
Chapter 21

Ruby and Microsoft Windows

Ruby runs in a number of environments. Some of these are Unix-based, and others are based

on the various flavors of Microsoft Windows. Ruby came from people who were Unix-

centric, but over the years it has developed a whole lot of useful features in the Windows

world, too. In this chapter, we’ll look at these features and share some secrets that let you

use Ruby effectively under Windows.

Getting Ruby for Windows
Although you could build Ruby for Windows from source, most people simply download

the prebuilt binaries from the main Ruby FTP site.1 Create a directory for your Ruby instal-

lation, and download the latest zip file into it. Unzip the file, and you’ll end up with a

complete, standard Ruby directory tree (\bin, \doc, \lib and so on). Add the bin directory to

your path, and Ruby should be available to you. For example, I downloaded the .zip file

into the directory C:\ruby19:

C:\> mkdir \ruby19

C:\ruby19> cd \ruby19

C:\ruby19> ftp ftp.rubylang.org

Connected to carbon.rubylang.org.

User (carbon.rubylang.org:(none)): ftp

331 Please specify the password.

Password: your email address

230 Login successful.

ftp> cd pub/ruby/binaries/mswin32/unstable

250 Directory successfully changed.

ftp> dir

rwrr 1 ... Jul 08 2007 ruby1.9.020070709i386mswin32.zip

rwrr 1 ... Jul 08 2007 ruby1.9.020070709x64mswin64_80.zip

rwrr 1 ... Oct 28 15:31 ruby1.9.1preview1i386mswin32.zip

rwrr 1 ... Oct 28 15:31 ruby1.9.1preview1x64mswin64_80.zip

1. ftp://ftp.rubylang.org/pub/ruby/binaries/mswin32/unstable/

Report erratum316

ftp://ftp.ruby-lang.org/pub/ruby/binaries/mswin32/unstable/
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=316

RUNNING RUBY UNDER WINDOWS 317

ftp> bin

200 Switching to Binary mode.

ftp> get ruby1.9.1preview1i386mswin32.zip

200 PORT command successful. Consider using PASV.

150 Opening BINARY mode data connection

for ruby1.9.1preview1i386mswin32.zip (13535099 bytes).

226 File send OK.

ftp: 13535099 bytes received in 48.06Seconds 280.21Kbytes/sec.

ftp> by

C:\ruby19> unzip.exe ruby1.9.00i386mswin32.zip

: :

C:\ruby19> PATH=\ruby19\bin;%PATH%

C:\ruby19> ruby v

ruby 1.9.1 (20081028 revision 19983) [i386mswin32]

Running Ruby Under Windows
You’ll find two executables in the Ruby Windows distribution.

ruby.exe is meant to be used at a command prompt (a DOS shell), just as in the Unix version.

For applications that read and write to the standard input and output, this is fine. But this

also means that any time you run ruby.exe, you’ll get a DOS shell even if you don’t want

one—Windows will create a new command prompt window and display it while Ruby is

running. This may not be appropriate behavior if, for example, you double-click a Ruby

script that uses a graphical interface (such as Tk) or if you are running a Ruby script as a

background task or from inside another program.

In these cases, you will want to use rubyw.exe. It is the same as ruby.exe except that it does

not provide standard in, standard out, or standard error and does not launch a DOS shell

when run.

You can set up file associations using the assoc and ftype commands so that Ruby will

automatically run Ruby when you double-click the name of a Ruby script:

C:\> assoc .rb=RubyScript

C:\> ftype RubyScript="C:\ruby1.9\bin\ruby.exe %1 %*

Win32API
If you plan on doing Ruby programming that needs to access some Windows 32 API func-

tions directly or that needs to use the entry points in some other DLLs, we’ve got good news

for you—the Win32API library.

As an example, here’s some code that’s part of a larger Windows application used by our

book fulfillment system to download and print invoices and receipts. A web application

generates a PDF file, which the Ruby script running on Windows downloads into a local

file. The script then uses the print shell command under Windows to print this file.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=317

WINDOWS AUTOMATION 318

What About the One-Click Installer?

Ruby 1.8 had a no-assembly-required package called the One-Click
Ruby Installer (1CRI). Download it, and it will install Ruby, a bunch of
gems, and even a version of the original PickAxe.

However, because this installer packages so many gems and because
many of these gems haven’t been updated for Ruby 1.9, the team has
not released a Ruby 1.9 version of 1CRI at the time of this writing.
Check http://rubyinstaller.rubyforge.org for the current status.

arg = "ids=#{resp.intl_orders.join(",")}"

fname = "/temp/invoices.pdf"

site = Net::HTTP.new(HOST, PORT)

site.use_ssl = true

http_resp, = site.get2("/ship/receipt?" + arg,

'Authorization' => 'Basic ' +

["name:passwd"].pack('m').strip)

File.open(fname, "wb") {|f| f.puts(http_resp.body) }

shell = Win32API.new("shell32","ShellExecute",

['L','P','P','P','P','L'], 'L')

shell.Call(0, "print", fname, 0,0, SW_SHOWNORMAL)

You create a Win32API object that represents a call to a particular DLL entry point by

specifying the name of the function, the name of the DLL that contains the function, and the

function signature (argument types and return type). In the previous example, the variable

shell wraps the Windows function ShellExecute in the shell32 DLL. The second parameter

is an array of characters describing the types of the parameters the method takes: ‘n’ and ‘l’

represent numbers, ‘i’ represent integers, ‘p’ represents pointers to data stored in a string,

and ‘v’ a void type (used for export parameters only). These strings are case-insensitive. So

our method takes a number, four string pointers, and a number. The last parameter says that

the method returns a number. The resulting object is a proxy to the underlying ShellExecute

function, and can be used to make the call to print the file that we downloaded.

Many of the arguments to DLL functions are binary structures of some form. Win32API

handles this by using Ruby String objects to pass the binary data back and forth. You will

need to pack and unpack these strings as necessary.

Windows Automation
If groveling around in the low-level Windows API doesn’t interest you, Windows Automa-

tion may—you can use Ruby as a client for Windows Automation thanks to a Ruby exten-

Report erratum

http://rubyinstaller.rubyforge.org
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=318

WINDOWS AUTOMATION 319

sion called WIN32OLE, written by Masaki Suketa. Win32OLE is part of the standard Ruby

distribution.

Windows Automation allows an automation controller (a client) to issue commands and

queries against an automation server, such as Microsoft Excel, Word, and so on.

You can execute an automation server’s method by calling a method of the same name from

a WIN32OLE object. For instance, you can create a new WIN32OLE client that launches a

fresh copy of Internet Explorer and commands it to visit its home page:

require 'win32ole'

ie = WIN32OLE.new('InternetExplorer.Application')

ie.visible = true

ie.gohome

You could also make it navigate to a particular page:

require 'win32ole'

ie = WIN32OLE.new('InternetExplorer.Application')

ie.visible = true

ie.navigate("http://www.pragprog.com")

Methods that aren’t known to WIN32OLE (such as visible, gohome, or navigate) are passed

on to the WIN32OLE#invoke method, which sends the proper commands to the server.

Getting and Setting Properties

You can set and get properties from the server using normal Ruby hash notation. For exam-

ple, to set the Rotation property in an Excel chart, you could write this:

excel = WIN32OLE.new("excel.application")

excelchart = excel.Charts.Add()

...

excelchart['Rotation'] = 45

puts excelchart['Rotation']

An OLE object’s properties are automatically set up as attributes of the WIN32OLE object.

This means you can set a property by assigning to an object attribute:

excelchart.rotation = 45

r = excelchart.rotation

The following example is a modified version of the sample file excel2.rb (found in the

ext/win32/samples directory). It starts Excel, creates a chart, and then rotates it on the screen.

Watch out, Pixar!

require 'win32ole'

4100 is the value for the Excel constant xl3DColumn.

ChartTypeVal = 4100;

excel = WIN32OLE.new("excel.application")

Create and rotate the chart

excel['Visible'] = TRUE

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=319

WINDOWS AUTOMATION 320

excel.Workbooks.Add()

excel.Range("a1")['Value'] = 3

excel.Range("a2")['Value'] = 2

excel.Range("a3")['Value'] = 1

excel.Range("a1:a3").Select()

excelchart = excel.Charts.Add()

excelchart['Type'] = ChartTypeVal

30.step(180, 5) do |rot|

excelchart.rotation = rot

sleep(0.1)

end

excel.ActiveWorkbook.Close(0)

excel.Quit()

Named Arguments

Other automation client languages such as Visual Basic have the concept of named argu-

ments. Suppose you had a Visual Basic routine with the following signature:

Song(artist, title, length): rem Visual Basic

Instead of calling it with all three arguments in the order specified, you could use named

arguments:

Song title := 'Get It On': rem Visual Basic

This is equivalent to the call Song(nil, ’Get It On’, nil).

In Ruby, you can use this feature by passing a hash with the named arguments:

Song.new('title' => 'Get It On')

for each

Where Visual Basic has a for each statement to iterate over a collection of items in a server, a

WIN32OLE object has an each method (which takes a block) to accomplish the same thing:

require 'win32ole'

excel = WIN32OLE.new("excel.application")

excel.Workbooks.Add

excel.Range("a1").Value = 10

excel.Range("a2").Value = 20

excel.Range("a3").Value = "=a1+a2"

excel.Range("a1:a3").each do |cell|

p cell.Value

end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=320

WINDOWS AUTOMATION 321

Events

Your automation client written in Ruby can register itself to receive events from other pro-

grams. This is done using the WIN32OLE_EVENT class.

This example (based on code from the Win32OLE 0.1.1 distribution) shows the use of an

event sink that logs the URLs that a user browses to when using Internet Explorer:

require 'win32ole'

$urls = []

def navigate(url)

$urls << url

end

def stop_msg_loop

puts "IE has exited..."

throw :done

end

def default_handler(event, *args)

case event

when "BeforeNavigate"

puts "Now Navigating to #{args[0]}..."

end

end

ie = WIN32OLE.new('InternetExplorer.Application')

ie.visible = TRUE

ie.gohome

ev = WIN32OLE_EVENT.new(ie, 'DWebBrowserEvents')

ev.on_event {|*args| default_handler(*args)}

ev.on_event("NavigateComplete") {|url| navigate(url)}

ev.on_event("Quit") {|*args| stop_msg_loop}

catch(:done) do

loop do

WIN32OLE_EVENT.message_loop

end

end

puts "You Navigated to the following URLs: "

$urls.each_with_index do |url, i|

puts "(#{i+1}) #{url}"

end

Optimizing

As with most (if not all) high-level languages, it can be all too easy to churn out code that

is unbearably slow, but that can be easily fixed with a little thought.

With WIN32OLE, you need to be careful with unnecessary dynamic lookups. Where possi-

ble, it is better to assign a WIN32OLE object to a variable and then reference elements from

it, rather than creating a long chain of “.” expressions.

For example, instead of writing this:

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=321

WINDOWS AUTOMATION 322

workbook.Worksheets(1).Range("A1").value = 1

workbook.Worksheets(1).Range("A2").value = 2

workbook.Worksheets(1).Range("A3").value = 4

workbook.Worksheets(1).Range("A4").value = 8

we can eliminate the common subexpressions by saving the first part of the expression to a

temporary variable and then make calls from that variable:

worksheet = workbook.Worksheets(1)

worksheet.Range("A1").value = 1

worksheet.Range("A2").value = 2

worksheet.Range("A3").value = 4

worksheet.Range("A4").value = 8

You can also create Ruby stubs for a particular Windows type library. These stubs wrap the

OLE object in a Ruby class with one method per entry point. Internally, the stub uses the

entry point’s number, not name, which speeds access.

Generate the wrapper class using the olegen.rb script in the ext\win32ole\samples directory,

giving it the name of the type library to reflect on:

C:\> ruby olegen.rb 'NetMeeting 1.1 Type Library' >netmeeting.rb

The external methods and events of the type library are written as Ruby methods to the

given file. You can then include it in your programs and call the methods directly. Let’s try

some timings:

require 'netmeeting'

require 'benchmark'

include Benchmark

bmbm(10) do |test|

test.report("Dynamic") do

nm = WIN32OLE.new('NetMeeting.App.1')

10000.times { nm.Version }

end

test.report("Via proxy") do

nm = NetMeeting_App_1.new

10000.times { nm.Version }

end

end

produces:

Rehearsal

Dynamic 0.600000 0.200000 0.800000 (1.623000)

Via proxy 0.361000 0.140000 0.501000 (0.961000)

 total: 1.301000sec

user system total real

Dynamic 0.471000 0.110000 0.581000 (1.522000)

Via proxy 0.470000 0.130000 0.600000 (0.952000)

The proxy version is more than 40 percent faster than the code that does the dynamic lookup.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=322

WINDOWS AUTOMATION 323

More Help

If you need to interface Ruby to Windows NT, 2000, or XP, you may want to take a look

at Daniel Berger’s Win32Utils project (http://rubyforge.org/projects/win32utils/).

There you’ll find modules for interfacing to the Windows clipboard, event log, scheduler,

and so on.

Also, the DL library (described briefly on page 746) allows Ruby programs to invoke meth-

ods in dynamically loaded shared objects. On Windows, this means that your Ruby code can

load and invoke entry points in a Windows DLL. For example, the following code, taken

from the DL source code in the standard Ruby distribution, pops up a message box on a

Windows machine and determines which button the user clicked:

Download samples/win32_15.rb

require 'dl'

User32 = DL.dlopen("user32")

MB_OKCANCEL = 1

message_box = User32['MessageBoxA', 'ILSSI']

r, rs = message_box.call(0, 'OK?', 'Please Confirm', MB_OKCANCEL)

case r

when 1

print("OK!\n")

when 2

print("Cancel!\n")

end

This code opens the User32 DLL. It then creates a Ruby object, message_box, that wraps

the MessageBoxA entry point. The second paramater, "ILSSI", declares that the method

returns an Integer and takes a Long, two Strings, and an Integer as parameters.

The wrapper object is then used to call the message box entry point in the DLL. The return

values are the result (in this case, the identifier of the button pressed by the user) and an

array of the parameters passed in (which we ignore).

Report erratum

http://rubyforge.org/projects/win32utils/
http://media.pragprog.com/titles/ruby3/code/samples/win32_15.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=323

