
Chapter 18

Interactive Ruby Shell

Back on page 221 we introduced irb, a Ruby module that lets you enter Ruby programs

interactively and see the results immediately. This chapter goes into more detail on using

and customizing irb.

Command Line
irb is run from the command line:

irb [irb-options] [ruby_script] [program arguments]

The command-line options for irb are listed in Table 18.1 on the following page. Typically,

you’ll run irb with no options, but if you want to run a script and watch the blow-by-blow

description as it runs, you can provide the name of the Ruby script and any options for that

script.

Once started, irb displays a prompt and waits for input. In the examples that follow, we’ll

use irb’s default prompt, which shows the current binding, the indent (nesting) level, and

the line number.

At a prompt, you can type Ruby code. irb includes a Ruby parser, so it knows when state-

ments are incomplete. When this happens, the prompt will end with an asterisk. You can

leave irb by typing exit or quit or by entering an end-of-file character (unless IGNORE_EOF

mode is set).

% irb

irb(main):001:0> 1 + 2

=> 3

irb(main):002:0> 3 +

irb(main):003:0* 4

=> 7

irb(main):004:0> quit

%

Report erratum278

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=278

COMMAND LINE 279

Table 18.1. irb Command-Line Options

Option Description

--back-trace-limit n Displays backtrace information using the top n and last n

entries. The default value is 16.

--context-mode n See :CONTEXT_MODE on page 284.

-d Sets $DEBUG to true (same as ruby -d).

-E enc Same as Ruby’s -E option.

-f Suppresses reading ~/.irbrc.

-h, --help Displays usage information.

-I path Specifies the $LOAD_PATH directory.

--inf-ruby-mode Sets up irb to run in inf-ruby-mode under Emacs. Same as

--prompt inf-ruby --noreadline.

--inspect, --noinspect Uses/doesn’t use Object#inspect to format output (--inspect

is the default, unless in math mode).

--irb_debug n Sets internal debug level to n (only useful for irb develop-

ment).

-m Math mode (fraction and matrix support is available).

--noprompt Does not display a prompt. Same as --prompt null

--prompt prompt-mode Switches prompt. Predefined prompt modes are null,

default, classic, simple, xmp, and inf-ruby.

--prompt-mode prompt-mode Same as --prompt.

-r module Requires module. Same as ruby -r.

--readline, --noreadline Uses/doesn’t use readline extension module.

--sample-book-mode Same as --prompt simple.

--simple-prompt Same as --prompt simple.

--single-irb Nested irb sessions will all share the same context.

--tracer Displays trace for execution of commands.

-U Same as Ruby’s -U option.

-v, --version Prints the version of irb.

During an irb session, the work you do is accumulated in irb’s workspace. Variables you

set, methods you define, and classes you create are all remembered and may be used subse-

quently in that session.

irb(main):001:0> def fib_up_to(n)

irb(main):002:1> f1, f2 = 1, 1

irb(main):003:1> while f1 <= n

irb(main):004:2> puts f1

irb(main):005:2> f1, f2 = f2, f1+f2

irb(main):006:2> end

irb(main):007:1> end

=> nil

irb(main):008:0> fib_up_to(4)

1

1

2

3

=> nil

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=279

COMMAND LINE 280

Notice the nil return values. These are the results of defining the method and then running

it—our method printed the Fibonacci numbers but then returned nil.

A great use of irb is experimenting with code you’ve already written. Perhaps you want to

track down a bug, or maybe you just want to play. If you load your program into irb, you

can then create instances of the classes it defines and invoke its methods. For example, the

file code/fib_up_to.rb contains the following method definition:

Download samples/irb_1.rb

def fib_up_to(max)

i1, i2 = 1, 1

while i1 <= max

yield i1

i1, i2 = i2, i1+i2

end

end

We can load this into irb and play with the method:

% irb

irb(main):001:0> load 'code/fib_up_to.rb'

=> true

irb(main):002:0> result = []

=> []

irb(main):003:0> fib_up_to(20) {|val| result << val}

=> nil

irb(main):004:0> result

=> [1, 1, 2, 3, 5, 8, 13]

In this example, we use load, rather than require, to include the file in our session. We do

this as a matter of practice: load allows us to load the same file multiple times, so if we find

a bug and edit the file, we could reload it into our irb session.

Tab Completion

If your Ruby installation has readline support, then you can use irb’s completion facility.

Once loaded (and we’ll get to how to load it shortly), completion changes the meaning

of the TAB key when typing expressions at the irb prompt. When you press TAB partway

through a word, irb will look for possible completions that make sense at that point. If there

is only one, irb will fill it in automatically. If there’s more than one valid option, irb initially

does nothing. However, if you hit TAB again, it will display the list of valid completions at

that point.

For example, you may be in the middle of an irb session, having just assigned a string object

to the variable a:

irb(main):002:0> a = "cat"

=> "cat"

You now want to try the method String#reverse on this object. You start by typing a.re and

then hit TAB twice.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/irb_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=280

COMMAND LINE 281

irb(main):003:0> a.reTAB TAB

a.reject a.replace a.respond_to? a.reverse a.reverse!

irb lists all the methods supported by the object in a whose names start with re. We see the

one we want, reverse, and enter the next character of its name, v, followed by the TAB key:

irb(main):003:0> a.revTAB

irb(main):003:0> a.reverse

=> "tac"

irb(main):004:0>

irb responds to the TAB key by expanding the name as far as it can go, in this case com-

pleting the word reverse. If we keyed TAB twice at this point, it would show us the current

options, reverse and reverse!. However, because reverse is the one we want, we instead hit

ENTER , and the line of code is executed.

Tab completion isn’t limited to built-in names. If we define a class in irb, then tab completion

works when we try to invoke one of its methods:

irb(main):004:0> class Test

irb(main):005:1> def my_method

irb(main):006:2> end

irb(main):007:1> end

=> nil

irb(main):008:0> t = Test.new

=> #<Test:0x35b724>

irb(main):009:0> t.myTAB

irb(main):009:0> t.my_method

Tab completion is implemented as an extension library. On some systems this is loaded by

default. On others you’ll need to load it when you invoke irb from the command line:

% irb r irb/completion

You can also load the completion library when irb is running:

irb(main):001:0> require 'irb/completion'

=> true

If you use tab completion all the time, it’s probably most convenient to put the require

command into your .irbrc file:

require 'irb/completion'

Subsessions

irb supports multiple, concurrent sessions. One is always current; the others lie dormant

until activated. Entering the command irb within irb creates a subsession, entering the jobs

command lists all sessions, and entering fg activates a particular dormant session. This

example also illustrates the -r command-line option, which loads in the given file before

irb starts:

% irb r code/fib_up_to.rb

irb(main):001:0> result = []

=> []

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=281

CONFIGURATION 282

irb(main):002:0> fib_up_to(10) {|val| result << val }

=> nil

irb(main):003:0> result

=> [1, 1, 2, 3, 5, 8]

irb(main):004:0> # Create a nested irb session

irb(main):005:0* irb

irb#1(main):001:0> result = %w{ cat dog horse }

=> ["cat", "dog", "horse"]

irb#1(main):002:0> result.map {|val| val.upcase }

=> ["CAT", "DOG", "HORSE"]

irb#1(main):003:0> jobs

=> #0>irb on main (#<Thread:0x331740>: stop)

#1>irb#1 on main (#<Thread:0x341694>: running)

irb#1(main):004:0> fg 0

irb(main):006:0> result

=> [1, 1, 2, 3, 5, 8]

irb(main):007:0> fg 1

irb#1(main):005:0> result

=> ["cat", "dog", "horse"]

Subsessions and Bindings

If you specify an object when you create a subsession, that object becomes the value of

self in that binding. This is a convenient way to experiment with objects. In the following

example, we create a subsession with the string “wombat” as the default object. Methods

with no receiver will be executed by that object.

% irb

irb(main):001:0> self

=> main

irb(main):002:0> irb "wombat"

irb#1(wombat):001:0> self

=> "wombat"

irb#1(wombat):002:0> upcase

=> "WOMBAT"

irb#1(wombat):003:0> size

=> 6

irb#1(wombat):004:0> gsub(/[aeiou]/, '*')

=> "w*mb*t"

irb#1(wombat):005:0> irb_exit

irb(main):003:0> self

=> main

irb(main):004:0> upcase

NameError: undefined local variable or method `upcase' for main:Object

Configuration
irb is remarkably configurable. You can set configuration options with command-line op-

tions, from within an initialization file, and while you’re inside irb itself.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=282

CONFIGURATION 283

Initialization File

irb uses an initialization file in which you can set commonly used options or execute any

required Ruby statements. When irb is run, it will try to load an initialization file from one

of the following sources in order: ~/.irbrc, .irbrc, irb.rc, _irbrc, and $irbrc.

Within the initialization file, you may run any arbitrary Ruby code. You can also set configu-

ration values. The list of configuration variables is given starting on the following page—the

values that can be used in an initialization file are the symbols (starting with a colon). You

use these symbols to set values into the IRB.conf hash. For example, to make SIMPLE the

default prompt mode for all your irb sessions, you could have the following in your initial-

ization file:

IRB.conf[:PROMPT_MODE] = :SIMPLE

As an interesting twist on configuring irb, you can set IRB.conf[:IRB_RC] to a Proc object.

This proc will be invoked whenever the irb context is changed and will receive the configu-

ration for that context as a parameter. You can use this facility to change the configuration

dynamically based on the context. For example, the following .irbrc file sets the prompt

so that only the main prompt shows the irb level, but continuation prompts and the result

still line up:

Download samples/irb_5.rb

IRB.conf[:IRB_RC] = lambda do |conf|

leader = " " * conf.irb_name.length

conf.prompt_i = "#{conf.irb_name} > "

conf.prompt_s = leader + ' \" '

conf.prompt_c = leader + ' \+ '

conf.return_format = leader + " ==> %s\n\n"

puts "Welcome!"

end

An irb session using this .irbrc file looks like the following:

% irb

Welcome!

irb > 1 + 2

==> 3

irb > 2 +

\+ 6

==> 8

Extending irb

Because the things you type into irb are interpreted as Ruby code, you can effectively extend

irb by defining new top-level methods. For example, you may want to time how long certain

things take. You can use the measure method in the Benchmark library to do this, but it’s

more convenient to wrap this in a helper method.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/irb_5.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=283

CONFIGURATION 284

Add the following to your .irbrc file:

Download samples/irb_6.rb

def time(&block)

require 'benchmark'

result = nil

timing = Benchmark.measure do

result = block.()

end

puts "It took: #{timing}"

result

end

The next time you start irb, you’ll be able to use this method to get timings:

irb(main):001:0> time { 1000000.times { "cat".upcase }}

It took: 0.550000 0.000000 0.550000 (0.545647)

=> 1000000

irb(main):002:0>

Interactive Configuration

Most configuration values are also available while you’re running irb. The list starting on

the current page shows these values as conf.xxx. For example, to change your prompt back

to DEFAULT, you could use the following:

irb(main):001:0> 1 +

irb(main):002:0* 2

=> 3

irb(main):003:0> conf.prompt_mode = :SIMPLE

=> :SIMPLE

>> 1 +

?> 2

=> 3

irb Configuration Options

In the descriptions that follow, a label of the form :XXX signifies a key used in the IRB.conf

hash in an initialization file, and conf.xxx signifies a value that can be set interactively. The

value in square brackets at the end of the description is the option’s default.

:AUTO_INDENT / conf.auto_indent_mode

If true, irb will indent nested structures as you type them. [false]

:BACK_TRACE_LIMIT / conf.back_trace_limit

Displays n initial and n final lines of backtrace. [16]

:CONTEXT_MODE

What binding to use for new workspaces: 0→ proc at the top level, 1→ binding in a loaded,

anonymous file, 2→ per thread binding in a loaded file, 3→ binding in a top-level function. [3]

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/irb_6.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=284

CONFIGURATION 285

:DEBUG_LEVEL / conf.debug_level

Sets the internal debug level to n. This is useful if you’re debugging irb’s lexer. [0]

:IGNORE_EOF / conf.ignore_eof

Specifies the behavior of an end of file received on input. If true, it will be ignored; otherwise,

irb will quit. [false]

:IGNORE_SIGINT / conf.ignore_sigint

If false, ^C (Ctrl+c) will quit irb. If true, ^C during input will cancel input and return to the top

level; during execution, ^C will abort the current operation. [true]

:INSPECT_MODE / conf.inspect_mode

Specifies how values will be displayed: true means use inspect, false uses to_s, and nil uses inspect

in nonmath mode and to_s in math mode. [nil]

:IRB_RC

Can be set to a proc object that will be called when an irb session (or subsession) is started. [nil]

conf.last_value

The last value output by irb. [. . .]

:LOAD_MODULES / conf.load_modules

A list of modules loaded via the -r command-line option. [[]]

:MATH_MODE / conf.math_mode

If true, irb runs with the mathn library loaded (see page 767) and does not use inspect to display

values. [false]

conf.prompt_c

The prompt for a continuing statement (for example, immediately after an if). [depends]

conf.prompt_i

The standard, top-level prompt. [depends]

:PROMPT_MODE / conf.prompt_mode

The style of prompt to display. [:DEFAULT]

conf.prompt_s

The prompt for a continuing string. [depends]

:PROMPT

See Configuring the Prompt on page 287. [{ . . . }]

:RC / conf.rc

If false, do not load an initialization file. [true]

conf.return_format

The format used to display the results of expressions entered interactively. [depends]

:SAVE_HISTORY / conf.save_history

The number of commands to save between irb sessions. [nil]

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=285

COMMANDS 286

:SINGLE_IRB

If true, nested irb sessions will all share the same binding; otherwise, a new binding will be

created according to the value of :CONTEXT_MODE. [nil]

conf.thread

A read-only reference to the currently executing Thread object. [current thread]

:USE_LOADER / conf.use_loader

Specifies whether irb’s own file reader method is used with load/require. [false]

:USE_READLINE / conf.use_readline

irb will use the readline library if available (see page 797) unless this option is set to false, in

which case readline will never be used, or nil, in which case readline will not be used in inf-ruby-

mode. [depends]

:USE_TRACER / conf.use_tracer

If true, traces the execution of statements. [false]

:VERBOSE / conf.verbose

In theory, switches on additional tracing when true; in practice, almost no extra tracing results.

[true]

Commands
At the irb prompt, you can enter any valid Ruby expression and see the results. You can also

use any of the following commands to control the irb session:1

help ClassName, string, or symbol

Displays the ri help for the given thing.1.9 To get the help for a method name, you’ll

probably want to pass a string, like this:

irb(main):001:0> help "String.encoding"

 String#encoding

obj.encoding => encoding

Returns the Encoding object that represents the encoding of obj.

exit, quit, irb_exit, irb_quit

Quits this irb session or subsession. If you’ve used cb to change bindings (see below),

exits from this binding mode.

conf, context, irb_context

Displays current configuration. Modifying the configuration is achieved by invoking

methods of conf. The list starting on page 284 shows the available conf settings.

1. For some inexplicable reason, many of these commands have up to nine different aliases. We don’t bother to

show all of these.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=286

COMMANDS 287

For example, to set the default prompt to something subservient, you could use this:

irb(main):001:0> conf.prompt_i = "Yes, Master? "

=> "Yes, Master? "

Yes, Master? 1 + 2

cb, irb_change_binding 〈 obj 〉
Creates and enters a new binding (sometimes called a workspace) that has its own

scope for local variables. If obj is given, it will be used as self in the new binding.

pushb obj, popb

Pushes and pops the current binding.

bindings

Lists the current bindings.

irb_cwws

Prints the object that’s the binding of the current workspace.

irb 〈 obj 〉
Starts an irb subsession. If obj is given, it will be used as self.

jobs, irb_jobs

Lists irb subsessions.

fg n, irb_fg n

Switches into the specified irb subsession. n may be any of the following: an irb sub-

session number, a thread ID, an irb object, or the object that was the value of self when

a subsession was launched.

kill n, irb_kill n

Kills an irb subsession. n may be any of the values as described for irb_fg.

source filename

Loads and executes the given file, displaying the source lines.

Configuring the Prompt

You have a lot of flexibility in configuring the prompts that irb uses. Sets of prompts are

stored in the prompt hash, IRB.conf[:PROMPT].

For example, to establish a new prompt mode called MY_PROMPT, you could enter the

following (either directly at an irb prompt or in the .irbrc file):

IRB.conf[:PROMPT][:MY_PROMPT] = { # name of prompt mode

:PROMPT_I => '>', # normal prompt

:PROMPT_S => '"', # prompt for continuing strings

:PROMPT_C => '+', # prompt for continuing statement

:RETURN => " ==>%s\n" # format to return value

}

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=287

RESTRICTIONS 288

Once you’ve defined a prompt, you have to tell irb to use it. From the command line, you

can use the --prompt option. (Notice how the name of the prompt mode is automatically

converted to uppercase, with hyphens changing to underscores.)

% irb prompt myprompt

If you want to use this prompt in all your future irb sessions, you can set it as a configuration

value in your .irbrc file:

IRB.conf[:PROMPT_MODE] = :MY_PROMPT

The symbols PROMPT_I, PROMPT_S, and PROMPT_C specify the format for each of the

prompt strings. In a format string, certain % sequences are expanded:

Flag Description

%N Current command.

%m to_s of the main object (self).

%M inspect of the main object (self).

%l Delimiter type. In strings that are continued across a line break, %l will display

the type of delimiter used to begin the string, so you’ll know how to end it. The

delimiter will be one of ", ', /,], or `.

%ni Indent level. The optional number n is used as a width specification to printf, as

printf("%nd").

%nn Current line number (n used as with the indent level).

%% A literal percent sign.

For instance, the default prompt mode is defined as follows:

IRB.conf[:PROMPT][:DEFAULT] = {

:PROMPT_I => "%N(%m):%03n:%i> ",

:PROMPT_S => "%N(%m):%03n:%i%l ",

:PROMPT_C => "%N(%m):%03n:%i* ",

:RETURN => "=> %s\n"

}

Restrictions
Because of the way irb works, it is slightly incompatible with the standard Ruby interpreter.

The problem lies in the determination of local variables.

Normally, Ruby looks for an assignment statement to determine whether something is a

variable—if a name hasn’t been assigned to, then Ruby assumes that name is a method call:

eval "var = 0"

var

produces:

prog.rb:2:in `<main>': undefined local variable or method `var' for

main:Object (NameError)

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=288

RESTRICTIONS 289

In this case, the assignment is there, but it’s within a string, so Ruby doesn’t take it into

account.

irb, on the other hand, executes statements as they are entered:

irb(main):001:0> eval "var = 0"

0

irb(main):002:0> var

0

In irb, the assignment was executed before the second line was encountered, so var is cor-

rectly identified as a local variable.

If you need to match the Ruby behavior more closely, you can place these statements within

a begin/end pair:

irb(main):001:0> begin

irb(main):002:1* eval "var = 0"

irb(main):003:1> var

irb(main):004:1> end

NameError: undefined local variable or method `var'

(irb):3:in `irb_binding'

Saving Your Session History

If you have readline support in irb (that is, you can hit the up arrow key and irb recalls the

previous command you entered), then you can also configure irb to remember the commands

you enter between sessions. Simply add the following to your .irbrc file:

Download samples/irb_14.rb

IRB.conf[:SAVE_HISTORY] = 50 # save last 50 commands

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/irb_14.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=289

