
Part III

Ruby Crystallized

Report erratum324

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=324

Chapter 22

The Ruby Language

This chapter is a bottom-up look at the Ruby language. Most of what appears here is the syn-

tax and semantics of the language itself—we mostly ignore the built-in classes and modules

(these are covered in depth starting on page 442). However, Ruby sometimes implements

features in its libraries that in most languages would be part of the basic syntax. We’ve

included these methods here and have tried to flag them with “Library” in the margin.

The contents of this chapter may look familiar—with good reason. We’ve covered just about

all of this in the earlier tutorial chapters. Consider this chapter to be a self-contained refer-

ence to the core Ruby language.

Source File Encoding1.9

Ruby programs are by default written in 7-bit ASCII, also called US-ASCII. If a code set

other than 7-bit ASCII is to be used, place a comment containing coding: followed by the

name of an encoding on its own on the first line of each source file containing non-ASCII

characters. The coding: comment can be on the second line of the file if the first line is a

shebang comment. Ruby skips characters in the comment before the word coding:

coding: utf-8 # -*- encoding: iso-8859-1 -*- #!/usr/bin/ruby

fileencoding: us-ascii

UTF-8 source... ISO-8859-1 source... ASCII source...

Source Layout
Ruby is a line-oriented language. Ruby expressions and statements are terminated at the

end of a line unless the parser can determine that the statement is incomplete—for example,

if the last token on a line is an operator or comma. A semicolon can be used to separate

multiple expressions on a line. You can also put a backslash at the end of a line to continue

it onto the next. Comments start with # and run to the end of the physical line. Comments

are ignored during syntax analysis.

Report erratum325

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=325

SOURCE LAYOUT 326

a = 1

b = 2; c = 3

d = 4 + 5 +

6 + 7 # no '\' needed

e = 8 + 9 \

+ 10 # '\' needed

Physical lines between a line starting with =begin and a line starting with =end are ignored

by Ruby and may be used to comment out sections of code or to embed documentation.

Ruby reads its program input in a single pass, so you can pipe programs to the Ruby inter-

preter’s standard input stream:

echo 'puts "Hello"' | ruby

If Ruby comes across a line anywhere in the source containing just “_ _END_ _”, with no

leading or trailing whitespace, it treats that line as the end of the program—any subsequent

lines will not be treated as program code. However, these lines can be read into the running

program using the global IO object DATA, described on page 343.

BEGIN and END Blocks

Every Ruby source file can declare blocks of code to be run as the file is being loaded (the

BEGIN blocks) and after the program has finished executing (the END blocks):

BEGIN {

begin code

}

END {

end code

}

A program may include multiple BEGIN and END blocks. BEGIN blocks are executed in the

order they are encountered. END blocks are executed in reverse order.

General Delimited Input

As well as the normal quoting mechanism, alternative forms of literal strings, arrays, regular

expressions, and shell commands are specified using a generalized delimited syntax. All

these literals start with a percent character, followed by a single character that identifies the

literal’s type. These characters are summarized in Table 22.1 on the next page; the actual

literals are described in the corresponding sections later in this chapter.

Following the type character is a delimiter, which can be any nonalphabetic or nonmulti-

byte character. If the delimiter is one of the characters (, [, {, or <, the literal consists of the

characters up to the matching closing delimiter, taking account of nested delimiter pairs.

For all other delimiters, the literal comprises the characters up to the next occurrence of the

delimiter character.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=326

THE BASIC TYPES 327

Table 22.1. General Delimited Input

Type Meaning See Page

%q Single-quoted string 328

%Q, % Double-quoted string 328

%w, %W Array of strings 330

%r Regular expression pattern 332

%s A symbol 331

%x Shell command 344

%q/this is a string/

%qstring

%q(a (nested) string)

Delimited strings may continue over multiple lines; the line endings and all spaces at the

start of continuation lines will be included in the string:

meth = %q{def fred(a)

a.each {|i| puts i }

end}

The Basic Types
The basic types in Ruby are numbers, strings, arrays, hashes, ranges, symbols, and regular

expressions.

Integer and Floating-Point Numbers

Ruby integers are objects of class Fixnum or Bignum. Fixnum objects hold integers that

fit within the native machine word minus 1 bit. Whenever a Fixnum exceeds this range, it

is automatically converted to a Bignum object, whose range is effectively limited only by

available memory. If an operation with a Bignum result has a final value that will fit in a

Fixnum, the result will be returned as a Fixnum.

Integers are written using an optional leading sign and an optional base indicator (0 or 0o

for octal, 0d for decimal, 0x for hex, or 0b for binary), followed by a string of digits in the

appropriate base. Underscore characters are ignored in the digit string.

123456 => 123456 # Fixnum

0d123456 => 123456 # Fixnum

123_456 => 123456 # Fixnum underscore ignored

543 => 543 # Fixnum negative number

0xaabb => 43707 # Fixnum hexadecimal

0377 => 255 # Fixnum octal

0o377 => 255 # Fixnum octal

0b10_1010 => 42 # Fixnum binary (negated)

123_456_789_123_456_789 => 123456789123456789 # Bignum

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=327

THE BASIC TYPES 328

A numeric literal with a decimal point and/or an exponent is turned into a Float object,

corresponding to the native architecture’s double data type. You must follow the decimal

point with a digit; if you write 1.e3, Ruby tries to invoke the method e3 on the Fixnum 1.

You must place at least one digit before the decimal point.

12.34 # => 12.34

0.1234e2 # => 12.34

1234e2 # => 12.34

Rational and Complex Numbers

Classes that support rational numbers (ratios of integers) and complex numbers are built into

the Ruby interpreter.1.9 However, Ruby provides no language-level support for these numeric

types. There are for rational or complex literals, for example. See the descriptions of Com-

plex and Rational on pages 473 and 660 for more information.

Strings

Ruby provides a number of mechanisms for creating literal strings. Each generates objects

of type String. The different mechanisms vary in terms of how a string is delimited and

how much substitution is done on the literal’s content. Literal strings are encoded using the

source encoding of the file that contains them.

Single-quoted string literals ('stuff ' and %q/stuff /) undergo the least substitution. Both con-

vert the sequence \\ into a single backslash, and the form with single quotes converts \'

into a single quote. All other backslashes appear literally in the string.

'hello' # => hello

'a backslash \'\\\'' # => a backslash '\'

%q/simple string/ # => simple string

%q(nesting (really) works) # => nesting (really) works

%q no_blanks_here ; # => no_blanks_here

Double-quoted strings ("stuff ", %Q/stuff /, and %/stuff /) undergo additional substitutions,

shown in Table 22.2 on the following page.

a = 123

"\123mile" # => Smile

"Greek pi: \u03c0" # => Greek pi: π
"Greek \u{70 69 3a 20 3c0}" # => Greek pi: π
"Say \"Hello\"" # => Say "Hello"

%Q!"I said 'nuts'," I said! # => "I said 'nuts'," I said

%Q{Try #{a + 1}, not #{a 1}} # => Try 124, not 122

%<Try #{a + 1}, not #{a 1}> # => Try 124, not 122

"Try #{a + 1}, not #{a 1}" # => Try 124, not 122

%{ #{ a = 1; b = 2; a + b } } # => 3

Last, and probably least (in terms of usage), you can get the string1.9 corresponding to an

ASCII character by preceding that character with a question mark. You can use the back-

slash escapes shown in Table 22.2 on the next page.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=328

THE BASIC TYPES 329

Table 22.2. Substitutions in Double-Quoted Strings

\a Bell/alert (0x07) \nnn Octal nnn

\b Backspace (0x08) \xnn Hex nn

\e Escape (0x1b) \cx Control-x

\f Formfeed (0x0c) \Cx Control-x

\n Newline (0x0a) \Mx Meta-x

\r Return (0x0d) \M\Cx Meta-control-x

\s Space (0x20) \x x

\t Tab (0x09) #{code} Value of code

\v Vertical tab (0x0b) \uxxxx Unicode character

\u{xx xx xx} Unicode characters

?a # => "a" (ASCII character)

?\n # => "\n" (newline (0x0a))

?\C-a # => "\x01" (control a = 0x65 & 0x9f = 0x01)

?\M-a # => "\xE1" (meta sets bit 7)

?\M-\C-a # => "\x81" (meta and control a)

?\C-? # => "\x7F" (delete character)

Strings can continue across multiple input lines, in which case they will contain newline

characters. It is also possible to use here documents to express long string literals. Whenever

Ruby parses the sequence <<identifier or <<quoted string, it replaces it with a string literal

built from successive logical input lines. It stops building the string when it finds a line

that starts with identifier or quoted string. You can put a minus sign immediately after

the << characters, in which case the terminator can be indented from the left margin. If a

quoted string was used to specify the terminator, its quoting rules will be applied to the here

document; otherwise, double-quoting rules apply.

print <<HERE

Double quoted \

here document.

It is #{Time.now}

HERE

print <<'THERE'

This is single quoted.

The above used #{Time.now}

THERE

produces:

Double quoted here document.

It is 20090413 13:26:11 0500

This is single quoted.

The above used #{Time.now}

Adjacent single- and double-quoted strings in the input are concatenated to form a single

String object:

'Con' "cat" 'en' "ate" # => "Concatenate"

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=329

THE BASIC TYPES 330

Every time a string literal is used in an assignment or as a parameter, a new String object is

created:

3.times do

print 'hello'.object_id, " "

end

produces:

338430 338370 338330

The documentation for class String starts on page 670.

Ranges

Outside the context of a conditional expression, expr..expr and expr...expr construct Range

objects. The two-dot form is an inclusive range; the one with three dots is a range that

excludes its last element. See the description of class Range on page 656 for details. Also

see the description of conditional expressions on page 348 for other uses of ranges.

Arrays

Literals of class Array are created by placing a comma-separated series of object references

between square brackets. A trailing comma is ignored.

arr = [fred, 10, 3.14, "This is a string", barney("pebbles"),]

Arrays of strings can be constructed using the shortcut notations %w and %W. The lower-

case form extracts space-separated tokens into successive elements of the array. No substi-

tution is performed on the individual strings. The uppercase version also converts the words

to an array but performs all the normal double-quoted string substitutions on each individual

word. A space between words can be escaped with a backslash. This is a form of general

delimited input, described on pages 326–327.

arr = %w(fred wilma barney betty great\ gazoo)

arr # => ["fred", "wilma", "barney", "betty", "great gazoo"]

arr = %w(Hey!\tIt is now #{Time.now})

arr # => ["Hey!\tIt", "is", "now", "#{Time.now}"]

arr = %W(Hey!\tIt is now #{Time.now})

arr # => ["Hey! It", "is", "now", "20090413 13:26:11 0500"]

Hashes

A literal Ruby Hash is created by placing a list of key/value pairs between braces. Keys and

values can be separated by the sequence =>.1

colors = { "red" => 0xf00, "green" => 0x0f0, "blue" => 0x00f }

1. As of Ruby 1.9, a comma may no longer be used to separate keys and values in hash literals. A comma still

appears between each key/value pair.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=330

THE BASIC TYPES 331

If the keys are symbols, you can use this alternative notation:

colors = { red: 0xf00, green: 0x0f0, blue: 0x00f }

The keys and/or values in a particular hash need not have the same type.

Requirements for a Hash Key

Hash keys must respond to the message hash by returning a hash code, and the hash code

for a given key must not change. The keys used in hashes must also be comparable using

eql?. If eql? returns true for two keys, then those keys must also have the same hash code.

This means that certain classes (such as Array and Hash) can’t conveniently be used as keys,

because their hash values can change based on their contents.

If you keep an external reference to an object that is used as a key and use that reference

to alter the object, thus changing its hash code, the hash lookup based on that key may not

work. You can force the hash to be reindexed by calling its rehash method.

arr = [1, 2, 3]

hash = { arr => 'value' }

hash[arr] # => "value"

arr[1] = 99

hash # => {[1, 99, 3]=>"value"}

hash[arr] # => nil

hash.rehash

hash[arr] # => "value"

Because strings are the most frequently used keys and because string contents are often

changed, Ruby treats string keys specially. If you use a String object as a hash key, the hash

will duplicate the string internally and will use that copy as its key. The copy will be frozen.

Any changes made to the original string will not affect the hash.

If you write your own classes and use instances of them as hash keys, you need to make

sure that either (a) the hashes of the key objects don’t change once the objects have been

created or (b) you remember to call the Hash#rehash method to reindex the hash whenever

a key hash is changed.

Symbols

A Ruby symbol is an identifier corresponding to a string of characters, often a name. You

construct the symbol for a name by preceding the name with a colon, and you can construct

the symbol for an arbitrary string by preceding a string literal with a colon. Substitution

occurs in double-quoted strings. A particular name or string will always generate the same

symbol, regardless of how that name is used within the program. You can also use the %s

delimited notation to create a symbol.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=331

THE BASIC TYPES 332

:Object

:my_variable

:"Ruby rules"

a = "cat"

:'catsup' # => :catsup

:"#{a}sup" # => :catsup

:'#{a}sup' # => :"\#{a}sup"

%s{symbol} # => :symbol

%s{ symbol with spaces } # => :" symbol with spaces "

Other languages call this process interning and call symbols atoms.

Regular Expressions

This section contains a summary on the Oniguruma regular expression engine used by Ruby.

See Chapter 7 on page 117 for a detailed description of regular expressions.

Regular expression literals are objects of type Regexp. They are created explicitly by call-

ing Regexp.new or implicitly by using the literal forms, /pattern/ and %r{pattern}. The %r

construct is a form of general delimited input (described on pages 326–327).

/pattern/

/pattern/options

%r{pattern}

%r{pattern}options

Regexp.new('pattern' [, options])

options is one or more of i (case insensitive), o (substitute once), m (. matches newline), and

x (allow spaces and comments). You can additionally override the default encoding of the

pattern with n (no encoding-ASCII), e (EUC), s (Shift_JIS), or u (UTF-8).

Regular Expression Patterns

(This section contains many differences from previous versions of this book. Ruby 1.91.9 uses

the Oniguruma regular expression engine.)2

characters All except ., |, (,), [, \, ^, {, +, $, *, and ? match themselves. To match

one of these characters, precede it with a backslash.

\a \cx \e \f \r \t \unnnn \v \xnn \nnn \C-\M-x \C-x \M-x

Match the character derived according to Table 22.2 on page 329.

^, $ Match the beginning/end of a line.

\A, \z, \Z Match the beginning/end of the string. \Z ignores trailing \n.

\d, \h Match any decimal digit (or Unicode Decimal_Number), hexadecimal

digit ([0-9a-fA-F]).

\s Matches any whitespace character: tab, newline, vertical tab, form feed,

return, and space. For Unicode, add Line_Separator codepoints.

2. Some of the information here is based on http://www.geocities.jp/kosako3/oniguruma/doc/RE.txt.

Report erratum

http://www.geocities.jp/kosako3/oniguruma/doc/RE.txt
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=332

THE BASIC TYPES 333

\w Matches any word character: alphanumerics and underscores. For Uni-

code, add in the codepoints in Connector_Punctuation, Letter, Mark,

and Number.

\D,\H, \S, \W The negated forms of \d, \h, \s, and \w, matching characters that are not

digits, hexadecimal digits, whitespace, or word characters.

\b, \B Match word/nonword boundaries.

\G The position where a previous repetitive search completed.

\p{property}, \P{property}, \p{!property}

Match a character that is in/not in the given property (see Table 7.3 on

page 126).

. (period) Appearing outside brackets, matches any character except a newline.

(With the /m option, it matches newline, too).

[characters] Matches a single character from the specified set. See page 123.

re* Matches zero or more occurrences of re.

re+ Matches one or more occurrences of re.

re{m,n} Matches at least “m” and at most “n” occurrences of re.

re{m,} Matches at least “m” occurrences of re.

re{,n} Matches at most “n” occurrences of re.

re{m} Matches exactly “m” occurrences of re.

re? Matches zero or one occurrence of re.

The ?, *, +, and {m,n} modifiers are greedy by default. Append a ques-

tion mark to make them minimal, and append a plus sign to make them

possessive (that is, they are greedy and will not backtrack).

re1|re2 Matches either re1 or re2.

(...) Group regular expressions and introduce extensions.

#{...} Substitutes expression in the pattern, as with strings. By default, the sub-

stitution is performed each time a regular expression literal is evaluated.

With the /o option, it is performed just the first time.

\0, \1, \2, ... \n, \&, \`, \', \+

Substitute the value matched by the nth grouped subexpression or by

the entire match, pre- or postmatch, or the highest group.

(?# comment) Inserts a comment into the pattern.

(?:re) Makes re into a group without generating backreferences.

(?=re), (?!re) Matches if re is/is not at this point but does not consume it.

(?<=re), (?<!re)

Matches if re is/is not before this point but does not consume it.

(?>re) Matches re, but inhibits subsequent backtracking.

(?imx), (?-imx) Turn on/off the corresponding i, m, or x option. If used inside a group,

the effect is limited to that group.

(?imx:re), (?-imx:re)

Turn on/off the i, m, or x option for re.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=333

NAMES 334

\n, \k’n’, and \k<n>

The nth captured subpattern.

(?<name>...) or (?’name’...)

Name the string captured by the group.

\k<name> or \k’name’

The contents of the named group.

\k<name>+n/1 or \k’name’+/-n

The contents of the named group at the given relative nesting level.

\g<name> or \g<number>

Invoke the named or numbered group.

Names
Ruby names are used to refer to constants, variables, methods, classes, and modules. The

first character of a name helps Ruby to distinguish its intended use. Certain names, listed in

Table 22.3 on the next page, are reserved words and should not be used as variable, method,

class, or module names.

Method names are described in the section beginning on page 351.

In these descriptions, Uppercase letter means A though Z, and digit means 0 through 9. low-

ercase letter means the characters a though z, as well as _ , the underscore. In addition, any

non-7-bit characters that are valid in the current encoding are considered to be lowercase.3

A name is an uppercase letter, a lowercase letter, or an underscore, followed by name char-

acters: any combination of upper- and lowercase letters, underscores, and digits.

A local variable name consists of a lowercase letter followed by name characters. It is

conventional to use underscores rather than camelCase to write multiword names, but the

interpreter does not enforce this:

fred anObject _x three_two_one

If the source file encoding is UTF-8, δelta and été are both valid local variable names.

An instance variable name starts with an “at” sign (@) followed by a name. It is generally

a good idea to use a lowercase letter after the @.

@name @_ @size

A class variable name starts with two “at” signs (@@) followed by a name.

@@name @@_ @@Size

A constant name starts with an uppercase letter followed by name characters. Class names

and module names are constants and follow the constant naming conventions.

3. Such names will not be usable from other source files with different encoding.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=334

NAMES 335

Table 22.3. Reserved Words

__FILE__ and def end in or self unless

__LINE__ begin defined? ensure module redo super until

BEGIN break do false next rescue then when

END case else for nil retry true while

alias class elsif if not return undef yield

By convention, constant object references are normally spelled using uppercase letters and

underscores throughout, while class and module names are MixedCase:

module Math

ALMOST_PI = 22.0/7.0

end

class BigBlob

end

Global variables, and some special system variables, start with a dollar sign ($) followed

by name characters. In addition, Ruby defines a set of two-character global variable names

in which the second character is a punctuation character. These predefined variables are

listed starting on page 339. Finally, a global variable name can be formed using $- followed

by a single letter or underscore. These latter variables typically mirror the setting of the

corresponding command-line option (see the table starting on page 341 for details):

$params $PROGRAM $! $_ $a $K

Variable/Method Ambiguity

When Ruby sees a name such as a in an expression, it needs to determine whether it is a

local variable reference or a call to a method with no parameters. To decide which is the

case, Ruby uses a heuristic. As Ruby parses a source file, it keeps track of symbols that have

been assigned to. It assumes that these symbols are variables. When it subsequently comes

across a symbol that could be a variable or a method call, it checks to see whether it has

seen a prior assignment to that symbol. If so, it treats the symbol as a variable; otherwise,

it treats it as a method call. As a somewhat pathological case of this, consider the following

code fragment, submitted by Clemens Hintze:

def a

print "Function 'a' called\n"

99

end

for i in 1..2

if i == 2

print "a=", a, "\n"

else

a = 1

print "a=", a, "\n"

end

end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=335

VARIABLES AND CONSTANTS 336

produces:

a=1

Function 'a' called

a=99

During the parse, Ruby sees the use of a in the first print statement and, because it hasn’t yet

seen any assignment to a, assumes that it is a method call. By the time it gets to the second

print statement, though, it has seen an assignment and so treats a as a variable.

Note that the assignment does not have to be executed—Ruby just has to have seen it. This

program does not raise an error.

a = 1 if false; a

Variables and Constants
Ruby variables and constants hold references to objects. Variables themselves do not have

an intrinsic type. Instead, the type of a variable is defined solely by the messages to which

the object referenced by the variable responds.4

A Ruby constant is also a reference to an object. Constants are created when they are first

assigned to (normally in a class or module definition). Ruby, unlike less flexible languages,

lets you alter the value of a constant, although this will generate a warning message:

MY_CONST = 1

MY_CONST = 2 # generates a warning

produces:

/tmp/prog.rb:2: warning: already initialized constant MY_CONST

Note that although constants should not be changed, you can alter the internal states of the

objects they reference:5

MY_CONST = "Tim"

MY_CONST[0] = "J" # alter string referenced by constant

MY_CONST # => "Jim"

Assignment potentially aliases objects, creating two references to the same object.

Scope of Constants and Variables

Constants defined within a class or module may be accessed unadorned anywhere within

the class or module. Outside the class or module, they may be accessed using the scope

operator, :: prefixed by an expression that returns the appropriate class or module object.

Constants defined outside any class or module may be accessed unadorned or by using the

4. When we say that a variable is not typed, we mean that any given variable can at different times hold references

to objects of many different types.

5. You can freeze objects to prevent this.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=336

VARIABLES AND CONSTANTS 337

scope operator :: with no prefix. Constants may not be defined in methods. Constants may

be added to existing classes and modules from the outside by using the class or module

name and the scope operator before the constant name.

OUTER_CONST = 99

class Const

def get_const

CONST

end

CONST = OUTER_CONST + 1

end

Const.new.get_const # => 100

Const::CONST # => 100

::OUTER_CONST # => 99

Const::NEW_CONST = 123

Global variables are available throughout a program. Every reference to a particular global

name returns the same object. Referencing an uninitialized global variable returns nil.

Class variables are available throughout a class or module body. Class variables must be ini-

tialized before use. A class variable is shared among all instances of a class and is available

within the class itself.

class Song

@@count = 0

def initialize

@@count += 1

end

def Song.get_count

@@count

end

end

Class variables belong to the innermost enclosing class or module. Class variables used at

the top level are defined in Object and behave like global variables. Class variables defined

within singleton methods belong to the top level (although this usage is deprecated and

generates a warning). In Ruby 1.9, class variables are private to the defining class:1.9

class Holder

@@var = 99

def Holder.var=(val)

@@var = val

end

def var

@@var

end

end

@@var = "top level variable"

a = Holder.new

a.var # => "top level variable"

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=337

VARIABLES AND CONSTANTS 338

Holder.var = 123

a.var # => 123

This references the toplevel object

def a.get_var

@@var

end

a.get_var # => "top level variable"

Class variables are inherited by children but are unique across children:

class Top

@@A = 1

@@B = 1

def dump

puts values

end

def values

"#{self.class.name}: @@A = #@@A, @@B = #@@B"

end

end

class MiddleOne < Top

@@B = 2

@@C = 2

def values

super + ", C = #@@C"

end

end

class MiddleTwo < Top

@@B = 3

@@C = 3

def values

super + ", C = #@@C"

end

end

class BottomOne < MiddleOne; end

class BottomTwo < MiddleTwo; end

Top.new.dump

MiddleOne.new.dump

MiddleTwo.new.dump

BottomOne.new.dump

BottomTwo.new.dump

produces:

Top: @@A = 1, @@B = 3

MiddleOne: @@A = 1, @@B = 3, C = 2

MiddleTwo: @@A = 1, @@B = 3, C = 3

BottomOne: @@A = 1, @@B = 3, C = 2

BottomTwo: @@A = 1, @@B = 3, C = 3

I recommend against using class variables for this reason.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=338

VARIABLES AND CONSTANTS 339

Instance variables are available within instance methods throughout a class body. Referenc-

ing an uninitialized instance variable returns nil. Each instance of a class has a unique set

of instance variables. Instance variables are not available to class methods (although classes

[and modules] also may have instance variables—see page 387).

Local variables are unique in that their scopes are statically determined but their existence

is established dynamically.

A local variable is created dynamically when it is first assigned a value during program

execution. However, the scope of a local variable is statically determined to be the imme-

diately enclosing block, method definition, class definition, module definition, or top-level

program. Referencing a local variable that is in scope but that has not yet been created gen-

erates a NameError exception. Local variables with the same name are different variables if

they appear in disjoint scopes.

Method parameters are considered to be variables local to that method.

Block parameters are assigned values when the block is invoked.

If a local variable is first assigned in a block, it is local to the block.

If a block uses a variable that is previously defined in the scope containing the block’s

definition, then the block will share that variable with the scope. There are two exceptions

to this. Block parameters are always local to the block. In addition, variables listed after a

semicolon at the end of the block parameter list are also always local to the block.

a = 1

b = 2

c = 3

some_method { |b; c| a = b + 1; c = a + 1; d = c + 1 }

In this previous example, the variable a inside the block is shared with the surrounding

scope. The variables b and c are not shared, because they are listed in the block’s parameter

list, and the variable d is not shared because it occurs only inside the block.

A block takes on the set of local variables in existence at the time that it is created. This

forms part of its binding. Note that although the binding of the variables is fixed at this

point, the block will have access to the current values of these variables when it executes.

The binding preserves these variables even if the original enclosing scope is destroyed.

The bodies of while, until, and for loops are part of the scope that contains them; previously

existing locals can be used in the loop, and any new locals created will be available outside

the bodies afterward.

Predefined Variables

The following variables are predefined in the Ruby interpreter. In these descriptions, the

notation [r/o] indicates that the variables are read-only; an error will be raised if a pro-

gram attempts to modify a read-only variable. After all, you probably don’t want to change

the meaning of true halfway through your program (except perhaps if you’re a politician).

Entries marked [thread] are thread local.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=339

VARIABLES AND CONSTANTS 340

Many global variables look something like Snoopy swearing: $_, $!, $&, and so on. This is

for “historical” reasons because most of these variable names come from Perl. If you find

memorizing all this punctuation difficult, you may want to take a look at the library file

called English, documented on page 748, which gives the commonly used global variables

more descriptive names.

In the tables of variables and constants that follow, we show the variable name, the type of

the referenced object, and a description.

Exception Information

$! Exception The exception object passed to raise. [thread]

$@ Array The stack backtrace generated by the last exception. See Kernel#caller on page 567

for details. [thread]

Pattern Matching Variables

These variables (except $=) are set to nil after an unsuccessful pattern match.

$& String The string matched (following a successful pattern match). This variable is local to

the current scope. [r/o, thread]

$+ String The contents of the highest-numbered group matched following a successful pattern

match. Thus, in "cat" =~/(c|a)(t|z)/, $+ will be set to “t.” This variable is local to the

current scope. [r/o, thread]

$` String The string preceding the match in a successful pattern match. This variable is local

to the current scope. [r/o, thread]

$' String The string following the match in a successful pattern match. This variable is local

to the current scope. [r/o, thread]

$1. . . $n String The contents of successive groups matched in a successful pattern match. In "cat"

=~/(c|a)(t|z)/, $1 will be set to “a” and $2 to “t.” This variable is local to the current

scope. [r/o, thread]

$~ MatchData An object that encapsulates the results of a successful pattern match. The variables

$&, $`, $', and $1 to $9 are all derived from $~. Assigning to $~ changes the values

of these derived variables. This variable is local to the current scope. [thread]

The variable $=, which previously controlled case-insensitive matches, has been removed

from Ruby 1.91.9 .

Input/Output Variables

$/ String The input record separator (newline by default). This is the value that routines such

as Kernel#gets use to determine record boundaries. If set to nil, gets will read the

entire file.

$-0 String Synonym for $/.

$\ String The string appended to the output of every call to methods such as Kernel#print and

IO#write. The default value is nil.

$, String The separator string output between the parameters to methods such as Kernel#print

and Array#join. Defaults to nil, which adds no text.

$. Fixnum The number of the last line read from the current input file.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=340

VARIABLES AND CONSTANTS 341

$; String The default separator pattern used by String#split. May be set from the command

line using the -F flag.

$< Object An object that provides access to the concatenation of the contents of all the files

given as command-line arguments or $stdin (in the case where there are no argu-

ments). $< supports methods similar to a File object: binmode, close, closed?,

each, each_byte, each_line, eof, eof?, file, filename, fileno, getc, gets, lineno,

lineno=, path, pos, pos=, read, readchar, readline, readlines, rewind, seek, skip,

tell, to_a, to_i, to_io, to_s, along with the methods in Enumerable. The method file

returns a File object for the file currently being read. This may change as $< reads

through the files on the command line. [r/o]

$> IO The destination of output for Kernel#print and Kernel#printf. The default value is

$stdout.

$_ String The last line read by Kernel#gets or Kernel#readline. Many string-related functions

in the Kernel module operate on $_ by default. The variable is local to the current

scope. [thread]

$-F String Synonym for $;.

$stderr IO The current standard error output.

$stdin IO The current standard input.

$stdout IO The current standard output. Assignment to $stdout is not permitted: use $std-

out.reopen instead.

The variables $defout and $deferr have been removed from Ruby 1.91.9 .

Execution Environment Variables

$0 String The name of the top-level Ruby program being executed. Typically this will be

the program’s filename. On some operating systems, assigning to this variable will

change the name of the process reported (for example) by the ps(1) command.

$* Array An array of strings containing the command-line options from the invocation of the

program. Options used by the Ruby interpreter will have been removed. [r/o]

$" Array An array containing the filenames of modules loaded by require. [r/o]

$$ Fixnum The process number of the program being executed. [r/o]

$? Process::Status

The exit status of the last child process to terminate. [r/o, thread]

$: Array An array of strings, where each string specifies a directory to be searched for Ruby

scripts and binary extensions used by the load and require methods. The initial value

is the value of the arguments passed via the -I command-line option, followed by

an installation-defined standard library location, followed by the current directory

(“.”). This variable may be set from within a program to alter the default search path;

typically, programs use $: << dir to append dir to the path. [r/o]

$-a Object True if the -a option is specified on the command line. [r/o]

_ _callee_ _ Symbol The1.9 name of the lexically enclosing method.

$-d Object Synonym for $DEBUG.

$DEBUG Object Set to true if the -d command-line option is specified.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=341

VARIABLES AND CONSTANTS 342

_ _ENCODING_ _

String The encoding of the current source file.1.9 [r/o]

_ _FILE_ _ String The name of the current source file. [r/o]

$F Array The array that receives the split input line if the -a command-line option is used.

$FILENAME String The name of the current input file. Equivalent to $<.filename. [r/o]

$-i String If in-place edit mode is enabled (perhaps using the -i command-line option), $-i

holds the extension used when creating the backup file. If you set a value into $-i,

enables in-place edit mode. See page 235.

$-I Array Synonym for $:. [r/o]

$-l Object Set to true if the -l option (which enables line-end processing) is present on the

command line. See page 235. [r/o]

_ _LINE_ _ String The current line number in the source file. [r/o]

$LOAD_PATH Array A synonym for $:. [r/o]

$LOADED_FEATURES

Array Synonym for $". [r/o]

_ _method_ _ Symbol The1.9 name of the lexically enclosing method.

$PROGRAM_NAME

String Alias for $0.

$-p Object Set to true if the -p option (which puts an implicit while gets . . . end loop around

your program) is present on the command line. See page 235. [r/o]

$SAFE Fixnum The current safe level (see page 437). This variable’s value may never be reduced

by assignment. [thread]

$VERBOSE Object Set to true if the -v, --version, -W, or -w option is specified on the command line.

Set to false if no option, or -W1 is given. Set to nil if -W0 was specified. Setting

this option to true causes the interpreter and some library routines to report addi-

tional information. Setting to nil suppresses all warnings (including the output of

Kernel.warn).

$-v Object Synonym for $VERBOSE.

$-w Object Synonym for $VERBOSE.

$-W Object Return the value set by the -W command-line option.

Standard Objects

ARGF Object A synonym for $<.

ARGV Array A synonym for $*.

ENV Object A hash-like object containing the program’s environment variables. An instance of

class Object, ENV implements the full set of Hash methods. Used to query and set

the value of an environment variable, as in ENV["PATH"] and ENV["term"]="ansi".

false FalseClass Singleton instance of class FalseClass. [r/o]

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=342

VARIABLES AND CONSTANTS 343

nil NilClass The singleton instance of class NilClass. The value of uninitialized instance and

global variables. [r/o]

self Object The receiver (object) of the current method. [r/o]

true TrueClass Singleton instance of class TrueClass. [r/o]

Global Constants

The following constants are defined by the Ruby interpreter.

DATA IO If the main program file contains the directive _ _END_ _, then the con-

stant DATA will be initialized so that reading from it will return lines

following _ _END_ _ from the source file.

FALSE FalseClass Constant containing reference to false.

NIL NilClass Constant containing reference to nil.

RUBY_COPYRIGHT String The interpreter copyright.

RUBY_DESCRIPTION String Version number1.9 and architecture of the interpreter.

RUBY_ENGINE String The name of the Ruby interpreter.1.9 Returns ruby for Matz’s version.

Other interpreters include macruby, ironruby, jruby, and rubinius.

RUBY_PATCHLEVEL String The patch level1.9 of the interpreter.

RUBY_PLATFORM String The identifier of the platform running this program.1.9 This string is in the

same form as the platform identifier used by the GNU configure utility

(which is not a coincidence).

RUBY_RELEASE_DATE

String The date of this release.

RUBY_REVISION String The revision of the interpreter.

RUBY_VERSION String The version number of the interpreter.

STDERR IO The actual standard error stream for the program. The initial value of

$stderr.

STDIN IO The actual standard input stream for the program. The initial value of

$stdin.

STDOUT IO The actual standard output stream for the program. The initial value of

$stdout.

SCRIPT_LINES_ _ Hash If a constant SCRIPT_LINES__ is defined and references a Hash, Ruby

will store an entry containing the contents of each file it parses, with

the file’s name as the key and an array of strings as the value. See Ker-

nel.require on page 576 for an example.

TOPLEVEL_BINDING Binding A Binding object representing the binding at Ruby’s top level—the level

where programs are initially executed.

TRUE TrueClass A reference to the object true.

The constant _ _FILE_ _ and the variable $0 are often used together to run code only if it

appears in the file run directly by the user. For example, library writers often use this to

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=343

EXPRESSIONS 344

include tests in their libraries that will be run if the library source is run directly, but not if

the source is required into another program.

library code

...

if __FILE__ == $0

tests...

end

Expressions
Single terms in an expression may be any of the following.

• Literal. Ruby literals are numbers, strings, arrays, hashes, ranges, symbols, and regular

expressions. These are described starting on page 327.

• Shell command. A shell command is a string enclosed in backquotes or in a general

delimited string (page 326) starting with %x. The value of the string is the standard

output of running the command represented by the string under the host operating

system’s standard shell. The execution also sets the $? variable with the command’s

exit status.

filter = "*.c"

files = `ls #{filter}`

files = %x{ls #{filter}}

• Variable reference or constant reference. A variable is referenced by citing its name.

Depending on scope (see page 336), a constant is referenced either by citing its name or

by qualifying the name, using the name of the class or module containing the constant

and the scope operator (::).

barney # variable reference

APP_NAMR # constant reference

Math::PI # qualified constant reference

• Method invocation. The various ways of invoking a method are described starting on

page 355.

Operator Expressions

Expressions may be combined using operators. Table 22.4 on the following page lists the

Ruby operators in precedence order. The operators with a 3 in the Method column are

implemented as methods and may be overridden.

More on Assignment

The assignment operator assigns one or more rvalues (the r stands for “right,” because rval-

ues tend to appear on the right side of assignments) to one or more lvalues (“left” values).

What is meant by assignment depends on each individual lvalue.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=344

EXPRESSIONS 345

Table 22.4. Ruby Operators (High to Low Precedence)

Method Operator Description

3 [] []= Element reference, element set

3 ** Exponentiation

3 ! ~ + – Not, complement, unary plus and minus

(method names for the last two are +@ and

-@)

3 * / % Multiply, divide, and modulo

3 + – Plus and minus

3 >> << Right and left shift (<< is also used as the

append operator)

3 & “And” (bitwise for integers)

3 ^ | Exclusive “or” and regular “or” (bitwise for

integers)

3 <= < > >= Comparison operators

3 <=> == === != =~ !~ Equality and pattern match operators

&& Logical “and”

|| Logical “or”

.. ... Range (inclusive and exclusive)

? : Ternary if-then-else

= %= /= –= += |= &= >>=

<<= *= &&= ||= **=

Assignment

not Logical negation

or and Logical composition

if unless while until Expression modifiers

begin/end Block expression

If an lvalue is a variable or constant name, that variable or constant receives a reference to

the corresponding rvalue:

a = /regexp/

b, c, d = 1, "cat", [3, 4, 5]

If the lvalue is an object attribute, the corresponding attribute setting method will be called

in the receiver, passing as a parameter the rvalue:

obj = A.new

obj.value = "hello" # equivalent to obj.value=("hello")

If the lvalue is an array element reference, Ruby calls the element assignment operator ([]=)

in the receiver, passing as parameters any indices that appear between the brackets followed

by the rvalue. This is illustrated in the following table.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=345

EXPRESSIONS 346

Element Reference Actual Method Call

var[] = "one" var.[]=("one")

var[1] = "two" var.[]=(1, "two")

var["a", /^cat/] = "three" var.[]=("a", /^cat/, "three")

If you are writing an []= method that accepts a variable number of indices, it might be

convenient to define it using this:

def []=(*indices, value)

...

end

The value of an assignment expression is its rvalue. This is true even if the assignment is to

an attribute method that returns something different.

Parallel Assignment

An assignment expression may have one or more lvalues and one or more rvalues. This

section explains how Ruby handles assignment with different combinations of arguments:

1. If any rvalue is prefixed with an asterisk and implements to_a, the rvalue is replaced

with the elements returned by to_a, with each element forming its own rvalue.

2. If the assignment contains one lvalue and multiple rvalues, the rvalues are converted to

an array and assigned to that lvalue.

3. If the assignment contains multiple lvalues and one rvalue, the rvalue is expanded if

possible into a set of rvalues as described in (1).

4. Successive rvalues are assigned to the lvalues. This assignment effectively happens in

parallel, so that (for example) a,b=b,a swaps the values in a and b.

5. If there are more lvalues than rvalues, the excess will have nil assigned to them.

6. If there are more rvalues than lvalues, the excess will be ignored.

7. At most one lvalue can be prefixed by an asterisk. This lvalue will end up being an

array and will contain as many rvalues as possible. If there are lvalues to the right of

the starred lvalue, these will be assigned from the trailing rvalues, and whatever rvalues

are left will be assigned to the splat lvalue.

8. If an lvalue contains a parenthesized list, the list is treated as a nested assignment

statement, and then it is assigned from the corresponding rvalue as described by these

rules.

The tutorial has examples starting on page 151. The value of a parallel assignment is its set

of rvalues.

Block Expressions

begin

body

end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=346

EXPRESSIONS 347

Expressions may be grouped between begin and end. The value of the block expression is

the value of the last expression executed.

Block expressions also play a role in exception handling, which is discussed starting on

page 367.

Boolean Expressions

Ruby predefines the globals false and nil. Both of these values are treated as being false in

a boolean context. All other values are treated as being true. The constant true is available

for when you need an explicit “true” value.

And, Or, Not

The and and && operators evaluate their first operand. If false, the expression returns the

value of the first operand; otherwise, the expression returns the value of the second operand:

expr1 and expr2

expr1 && expr2

The or and || operators evaluate their first operand. If true, the expression returns the value

of their first operand; otherwise, the expression returns the value of the second operand:

expr1 or expr2

expr1 || expr2

The not and ! operators evaluate their operand. If true, the expression returns false. If false,

the expression returns true. For historical reasons, a string, regexp, or range may not appear

as the single argument to not or !.

The word forms of these operators (and, or, and not) have a lower precedence than the

corresponding symbol forms (&&, ||, and !). See Table 22.4 on page 345 for details.

defined?

The defined? keyword returns nil if its argument, which can be an arbitrary expression, is

not defined. Otherwise, it returns a description of that argument. For examples, see page

154 in the tutorial.

Comparison Operators

The Ruby syntax defines the comparison operators ==, ===, <=>, <, <=, >, >=, =~. All of

these operators are implemented as methods. By convention, the language also uses the

standard methods eql? and equal? (see Table 9.1 on page 156). Although the operators

have intuitive meaning, it is up to the classes that implement them to produce meaningful

comparison semantics. The library reference starting on page 442 describes the comparison

semantics for the built-in classes. The module Comparable provides support for implement-

ing the operators ==, <, <=, >, and >=, as well as the method between? in terms of <=>. The

operator === is used in case expressions, described on page 349.

Both == and =~ have negated forms, != and !~. If an object defines these methods, Ruby will

call them.1.9 Otherwise, a != b is mapped to !(a == b), and a !~ b is mapped to !(a =~ b).

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=347

EXPRESSIONS 348

Figure 22.1. State Transitions for Boolean Range

start unset set

expr1 is true

expr2 is true
expr1 is false expr2 is false

Ranges in Boolean Expressions

if expr1 .. expr2

while expr1 ... expr2

A range used in a boolean expression acts as a flip-flop. It has two states, set and unset, and

is initially unset. On each call, the range executes a transition in the state machine shown in

Figure 22.1. The range expression returns true if the state machine is in the set state at the

end of the call, and false otherwise.

The two-dot form of a range behaves slightly differently than the three-dot form. When the

two-dot form first makes the transition from unset to set, it immediately evaluates the end

condition and makes the transition accordingly. This means that if expr1 and expr2 both

evaluate to true on the same call, the two-dot form will finish the call in the unset state.

However, it still returns true for this call.

The three-dot form does not evaluate the end condition immediately upon entering the set

state.

The difference is illustrated by the following code:

a = (11..20).collect {|i| (i%4 == 0)..(i%3 == 0) ? i : nil}

a # => [nil, 12, nil, nil, nil, 16, 17, 18, nil, 20]

a = (11..20).collect {|i| (i%4 == 0)...(i%3 == 0) ? i : nil}

a # => [nil, 12, 13, 14, 15, 16, 17, 18, nil, 20]

Regular Expressions in Boolean Expressions

In versions of Ruby prior to 1.81.9 , a single regular expression in boolean expression was

matched against the current value of the variable $_. This behavior is now supported only if

the condition appears in a command-line -e parameter:

$ ruby ne 'print if /one/' testfile

In regular code, the use of implicit operands and $_ is being slowly phased out, so it is better

to use an explicit match against a variable. If a match against $_ is required, use this:

if ~/re/ ... or if $_ =~ /re/ ...

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=348

EXPRESSIONS 349

if and unless Expressions

if boolean-expression [then]
body

[elsif boolean-expression [then]
body , ...]

[else

body]
end

unless boolean-expression [then]
body

[else

body]
end

The then keyword separates the body from the condition.6 It is not required if the body

starts on a new line. The value of an if or unless expression is the value of the last expression

evaluated in whichever body is executed.

if and unless Modifiers

expression if boolean-expression

expression unless boolean-expression

This evaluates expression only if boolean-expression is true (for if) or false (for unless).

Ternary Operator
boolean-expression ? expr1 : expr2

This returns expr1 if boolean expression is true and expr2 otherwise.

case Expressions

Ruby has two forms of case statement. The first allows a series of conditions to be evaluated,

executing code corresponding to the first condition that is true:

case

when condition [, condition]... [then]
body

when condition [, condition]... [then]
body

...

[else

body]
end

6. Prior to Ruby 1.9, you could use a colon instead of then. This is no longer supported.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=349

EXPRESSIONS 350

The second form of a case expression takes a target expression following the case keyword.

It searches for a match by starting at the first (top left) comparison, performing compari-

son === target:

case target

when comparison [, comparison]... [then]
body

when comparison [, comparison]... [then]
body

...

[else

body]
end

A comparison can be an array reference preceded by an asterisk, in which case it is expanded

into that array’s elements before the tests are performed on each. When a comparison returns

true, the search stops, and the body associated with the comparison is executed (no break

is required). case then returns the value of the last expression executed. If no comparison

matches, this happens: if an else clause is present, its body will be executed; otherwise,

case silently returns nil.

The then keyword separates the when comparisons from the bodies and is not needed if the

body starts on a new line.

As an optimization in Matz’s Ruby 1.91.9 , comparisons with literal strings and numbers do not

use ===.

Loops
while boolean-expression [do]

body

end

This executes body zero or more times as long as boolean-expression is true.

until boolean-expression [do]
body

end

This executes body zero or more times as long as boolean-expression is false.

In both forms, the do separates boolean-expression from the body and can be omitted when

the body starts on a new line:

for name [, name]... in expression [do]
body

end

The for loop is executed as if it were the following each loop, except that local variables

defined in the body of the for loop will be available outside the loop, and those defined

within an iterator block will not.

expression.each do | name [, name]... |

body

end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=350

METHOD DEFINITION 351

loop, which iterates its associated block, is not a language construct—it is a method in Library

module Kernel.

loop do

print "Input: "

break unless line = gets

process(line)

end

while and until Modifiers

expression while boolean-expression

expression until boolean-expression

If expression is anything other than a begin/end block, executes expression zero or more

times while boolean-expression is true (for while) or false (for until).

If expression is a begin/end block, the block will always be executed at least one time.

break, redo, next, and retry

break, redo, next, and retry alter the normal flow through a while, until, for, or iterator con-

trolled loop.

break terminates the immediately enclosing loop—control resumes at the statement follow-

ing the block. redo repeats the loop from the start but without reevaluating the condition or

fetching the next element (in an iterator). The next keyword skips to the end of the loop,

effectively starting the next iteration. retry restarts the loop, reevaluating the condition.

break and next may optionally take one or more arguments. If used within a block, the given

argument(s) are returned as the value of the yield. If used within a while, until, or for loop,

the value given to break is returned as the value of the statement, and the value given to next

is silently ignored. If break is never called or if it is called with no value, the loop returns

nil.

match = while line = gets

next if line =~ /^#/

break line if line =~ /ruby/

end

match = for line in ARGF.readlines

next if line =~ /^#/

break line if line =~ /ruby/

end

Method Definition
def defname [([arg [=val], ...] [, &blockarg])]

body

end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=351

METHOD DEFINITION 352

defname is both the name of the method and optionally the context in which it is valid.

defname ← methodname

constant.methodname

(expr).methodname

A methodname is either a redefinable operator (see Table 22.4 on page 345) or a name. If

methodname is a name, it should start with a lowercase letter (or underscore) optionally

followed by uppercase and lowercase letters, underscores, and digits. A methodname may

optionally end with a question mark (?), exclamation point (!), or equals sign (=). The ques-

tion mark and exclamation point are simply part of the name. The equals sign is also part of

the name but additionally signals that this method may be used as an lvalue (described on

page 55).

A method definition using an unadorned method name within a class or module definition

creates an instance method. An instance method may be invoked only by sending its name

to a receiver that is an instance of the class that defined it (or one of that class’s subclasses).

Outside a class or module definition, a definition with an unadorned method name is added

as a private method to class Object and hence may be called in any context without an

explicit receiver.

A definition using a method name of the form constant.methodname or the more general

(expr).methodname creates a method associated with the object that is the value of the con-

stant or expression; the method will be callable only by supplying the object referenced by

the expression as a receiver. This style of definition creates per object or singleton methods.

class MyClass

def MyClass.method # definition

end

end

MyClass.method # call

obj = Object.new

def obj.method # definition

end

obj.method # call

def (1.class).fred # receiver may be an expression

end

Fixnum.fred # call

Method definitions may not contain class or module definitions. They may contain nested

instance or singleton method definitions. The internal method is defined when the enclosing

method is executed. The internal method does not act as a closure in the context of the

nested method—it is self-contained.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=352

METHOD DEFINITION 353

def toggle

def toggle

"subsequent times"

end

"first time"

end

toggle # => "first time"

toggle # => "subsequent times"

toggle # => "subsequent times"

The body of a method acts as if it were a begin/end block, in that it may contain exception

handling statements (rescue, else, and ensure).

Method Arguments

A method definition may have zero or more regular arguments and an optional block argu-

ment. Arguments are separated by commas, and the argument list may be enclosed in paren-

theses.

A regular argument is a local variable name, optionally followed by an equals sign and

an expression giving a default value. The expression is evaluated at the time the method

is called. The expressions are evaluated from left to right. An expression may reference a

parameter that precedes it in the argument list.

def options(a=99, b=a+1)

[a, b]

end

options # => [99, 100]

options 1 # => [1, 2]

options 2, 4 # => [2, 4]

In Ruby 1.91.9 , arguments without default values may appear after arguments with defaults.

When such a method is called, Ruby will use the default values only if fewer parameters are

passed to the method call than the total number of arguments.

def mixed(a, b=50, c=b+10, d)

[a, b, c, d]

end

mixed 1, 2 # => [1, 50, 60, 2]

mixed 1, 2, 3 # => [1, 2, 12, 3]

mixed 1, 2, 3, 4 # => [1, 2, 3, 4]

As with parallel assignment, one of the arguments may start with an asterisk. If the method

call specifies any parameters in excess of the regular argument count, all these extra param-

eters will be collected into this newly created array.

def varargs(a, *b)

[a, b]

end

varargs 1 # => [1, []]

varargs 1, 2 # => [1, [2]]

varargs 1, 2, 3 # => [1, [2, 3]]

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=353

METHOD DEFINITION 354

In Ruby 1.91.9 , this argument need not be the last in the argument list. See the description of

parallel assignment to see how values are assigned to this parameter.

def splat(a, *b, c)

[a, b, c]

end

splat 1, 2 # => [1, [], 2]

splat 1, 2, 3 # => [1, [2], 3]

splat 1, 2, 3, 4 # => [1, [2, 3], 4]

If an array argument follows arguments with default values, parameters will first be used to

override the defaults. The remainder will then be used to populate the array.

def mixed(a, b=99, *c)

[a, b, c]

end

mixed 1 # => [1, 99, []]

mixed 1, 2 # => [1, 2, []]

mixed 1, 2, 3 # => [1, 2, [3]]

mixed 1, 2, 3, 4 # => [1, 2, [3, 4]]

The optional block argument must be the last in the list. Whenever the method is called,

Ruby checks for an associated block. If a block is present, it is converted to an object of

class Proc and assigned to the block argument. If no block is present, the argument is set to

nil.

def example(&block)

puts block.inspect

end

example

example { "a block" }

produces:

nil

#<Proc:0x0a5064@/tmp/prog.rb:6>

Undefining a Method

The keyword undef allows you to undefine a method.

undef name | symbol [, ...]

An undefined method still exists—it is simply marked as being undefined. If you undefine a

method in a child class and then call that method on an instance of that child class, Ruby will

immediately raise a NoMethodError—it will not look for the method in the child’s parents.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=354

INVOKING A METHOD 355

Invoking a Method

[receiver.] name [parameters] [block]
[receiver::] name [parameters] [block]

parameters ← ([param, ...] [, hashlist] [*array] [&a_proc])

block ← { blockbody }

do blockbody end

The parentheses around the parameters may be omitted if it is otherwise unambiguous.

Initial parameters are assigned to the actual arguments of the method. Following these

parameters may be a list of key => value or key: value pairs.1.9 These pairs are collected into a

single new Hash object and passed as a single parameter.

Any1.9 parameter may be a single parameter prefixed with an asterisk. If a starred parameter

supports the to_a method, that method is called, and the resulting array is expanded inline

to provide parameters to the method call. If a starred argument does not support to_a, it is

simply passed through unaltered.

def regular(a, b, *c)

"a=#{a}, b=#{b}, c=#{c}"

end

regular 1, 2, 3, 4 # => a=1, b=2, c=[3, 4]

regular(1, 2, 3, 4) # => a=1, b=2, c=[3, 4]

regular(1, *[2, 3, 4]) # => a=1, b=2, c=[3, 4]

regular(1, *[2, 3], 4) # => a=1, b=2, c=[3, 4]

regular(1, *[2, 3], *4) # => a=1, b=2, c=[3, 4]

regular(*[], 1, *[], *[2, 3], *[], 4) # => a=1, b=2, c=[3, 4]

A block may be associated with a method call using either a literal block (which must start

on the same source line as the last line of the method call) or a parameter containing a

reference to a Proc or Method object prefixed with an ampersand character.

def some_method

yield

end

some_method { }

some_method do

end

a_proc = lambda { 99 }

some_method(&a_proc)

Ruby arranges for the value of Kernel.block_given? to reflect the availability of a block

associated with the call, regardless of the presence of a block argument. A block argument

will be set to nil if no block is specified on the call to a method.

def other_method(&block)

puts "block_given = #{block_given?}, block = #{block.inspect}"

end

other_method { }

other_method

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=355

INVOKING A METHOD 356

produces:

block_given = true, block = #<Proc:0x0a4f88@/tmp/prog.rb:4>

block_given = false, block = nil

A method is called by passing its name to a receiver. If no receiver is specified, self is

assumed. The receiver checks for the method definition in its own class and then sequen-

tially in its ancestor classes. The instance methods of included modules act as if they were

in anonymous superclasses of the class that includes them. If the method is not found, Ruby

invokes the method method_missing in the receiver. The default behavior defined in Ker-

nel.method_missing is to report an error and terminate the program. Library

When a receiver is explicitly specified in a method invocation, it may be separated from the

method name using either a period (.) or two colons (::). The only difference between these

two forms occurs if the method name starts with an uppercase letter. In this case, Ruby will

assume that a receiver::Thing method call is actually an attempt to access a constant called

Thing in the receiver unless the method invocation has a parameter list between parentheses.

Using :: to indicate a method call is mildly deprecated.

Foo.Bar() # method call

Foo.Bar # method call

Foo::Bar() # method call

Foo::Bar # constant access

The return value of a method is the value of the last expression executed.

def odd_or_even(val)

if val.odd?

"odd"

else

"even"

end

end

odd_or_even(26) # => "even"

odd_or_even(27) # => "odd"

A return expression immediately exits a method.

return [expr, ...]

The value of a return is nil if it is called with no parameters, the value of its parameter if it

is called with one parameter, or an array containing all of its parameters if it is called with

more than one parameter.

super
super [([param, ...] [*array])] [block]

Within the body of a method, a call to super acts just like a call to that original method,

except that the search for a method body starts in the superclass of the object that was found

to contain the original method. If no parameters (and no parentheses) are passed to super,

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=356

INVOKING A METHOD 357

the original method’s parameters will be passed; otherwise, the parameters to super will be

passed.

Operator Methods
expr1 operator

operator expr1

expr1 operator expr2

If the operator in an operator expression corresponds to a redefinable method (see Table 22.4

on page 345), Ruby will execute the operator expression as if it had been written like this:

(expr1).operator() or

(expr1).operator(expr2)

Attribute Assignment
receiver.attrname = rvalue

When the form receiver.attrname appears as an lvalue, Ruby invokes a method named attr-

name= in the receiver, passing rvalue as a single parameter. The value returned by this

assignment is always rvalue—the return value of the method attrname= is discarded. If you

want to access the return value (in the unlikely event that it isn’t the rvalue anyway), send

an explicit message to the method.

class Demo

attr_reader :attr

def attr=(val)

@attr = val

"return value"

end

end

d = Demo.new

In all these cases, @attr is set to 99

d.attr = 99 # => 99

d.attr=(99) # => 99

d.send(:attr=, 99) # => "return value"

d.attr # => 99

Element Reference Operator
receiver[expr [, expr]...]

receiver[expr [, expr]...] = rvalue

When used as an rvalue, element reference invokes the method [] in the receiver, passing as

parameters the expressions between the brackets.

When used as an lvalue, element reference invokes the method []= in the receiver, passing

as parameters the expressions between the brackets, followed by the rvalue being assigned.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=357

ALIASING 358

Aliasing
alias new_name old_name

This creates a new name that refers to an existing method, operator, global variable, or

regular expression backreference ($&, $`, $', and $+). Local variables, instance variables,

class variables, and constants may not be aliased. The parameters to alias may be names or

symbols.

class Fixnum

alias plus +

end

1.plus(3) # => 4

alias $prematch $`

"string" =~ /i/ # => 3

$prematch # => "str"

alias :cmd :`

cmd "date" # => "Mon Apr 13 13:26:12 CDT 2009\n"

When a method is aliased, the new name refers to a copy of the original method’s body. If

the method is subsequently redefined, the aliased name will still invoke the original imple-

mentation.

def meth

"original method"

end

alias original meth

def meth

"new and improved"

end

meth # => "new and improved"

original # => "original method"

Class Definition
class [scope::] classname [< superexpr]

body

end

class << obj

body

end

A Ruby class definition creates or extends an object of class Class by executing the code

in body. In the first form, a named class is created or extended. The resulting Class object

is assigned to a constant named classname (keep reading for scoping rules). This name

should start with an uppercase letter. In the second form, an anonymous (singleton) class is

associated with the specific object.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=358

CLASS DEFINITION 359

If present, superexpr should be an expression that evaluates to a Class object that will be

the superclass of the class being defined. If omitted, it defaults to class Object.

Within body, most Ruby expressions are executed as the definition is read. However:

• Method definitions will register the methods in a table in the class object.

• Nested class and module definitions will be stored in constants within the class, not as

global constants. These nested classes and modules can be accessed from outside the

defining class using :: to qualify their names.

module NameSpace

class Example

CONST = 123

end

end

obj = NameSpace::Example.new

a = NameSpace::Example::CONST

• The Module#include method will add the named modules as anonymous superclasses

of the class being defined.

The classname in a class definition may be prefixed by the names of existing classes or

modules using the scope operator (::). This syntax inserts the new definition into the names-

pace of the prefixing module(s) and/or class(es) but does not interpret the definition in the

scope of these outer classes. A classname with a leading scope operator places that class or

module in the top-level scope.

In the following example, class C is inserted into module A’s namespace but is not inter-

preted in the context of A. As a result, the reference to CONST resolves to the top-level

constant of that name, not A’s version. We also have to fully qualify the singleton method

name, because C on its own is not a known constant in the context of A::C.

CONST = "outer"

module A

CONST = "inner" # This is A::CONST

end

module A

class B

def B.get_const

CONST

end

end

end

A::B.get_const # => "inner"

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=359

MODULE DEFINITIONS 360

class A::C

def (A::C).get_const

CONST

end

end

A::C.get_const # => "outer"

It is worth emphasizing that a class definition is executable code. Many of the directives used

in class definitions (such as attr and include) are actually simply private instance methods of

class Module (documented starting on page 605). The value of a class definition is the value

of the last executed statement.

Chapter 24, which begins on page 384, describes in more detail how Class objects interact

with the rest of the environment.

Creating Objects from Classes

obj = classexpr.new [([args, ...])]

Class Class defines the instance method Class#new, which creates an object of the class of

the receiver (classexpr in the syntax example). This is done by calling the method class-

expr.allocate. You can override this method, but your implementation must return an object

of the correct class. It then invokes initialize in the newly created object and passes it any

arguments originally passed to new.

If a class definition overrides the class method new without calling super, no objects of that

class can be created, and calls to new will silently return nil.

Like any other method, initialize should call super if it wants to ensure that parent classes

have been properly initialized. This is not necessary when the parent is Object, because class

Object does no instance-specific initialization.

Class Attribute Declarations

Class attribute declarations are not part of the Ruby syntax; they are simply methods defined Library

in class Module that create accessor methods automatically.

class name

attr attribute [, writable]
attr_reader attribute [, attribute]...
attr_writer attribute [, attribute]...
attr_accessor attribute [, attribute]...

end

Module Definitions
module name

body

end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=360

MODULE DEFINITIONS 361

A module is basically a class that cannot be instantiated. Like a class, its body is executed

during definition, and the resulting Module object is stored in a constant. A module may

contain class and instance methods and may define constants and class variables. As with

classes, module methods are invoked using the Module object as a receiver, and constants

are accessed using the :: scope resolution operator. The name in a module definition may

optionally be preceded by the names of enclosing class(es) and/or module(s).

CONST = "outer"

module Mod

CONST = 1

def Mod.method1 # module method

CONST + 1

end

end

module Mod::Inner

def (Mod::Inner).method2

CONST + " scope"

end

end

Mod::CONST # => 1

Mod.method1 # => 2

Mod::Inner::method2 # => "outer scope"

Mixins: Including Modules
class|module name

include expr

end

A module may be included within the definition of another module or class using the include

method. The module or class definition containing the include gains access to the constants, Library

class variables, and instance methods of the module it includes.

If a module is included within a class definition, the module’s constants, class variables, and

instance methods made available via an anonymous (and inaccessible) superclass for that

class. Objects of the class will respond to messages sent to the module’s instance methods.

Calls to methods not defined in the class will be passed to the module(s) mixed into the class

before being passed to any parent class. A module may choose to define an initialize method,

which will be called upon the creation of an object of a class that mixes in the module if

either (a) the class does not define its own initialize method or (b) the class’s initialize method

invokes super.

A module may also be included at the top level, in which case the module’s constants, class

variables, and instance methods become available at the top level.

Module Functions

Although include is useful for providing mixin functionality, it is also a way of bringing

the constants, class variables, and instance methods of a module into another namespace.

However, functionality defined in an instance method will not be available as a module

method.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=361

ACCESS CONTROL 362

module Math

def sin(x)

#

end

end

Only way to access Math.sin is...

include Math

sin(1)

The method Module#module_function solves this problem by taking one or more module Library

instance methods and copying their definitions into corresponding module methods.

module Math

def sin(x)

#

end

module_function :sin

end

Math.sin(1)

include Math

sin(1)

The instance method and module method are two different methods: the method definition

is copied by module_function, not aliased.

You can also use module_function with no parameters, in which case all subsequent methods

will be module methods.

Access Control
Ruby defines three levels of protection for module and class constants and methods:

• Public. Accessible to anyone.

• Protected. Can be invoked only by objects of the defining class and its subclasses.

• Private. Can be called only in functional form (that is, with an implicit self as the

receiver). Private methods therefore can be called in the defining class and by that

class’s descendents and ancestors, but only within the same object. See the discussion

starting on page 61 for examples.

private [symbol, ...]
protected [symbol, ...]
public [symbol, ...]

Each function can be used in two different ways: Library

• If used with no arguments, the three functions set the default access control of subse-

quently defined methods.

• With arguments, the functions set the access control of the named methods and con-

stants.

Access control is enforced when a method is invoked.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=362

BLOCKS, CLOSURES, AND PROC OBJECTS 363

Blocks, Closures, and Proc Objects
A code block is a set of Ruby statements and expressions between braces or a do/end pair.

The block may start with an argument list between vertical bars. A code block may appear

only immediately after a method invocation. The start of the block (the brace or the do)

must be on the same logical line as the end of the invocation.

invocation do | a1, a2, ... |

end

invocation { | a1, a2, ... |

}

Braces have a high precedence; do has a low precedence. If the method invocation has

parameters that are not enclosed in parentheses, the brace form of a block will bind to the

last parameter, not to the overall invocation. The do form will bind to the invocation.

Within the body of the invoked method, the code block may be called using the yield key-

word. Parameters passed to the yield will be assigned to arguments in the block. A warning

will be generated if yield passes multiple parameters to a block that takes just one. The

return value of the yield is the value of the last expression evaluated in the block or the value

passed to a next statement executed in the block.

A block is a closure; it remembers the context in which it was defined, and it uses that

context whenever it is called. The context includes the value of self, the constants, class

variables, local variables, and any captured block.

class BlockExample

CONST = 0

@@a = 3

def return_closure

a = 1

@a = 2

lambda { [CONST, a, @a, @@a, yield] }

end

def change_values

@a += 1

@@a += 1

end

end

eg = BlockExample.new

block = eg.return_closure { "original" }

block.call # => [0, 1, 2, 3, "original"]

eg.change_values

block.call # => [0, 1, 3, 4, "original"]

Here, the return_closure method returns a lambda that encapsulates access to the local vari-

able a, instance variable @a, class variable @@a, and constant CONST. We call the block

outside the scope of the object that contains these values, and they are still available via the

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=363

BLOCKS, CLOSURES, AND PROC OBJECTS 364

closure. If we then call the object to change some of the values, the values accessed via the

closure also change.

Block Arguments

As of Ruby 1.91.9 , block argument lists are more like method argument lists:

• You can specify default values.

• You can specify splat (starred) arguments.

• The last argument can be prefixed with an ampersand, in which case it will collect any

block passed when the original block is called.

These changes make it possible to use Module#define_method to create methods based on

blocks that have similar capabilities to methods created using def.

Proc Objects

Ruby’s blocks are chunks of code attached to a method. They operate in the context in which

they were defined. Blocks are not objects, but they can be converted into objects of class

Proc. There are four ways of converting a block into a Proc object.

• By passing a block to a method whose last parameter is prefixed with an ampersand.

That parameter will receive the block as a Proc object.

def meth1(p1, p2, &block)

puts block.inspect

end

meth1(1,2) { "a block" }

meth1(3,4)

produces:

#<Proc:0x0a4f4c@/tmp/prog.rb:4>

nil

• By calling Proc.new, again associating it with a block.7 Library

block = Proc.new { "a block" }

block # => #<Proc:0x0a53c0@/tmp/prog.rb:1>

• By calling the method Kernel.lambda, associating a block with the call. Library

block = lambda { "a block" }

block # => #<Proc:0x0a53e8@/tmp/prog.rb:1 (lambda)>

• As of Ruby 1.91.9 , using the -> syntax.

lam = >(p1, p2) { p1 + p2 }

lam.call(4, 3) # => 7

Note that there cannot be a space between > and the opening parenthesis.

7. There’s also a built-in Kernel.proc method. In Ruby 1.8, this was equivalent to lambda. In Ruby 1.91.9 , it is the

same as Proc.new. Don’t use proc in new code.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=364

BLOCKS, CLOSURES, AND PROC OBJECTS 365

The first two styles of Proc object are identical in use. We’ll call these objects raw procs.

The third and fourth styles, generated by lambda and ->, add some functionality to the Proc

object, as we’ll see in a minute. We’ll call these objects lambdas.

Calling a Proc

You can call a proc by invoking its methods call, yield, or []. The three forms are identical.

Each takes arguments that can be passed to the proc, just as if it were a regular method call.

If the proc you’re invoking is a lambda, Ruby will check that the supplied arguments match

the expected parameters.

You can also invoke a proc using the syntax name.(args...). This is mapped internally into

a.call(...).

Procs, break, and next

Within both raw procs and lambdas, executing next causes the block to exit. The value of

the block is the value (or values) passed to next, or nil if no values are passed.

def meth

res = yield

"The block returns #{res}"

end

meth { next 99 } # => "The block returns 99"

pr = Proc.new { next 99 }

pr.call # => 99

pr = lambda { next 99 }

pr.call # => 99

pr = >() { next 99 }

pr.call # => 99

Within a raw proc, a break terminates the method that invoked the block. The return value

of the method is any parameters passed to the break.

Return and Blocks

A return from inside a block that’s still in scope acts as a return from that scope. A return

from a block whose original context is not longer valid raises an exception (LocalJumpError

or ThreadError depending on the context). The following example illustrates the first case:

def meth1

(1..10).each do |val|

return val # returns from meth1

end

end

meth1 # => 1

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=365

BLOCKS, CLOSURES, AND PROC OBJECTS 366

This example shows a return failing because the context of its block no longer exists:

def meth2(&b)

b

end

res = meth2 { return }

res.call

produces:

prog.rb:5:in `block in <main>': unexpected return (LocalJumpError)

from /tmp/prog.rb:6:in `call'

from /tmp/prog.rb:6:in `<main>'

And here’s a return failing because the block is created in one thread and called in another:

def meth3

yield

end

t = Thread.new do

meth3 { return }

end

t.join

produces:

prog.rb:6:in `block (2 levels) in <main>': unexpected return (LocalJumpError)

from /tmp/prog.rb:2:in `meth3'

from /tmp/prog.rb:6:in `block in <main>'

The situation with Proc objects is slightly more complicated. If you use Proc.new to create

a proc from a block, that proc acts like a block, and the previous rules apply:

def meth4

p = Proc.new { return 99 }

p.call

puts "Never get here"

end

meth4 # => 99

If the Proc object is created using Kernel.lambda, it behaves more like a free-standing

method body: a return simply returns from the block to the caller of the block:

def meth5

p = lambda { return 99 }

res = p.call

"The block returned #{res}"

end

meth5 # => "The block returned 99"

Because of this, if you use Module#define_method, you’ll probably want to pass it a proc

created using lambda, not Proc.new, because return will work as expected in the former and

will generate a LocalJumpError in the latter.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=366

EXCEPTIONS 367

Exceptions
Ruby exceptions are objects of class Exception and its descendents (a full list of the built-in

exceptioons is given in Figure 27.1 on page 502).

Raising Exceptions

The Kernel.raise method raises an exception: Library

raise

raise string

raise thing [, string [stack trace]]

The first form reraises the exception in $! or a new RuntimeError if $! is nil.

The second form creates a new RuntimeError exception, setting its message to the given

string.

The third form creates an exception object by invoking the method exception on its first

argument. It then sets this exception’s message and backtrace to its second and third argu-

ments.

Class Exception and objects of class Exception contain a factory method called exception,

so an exception class name or instance can be used as the first parameter to raise.

When an exception is raised, Ruby places a reference to the Exception object in the global

variable $!.

Handling Exceptions

Exceptions may be handled in the following ways:

• Within the scope of a begin/end block:

begin

code...

code...

[rescue [parm, ...] [=> var] [then]
error handling code... , ...]

[else

no exception code...]
[ensure

always executed code...]
end

• Within the body of a method:

def method and args

code...

code...

[rescue [parm, ...] [=> var] [then]
error handling code... , ...]

[else

no exception code...]

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=367

EXCEPTIONS 368

[ensure

always executed code...]
end

• After the execution of a single statement:

statement [rescue statement, ...]

A block or method may have multiple rescue clauses, and each rescue clause may specify

zero or more exception parameters. A rescue clause with no parameter is treated as if it

had a parameter of StandardError. This means that some lower-level exceptions will not be

caught by a parameterless rescue class. If you want to rescue every exception, use this:

rescue Exception => e

When an exception is raised, Ruby scans the call stack until it finds an enclosing begin/end

block, method body, or statement with a rescue modifier. For each rescue clause in that

block, Ruby compares the raised exception against each of the rescue clause’s parameters

in turn; each parameter is tested using parameter===$!. If the raised exception matches a

rescue parameter, Ruby executes the body of the rescue and stops looking. If a matching

rescue clause ends with => and a variable name, the variable is set to $!.

Although the parameters to the rescue clause are typically the names of Exception classes,

they can actually be arbitrary expressions (including method calls) that return an appropriate

class.

If no rescue clause matches the raised exception, Ruby moves up the stack looking for a

higher-level begin/end block that matches. If an exception propagates to the top level of the

main thread without being rescued, the program terminates with a message.

If an else clause is present, its body is executed if no exceptions were raised in code. Excep-

tions raised during the execution of the else clause are not captured by rescue clauses in the

same block as the else.

If an ensure clause is present, its body is always executed as the block is exited (even if an

uncaught exception is in the process of being propagated).

Within a rescue clause, raise with no parameters will reraise the exception in $!.

Rescue Statement Modifier

A statement may have an optional rescue modifier followed by another statement (and

by extension another rescue modifier, and so on). The rescue modifier takes no exception

parameter and rescues StandardError and its children.

If an exception is raised to the left of a rescue modifier, the statement on the left is aban-

doned, and the value of the overall line is the value of the statement on the right:

values = ["1", "2.3", /pattern/]

result = values.map {|v| Integer(v) rescue Float(v) rescue String(v) }

result # => [1, 2.3, "(?mix:pattern)"]

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=368

CATCH AND THROW 369

Retrying a Block

The retry statement can be used within a rescue clause to restart the enclosing begin/end

block from the beginning.

Catch and Throw
The method Kernel.catch executes its associated block: Library

catch (symbol | string) do

block...

end

The method Kernel.throw interrupts the normal processing of statements: Library

throw(symbol | string [, obj])

When a throw is executed, Ruby searches up the call stack for the first catch block with a

matching symbol or string. If it is found, the search stops, and execution resumes past the

end of the catch’s block. If the throw was passed a second parameter, that value is returned as

the value of the catch. Ruby honors the ensure clauses of any block expressions it traverses

while looking for a corresponding catch.

If no catch block matches the throw, Ruby raises a NameError exception at the location of

the throw.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=369

