem. The first is to say that it makes no sense to feed

files with both ISO-8859 and UTF-8 encoding to the same program without somehow dif-

ferentiating them. That’s perfectly true. This approach means we’ll need some command-

line options, liberal use of force_encoding, and probably some kind of code to delegate the

pattern matching to different sets of patterns depending on the encoding of each file.

A second hack is to simply treat both the data and the program as ASCII-8BIT and perform

all the comparisons based on the underlying bytes. This isn’t particularly reliable, but it

might work in some circumstances.

The third solution is to choose a master encoding and to transcode strings into it before

doing the matches. Ruby provides built-in support for this with the default_internal encoding

mechanism.

Default Internal Encoding
By default, Ruby performs no automatic transcoding when reading and writing data. How-

ever, two command-line options allow you to change this.

We’ve already seen the -E option, which sets the default encoding applied to the content of

external files. When you say -E xxx, the default external encoding is set to xxx.

However, -E takes a second option. In the same way that you can give File#open both an

external and an internal encoding, you can also set a default internal encoding using the

folllowing option:

-E external:internal

Thus, if all your files are written with ISO-8859-1 encoding but you want your program to

have to deal with their content as if it were UTF-8, you can use this:

ruby -E iso-8859-1:utf-8

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=276

FUN WITH UNICODE 277

You can specify just an internal encoding by omitting the external option but leaving the

colon:

ruby -E :utf-8

Indeed, because UTF-8 is probably the best of the available transcoding targets, Ruby has

the -U command-line option, which sets the internal encoding to UTF-8.

You can query the default internal encoding in your code with the Encoding.default_internal

method. This returns nil if no default internal encoding has been set.

One last note before we leave this section: if you compare two strings with different encod-

ings, Ruby does not normalize them. Thus, "é" tagged with a UTF-8 encoding will not

compare equal to "é" tagged with ISO-8859-1, because the underlying bytes are different.

Fun with Unicode
As Daniel Berger pointed out,3 the fact that UTF-8 is now supported in Ruby means that

we can do interesting things with our method and variable names:

Download samples/encoding_36.rb

encoding: utf8

def Σ(*args)

args.inject(:+)

end

puts Σ 1, 3, 5, 9

produces:

18

Of course, this way can lead to some pretty obscure and hard-to-use code. (For example, is

the summation character in the previous code a real summation, \u2211, or a Greek sigma,

\u03a3?) Just because we can do something doesn’t mean we necessarily should....

3. http://www.oreillynet.com/ruby/blog/2007/10/fun_with_unicode_1.html

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/encoding_36.rb
http://www.oreillynet.com/ruby/blog/2007/10/fun_with_unicode_1.html
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=277

