
Chapter 23

Duck Typing

You’ll have noticed that in Ruby we don’t declare the types of variables or methods—

everything is just some kind of object.

Now, it seems like folks react to this in two ways. Some like this kind of flexibility and

feel comfortable writing code with dynamically typed variables and methods. If you’re one

of those people, you might want to skip to the section called “Classes Aren’t Types” on

the next page. Some, though, get nervous when they think about all those objects floating

around unconstrained. If you’ve come to Ruby from a language such as C# or Java, where

you’re used to giving all your variables and methods a type, you may feel that Ruby is just

too sloppy to use to write “real” applications.

It isn’t.

We’d like to spend a couple of paragraphs trying to convince you that the lack of static

typing is not a problem when it comes to writing reliable applications. We’re not trying to

criticize other languages here. Instead, we’d just like to contrast approaches.

The reality is that the static type systems in most mainstream languages don’t really help

that much in terms of program security. If Java’s type system were reliable, for example,

it wouldn’t need to implement ClassCastException. The exception is necessary, though,

because there is runtime type uncertainty in Java (as there is in C++, C#, and others). Static

typing can be good for optimizing code, and it can help IDEs do clever things with tooltip

help, but we haven’t seen much evidence that it promotes more reliable code.

On the other hand, once you use Ruby for a while, you realize that dynamically typed vari-

ables actually add to your productivity in many ways. You’ll also be surprised to discover

that your fears about the type chaos were unfounded. Large, long-running, Ruby programs

run significant applications and just don’t throw any type-related errors. Why is this?

Partly, it’s a question of common sense. If you coded in Java (pre–Java 1.5), all your con-

tainers were effectively untyped: everything in a container was just an Object, and you cast

it to the required type when you extracted an element. And yet you probably never saw

a ClassCastException when you ran these programs. The structure of the code just didn’t

permit it. You put Person objects in, and you later took Person objects out. You just don’t

write programs that would work in another way.

Report erratum370

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=370

CLASSES AREN’T TYPES 371

Well, it’s the same in Ruby. If you use a variable for some purpose, chances are very good

that you’ll be using it for the same purpose when you access it again three lines later. The

kind of chaos that could happen just doesn’t happen.

On top of that, folks who code Ruby a lot tend to adopt a certain style of coding. They write

lots of short methods and tend to test as they go along. The short methods mean that the

scope of most variables is limited; there just isn’t that much time for things to go wrong

with their type. And the testing catches the silly errors when they happen; typos and the like

just don’t get a chance to propagate through the code.

The upshot is that the “safety” in “type safety” is often illusory and that coding in a more

dynamic language such as Ruby is both safe and productive. So, if you’re nervous about the

lack of static typing in Ruby, we suggest you try to put those concerns on the back burner

for a little while and give Ruby a try. We think you’ll be surprised at how rarely you see

errors because of type issues and at how much more productive you feel once you start to

exploit the power of dynamic typing.

Classes Aren’t Types
The issue of types is actually somewhat deeper than an ongoing debate between strong

typing advocates and the hippie-freak dynamic typing crowd. The real issue is the question,

what is a type in the first place?

If you’ve been coding in conventional typed languages, you’ve probably been taught that

the type of an object is its class—all objects are instances of some class, and that class is the

object’s type. The class defines the operations (methods) the object can support, along with

the state (instance variables) on which those methods operate. Let’s look at some Java code:

Customer c;

c = database.findCustomer("dave"); /* Java */

This fragment declares the variable c to be of type Customer and sets it to reference the

customer object for Dave that we’ve created from some database record. So, the type of the

object in c is Customer, right?

Maybe. However, even in Java, the issue is slightly deeper. Java supports the concept of

interfaces, which are a kind of emasculated abstract base class. A Java class can be declared

as implementing multiple interfaces. Using this facility, you may have defined your classes

as follows:

public interface Customer {

long getID();

Calendar getDateOfLastContact();

// ...

}

public class Person

implements Customer {

public long getID() { ... }

public Calendar getDateOfLastContact() { ... }

// ...

}

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=371

CLASSES AREN’T TYPES 372

So, even in Java, the class is not always the type—sometimes the type is a subset of the

class, and sometimes objects implement multiple types.

In Ruby, the class is never (OK, almost never) the type. Instead, the type of an object is

defined more by what that object can do. In Ruby, we call this duck typing. If an object

walks like a duck and talks like a duck, then the interpreter is happy to treat it as if it were

a duck.

Let’s look at an example. Perhaps we’ve written a method to write our customer’s name to

the end of an open file:

Download samples/ducktyping_3.rb

class Customer

def initialize(first_name, last_name)

@first_name = first_name

@last_name = last_name

end

def append_name_to_file(file)

file << @first_name << " " << @last_name

end

end

Being good programmers, we’ll write a unit test for this. Be warned, though—it’s messy

(and we’ll improve on it shortly):

Download samples/ducktyping_4.rb

require 'test/unit'

require 'addcust'

class TestAddCustomer < Test::Unit::TestCase

def test_add

c = Customer.new("Ima", "Customer")

f = File.open("tmpfile", "w") do |f|

c.append_name_to_file(f)

end

f = File.open("tmpfile") do |f|

assert_equal("Ima Customer", f.gets)

end

ensure

File.delete("tmpfile") if File.exist?("tmpfile")

end

end

produces:

Finished in 0.001084 seconds.

1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

We have to do all that work to create a file to write to, then reopen it, and read in the contents

to verify the correct string was written. We also have to delete the file when we’ve finished

(but only if it exists).

Instead, though, we could rely on duck typing. All we need is something that walks like a

file and talks like a file that we can pass in to the method under test. And all that means in

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/ducktyping_3.rb
http://media.pragprog.com/titles/ruby3/code/samples/ducktyping_4.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=372

CLASSES AREN’T TYPES 373

this circumstance is that we need an object that responds to the << method by appending

something. Do we have something that does this? How about a humble String?

Download samples/ducktyping_5.rb

require 'test/unit'

require 'addcust'

class TestAddCustomer < Test::Unit::TestCase

def test_add

c = Customer.new("Ima", "Customer")

f = ""

c.append_name_to_file(f)

assert_equal("Ima Customer", f)

end

end

produces:

Finished in 0.000361 seconds.

1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

The method under test thinks it’s writing to a file, but instead it’s just appending to a string.

At the end, we can then just test that the content is correct.

We didn’t have to use a string—for the object we’re testing here, an array would work just

as well:

Download samples/ducktyping_6.rb

require 'test/unit'

require 'addcust'

class TestAddCustomer < Test::Unit::TestCase

def test_add

c = Customer.new("Ima", "Customer")

f = []

c.append_name_to_file(f)

assert_equal(["Ima", " ", "Customer"], f)

end

end

produces:

Finished in 0.000405 seconds.

1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

Indeed, this form may be more convenient if we wanted to check that the correct individual

things were inserted.

So, duck typing is convenient for testing, but what about in the body of applications them-

selves? Well, it turns out that the same thing that made the tests easy in the previous example

also makes it easy to write flexible application code.

In fact, Dave had an interesting experience where duck typing dug him (and a client) out of

a hole. He’d written a large Ruby-based web application that (among other things) kept a

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/ducktyping_5.rb
http://media.pragprog.com/titles/ruby3/code/samples/ducktyping_6.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=373

CLASSES AREN’T TYPES 374

database table full of details of participants in a competition. The system provided a comma-

separated value (CSV) download capability, allowing administrators to import this informa-

tion into their local spreadsheets.

Just before competition time, the phone starts ringing. The download, which had been work-

ing fine up to this point, was now taking so long that requests were timing out. The pressure

was intense, because the administrators had to use this information to build schedules and

send out mailings.

A little experimentation showed that the problem was in the routine that took the results of

the database query and generated the CSV download. The code looked something like this:

def csv_from_row(op, row)

res = ""

until row.empty?

entry = row.shift.to_s

if /[,"]/ =~ entry

entry = entry.gsub(/"/, '""')

res << '"' << entry << '"'

else

res << entry

end

res << "," unless row.empty?

end

op << res << CRLF

end

result = ""

query.each_row {|row| csv_from_row(result, row)}

http.write result

When this code ran against moderate-size data sets, it performed fine. But at a certain input

size, it suddenly slowed right down. The culprit? Garbage collection. The approach was

generating thousands of intermediate strings and building one big result string, one line at

a time. As the big string grew, it needed more space, and garbage collection was invoked,

which necessitated scanning and removing all the intermediate strings.

The answer was simple and surprisingly effective. Rather than build the result string as it

went along, the code was changed to store each CSV row as an element in an array. This

meant that the intermediate lines were still referenced and hence were no longer garbage.

It also meant that we were no longer building an ever-growing string that forced garbage

collection. Thanks to duck typing, the change was trivial:

def csv_from_row(op, row)

as before

end

result = []

query.each_row {|row| csv_from_row(result, row)}

http.write result.join

All that changed is that we passed an array into the csv_from_row method. Because it

(implicitly) used duck typing, the method itself was not modified; it continued to append

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=374

CODING LIKE A DUCK 375

the data it generated to its parameter, not caring what type that parameter was. After the

method returned its result, we joined all those individual lines into one big string. This one

change reduced the time to run from more than three minutes to a few seconds.

Coding like a Duck
If you want to write your programs using the duck typing philosophy, you really need to

remember only one thing: an object’s type is determined by what it can do, not by its class.

(In fact, older versions of Ruby had a method Object#type1.9 that returned the class of an

object. That has been removed in Ruby 1.9—the name type was misleading.)

What does this mean in practice? At one level, it simply means that there’s often little value

testing the class of an object.

For example, you may be writing a routine to add song information to a string. If you come

from a C# or Java background, you may be tempted to write this:

def append_song(result, song)

test we're given the right parameters

unless result.kind_of?(String)

fail TypeError.new("String expected")

end

unless song.kind_of?(Song)

fail TypeError.new("Song expected")

end

result << song.title << " (" << song.artist << ")"

end

result = ""

append_song(result, song) # => "I Got Rhythm (Gene Kelly)"

Embrace Ruby’s duck typing, and you’d write something far simpler:

def append_song(result, song)

result << song.title << " (" << song.artist << ")"

end

result = ""

append_song(result, song) # => "I Got Rhythm (Gene Kelly)"

You don’t need to check the type of the arguments. If they support << (in the case of result)

or title and artist (in the case of song), everything will just work. If they don’t, your method

will throw an exception anyway (just as it would have done if you’d checked the types). But

without the check, your method is suddenly a lot more flexible. You could pass it an array,

a string, a file, or any other object that appends using <<, and it would just work.

Now sometimes you may want more than this style of laissez-faire programming. You may

have good reasons to check that a parameter can do what you need. Will you get thrown out

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=375

STANDARD PROTOCOLS AND COERCIONS 376

of the duck typing club if you check the parameter against a class? No, you won’t.1 But you

may want to consider checking based on the object’s capabilities, rather than its class:

Download samples/ducktyping_11.rb

def append_song(result, song)

test we're given the right parameters

unless result.respond_to?(:<<)

fail TypeError.new("'result' needs `<<' capability")

end

unless song.respond_to?(:artist) && song.respond_to?(:title)

fail TypeError.new("'song' needs 'artist' and 'title'")

end

result << song.title << " (" << song.artist << ")"

end

result = ""

append_song(result, song) # => "I Got Rhythm (Gene Kelly)"

However, before going down this path, make sure you’re getting a real benefit—it’s a lot of

extra code to write and to maintain.

Standard Protocols and Coercions
Although not technically part of the language, the interpreter and standard library use vari-

ous protocols to handle issues that other languages would deal with using types.

Some objects have more than one natural representation. For example, you may be writing a

class to represent Roman numbers (I, II, III, IV, V, and so on). This class is not necessarily a

subclass of Integer, because its objects are representations of numbers, not numbers in their

own right. At the same time, they do have an integer-like quality. It would be nice to be able

to use objects of our Roman number class wherever Ruby was expecting to see an integer.

To do this, Ruby has the concept of conversion protocols—an object may elect to have itself

converted to an object of another class. Ruby has three standard ways of doing this.

We’ve already come across the first. Methods such as to_s and to_i convert their receiver

into strings and integers. These conversion methods are not particularly strict. If an object

has some kind of decent representation as a string, for example, it will probably have a

to_s method. Our Roman class would probably implement to_s in order to return the string

representation of a number (VII, for instance).

The second form of conversion function uses methods with names such as to_str and to_int.

These are strict conversion functions. You implement them only if your object can naturally

be used every place a string or an integer could be used. For example, our Roman number

1. The duck typing club doesn’t check to see whether you’re a member anyway. . . .

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/ducktyping_11.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=376

STANDARD PROTOCOLS AND COERCIONS 377

objects have a clear representation as an integer and so should implement to_int. When it

comes to stringiness, however, we have to think a bit harder.

Roman numbers clearly have a string representation, but are they strings? Should we be able

to use them wherever we can use a string itself? No, probably not. Logically, they’re a rep-

resentation of a number. You can represent them as strings, but they aren’t plug-compatible

with strings. For this reason, a Roman number won’t implement to_str—it isn’t really a

string. Just to drive this home: Roman numerals can be converted to strings using to_s, but

they aren’t inherently strings, so they don’t implement to_str.

To see how this works in practice, let’s look at opening a file. The first parameter to File.new

can be either an existing file descriptor (represented by an integer) or a filename to open.

However, Ruby doesn’t simply look at the first parameter and check whether its type is

Fixnum or String. Instead, it gives the object passed in the opportunity to represent itself as

a number or a string. If it were written in Ruby, it may look something like this:

Download samples/ducktyping_12.rb

class File

def File.new(file, *args)

if file.respond_to?(:to_int)

IO.new(file.to_int, *args)

else

name = file.to_str

call operating system to open file 'name'

end

end

end

So, let’s see what happens if we want to pass a file descriptor integer stored as a Roman

number into File.new. Because our class implements to_int, the first respond_to? test will

succeed. We’ll pass an integer representation of our number to IO.open, and the file descrip-

tor will be returned, all wrapped up in a new IO object.

A small number of strict conversion functions are built into the standard library.

to_ary→ Array

This is used when interpreter needs a parameter to a method to be an array, and when

expanding parameters and assignments containing the *xyz syntax.

Download samples/ducktyping_13.rb

class OneTwo

def to_ary

[1, 2]

end

end

ot = OneTwo.new

puts ot

produces:

1

2

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/ducktyping_12.rb
http://media.pragprog.com/titles/ruby3/code/samples/ducktyping_13.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=377

STANDARD PROTOCOLS AND COERCIONS 378

to_a→ Array

This is used when interpreter needs to convert an object into an array for parameter

passing or multiple assignment.1.9

Download samples/ducktyping_14.rb

class OneTwo

def to_a

[1, 2]

end

end

ot = OneTwo.new

a, b = *ot

puts "a = #{a}, b = #{b}"

printf("%d %d\n", *ot)

produces:

a = 1, b = 2

1 2

to_enum→ Enumerator
1.9 This converts an object (presumably a collection) to an enumerator. It’s never called

internally by the interpreter.

to_hash→ Hash

This is used when the interpreter expects to see Hash. (The only known use is the

second parameter to Hash#replace.)

to_int→ Integer

This is used when the interpreter expects to see an integer value (such as a file descrip-

tor or as a parameter to Kernel.Integer).

to_io→ IO

This is used when the interpreter is expecting I/O objects (for example, as parameters

to IO#reopen or IO.select).

to_open→ IO

This is called (if defined) on the first parameter to IO.open.

to_path→ String
1.9 This is called by the interpreter when it is looking for a filename (for example, by

File#open).

to_proc→ Proc

This is used to convert an object prefixed with an ampersand in a method call.

class OneTwo

def to_proc

proc { "onetwo" }

end

end

def silly

yield

end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/ducktyping_14.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=378

STANDARD PROTOCOLS AND COERCIONS 379

Download samples/ducktyping_16.rb

ot = OneTwo.new

silly(&ot) # => "onetwo"

to_regexp→ Regexp
1.9 This is invoked by Regexp#try_convert to convert its argument to a regular expression.

to_str→ String

This is used pretty much any place the interpreter is looking for a String value.

Download samples/ducktyping_17.rb

class OneTwo

def to_str

"onetwo"

end

end

ot = OneTwo.new

puts("count: " + ot)

File.open(ot) rescue puts $!.message

produces:

count: onetwo

No such file or directory onetwo

to_sym→ Symbol

This expresses the receiver as a symbol. This is used by the interpreter when compiling

instruction sequences, but it’s probably not useful in user code.

One last point is that classes such as Integer and Fixnum implement the to_int method, and

String implements to_str. That way you can call the strict conversion functions polymorphi-

cally:

it doesn't matter if obj is a Fixnum or a

Roman number, the conversion still succeeds

num = obj.to_int

The Symbol.to_proc Trick

Ruby 1.91.9 implements the to_proc for objects of class symbol. Say you want to convert an

array of strings to uppercase. You could write this:

names = %{ant bee cat}

result = names.map {|name| name.upcase}

That’s fairly concise, right? Return a new array where each element is the corresponding

element in the original, converted to uppercase. But, as of Ruby 1.9, you can instead write

this:

names = %{ant bee cat}

result = names.map(&:upcase)

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/ducktyping_16.rb
http://media.pragprog.com/titles/ruby3/code/samples/ducktyping_17.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=379

STANDARD PROTOCOLS AND COERCIONS 380

Now that’s concise: apply the upcase method to each element of names.

So, how does it work? It relies on Ruby’s type coercions. Let’s start at the top.

When you say names.map(&xxx), you’re telling Ruby to pass the Proc object in xxx to the

map method as a block. If xxx isn’t already a Proc object, Ruby tries to coerce it into one

by sending it a to_proc message.

Now :upcase isn’t a Proc object—it’s a symbol. So when Ruby sees names.map(&:upcase),

the first thing it does is try to convert the symbol :upcase into a Proc by calling to_proc.

And, by an incredible coincidence, Ruby implements just such a method. If it was written

in Ruby, it would look something like this:

def to_proc

proc { |obj, *args| obj.send(self, *args) }

end

This method creates a Proc, which, when called on an object, sends that object the symbol

itself. So, when names.map(&:upcase) starts to iterate over the strings in names, it’ll call

the block, passing in the first name and invoking its upcase method.

It’s an incredibly elegant use of coercion and of closures. However, it comes at a price. The

use of dynamic method invocations mean that the version of our code that uses &:upcase

is about half as fast as the more explicitly coded block. This doesn’t worry me personally

unless I happen to be in a performance-critical section of my code.

Numeric Coercion

Back on page 376 we said there were three types of conversion performed by the interpreter.

We covered loose and strict conversion. The third is numeric coercion.

Here’s the problem. When you write 1+2, Ruby knows to call the + on the object 1 (a

Fixnum), passing it the Fixnum 2 as a parameter. However, when you write 1+2.3, the same

+ method now receives a Float parameter. How can it know what to do (particularly because

checking the classes of your parameters is against the spirit of duck typing)?

The answer lies in Ruby’s coercion protocol, based on the method coerce. The basic opera-

tion of coerce is simple. It takes two numbers (one as its receiver, the other as a parameter).

It returns a two-element array containing representations of these two numbers (but with

the parameter first, followed by the receiver). The coerce method guarantees that these two

objects will have the same class and therefore that they can be added (or multiplied, com-

pared, or whatever).

1.coerce(2) # => [2, 1]

1.coerce(2.3) # => [2.3, 1.0]

(4.5).coerce(2.3) # => [2.3, 4.5]

(4.5).coerce(2) # => [2.0, 4.5]

The trick is that the receiver calls the coerce method of its parameter to generate this array.

This technique, called double dispatch, allows a method to change its behavior based not

only on its class but also on the class of its parameter. In this case, we’re letting the parameter

decide exactly what classes of objects should get added (or multiplied, divided, and so on).

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=380

STANDARD PROTOCOLS AND COERCIONS 381

Let’s say that we’re writing a new class that’s intended to take part in arithmetic. To par-

ticipate in coercion, we need to implement a coerce method. This takes some other kind of

number as a parameter and returns an array containing two objects of the same class, whose

values are equivalent to its parameter and itself.

For our Roman number class, it’s fairly easy. Internally, each Roman number object holds

its real value as a Fixnum in an instance variable, @value. The coerce method checks to see

whether the class of its parameter is also an Integer. If so, it returns its parameter and its

internal value. If not, it first converts both to floating point.

Download samples/ducktyping_23.rb

class Roman

def initialize(value)

@value = value

end

def coerce(other)

if Integer === other

[other, @value]

else

[Float(other), Float(@value)]

end

end

.. other Roman stuff

end

iv = Roman.new(4)

xi = Roman.new(11)

3 * iv # => 12

1.1 * xi # => 12.1

Of course, class Roman as implemented doesn’t know how to do addition. You couldn’t have

written xi+3 in the previous example, because Roman doesn’t have a + method. And that’s

probably as it should be. But let’s go wild and implement addition for Roman numbers:

Download samples/ducktyping_24.rb

class Roman

MAX_ROMAN = 4999

attr_reader :value

protected :value

def initialize(value)

if value <= 0 || value > MAX_ROMAN

fail "Roman values must be > 0 and <= #{MAX_ROMAN}"

end

@value = value

end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/ducktyping_23.rb
http://media.pragprog.com/titles/ruby3/code/samples/ducktyping_24.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=381

STANDARD PROTOCOLS AND COERCIONS 382

def coerce(other)

if Integer === other

[other, @value]

else

[Float(other), Float(@value)]

end

end

def +(other)

if Roman === other

other = other.value

end

if Fixnum === other && (other + @value) < MAX_ROMAN

Roman.new(@value + other)

else

x, y = other.coerce(@value)

x + y

end

end

FACTORS = [["m", 1000], ["cm", 900], ["d", 500], ["cd", 400],

["c", 100], ["xc", 90], ["l", 50], ["xl", 40],

["x", 10], ["ix", 9], ["v", 5], ["iv", 4],

["i", 1]]

def to_s

value = @value

roman = ""

for code, factor in FACTORS

count, value = value.divmod(factor)

roman << (code * count)

end

roman

end

end

Download samples/ducktyping_25.rb

iv = Roman.new(4)

xi = Roman.new(11)

iv + 3 # => vii

iv + 3 + 4 # => xi

iv + 3.14159 # => 7.14159

xi + 4900 # => mmmmcmxi

xi + 4990 # => 5001

Finally, be careful with coerce—try always to coerce into a more general type, or you may

end up generating coercion loops. This is a situation where A tries to coerce to B, and B

tries to coerce back to A.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/ducktyping_25.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=382

WALK THE WALK, TALK THE TALK 383

Walk the Walk, Talk the Talk
Duck typing can generate controversy. Every now and then a thread flares on the mailing

lists or someone blogs for or against the concept. Many of the contributors to these discus-

sions have some fairly extreme positions.

Ultimately, though, duck typing isn’t a set of rules; it’s just a style of programming. Design

your programs to balance paranoia and flexibility. If you feel the need to constrain the types

of objects that the users of a method pass in, ask yourself why. Try to determine what could

go wrong if you were expecting a String and instead get an Array. Sometimes, the difference

is crucially important. Often, though, it isn’t. Try erring on the more permissive side for

a while, and see whether bad things happen. If not, perhaps duck typing isn’t just for the

birds.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=383

