
Chapter 25

Reflection,
ObjectSpace, and
Distributed Ruby

One of the advantages of dynamic languages such as Ruby is the ability to introspect—to

examine aspects of a program from within the program itself. This process is also called

reflection.

When you introspect, you think about your thoughts and feelings. This is interesting, be-

cause you’re using thought to analyze thought. It’s the same when programs use introspec-

tion—a program can discover the following information about itself:

• What objects it contains

• Its class hierarchy

• The attributes and methods of objects

• Information on methods

Armed with this information, we can look at particular objects and decide which of their

methods to call at runtime—even if the class of the object didn’t exist when we first wrote

the code. We can also start doing clever things, perhaps modifying the program while it’s

running. Later in this chapter we’ll look at distributed Ruby and marshaling, two reflection-

based technologies that let us send objects around the world and through time.

Looking at Objects
Have you ever craved the ability to traverse all the living objects in your program? We have!

Ruby lets you perform this trick with ObjectSpace.each_object. We can use it to do all sorts

of neat tricks.

For example, to iterate over all objects of type Float, you’d write the following:

a = 102.7

b = 95.1

ObjectSpace.each_object(Float) {|x| p x }

Report erratum420

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=420

LOOKING AT OBJECTS 421

produces:

95.1

102.7

2.71828182845905

3.14159265358979

2.22044604925031e16

1.79769313486232e+308

2.2250738585072e308

Hey, where did all those extra numbers come from? We didn’t define them in our program.

Well, the Math module defines constants for e and π, and if you look on pages 528 and

588, you’ll see that the Float class defines constants for the maximum and minimum float,

as well as epsilon, the smallest distinguishable difference between two floats. Since we are

examining all living objects in the system, these turn up as well.

Let’s try the same example with different values. This time, they’re objects of type Fixnum:

a = 102

b = 95

ObjectSpace.each_object(Fixnum) {|x| p x }

(Produces no output.)

Neither of the Fixnum objects we created showed up. That’s because ObjectSpace doesn’t

know about objects with immediate values: Fixnum, Symbol, true, false, and nil.

Looking Inside Objects

Once you’ve found an interesting object, you may be tempted to find out just what it can do.

Unlike static languages, where a variable’s type determines its class, and hence the methods

it supports, Ruby supports liberated objects. You really cannot tell exactly what an object

can do until you look under its hood.1 We talk about this in the Duck Typing chapter starting

on page 370.

For instance, we can get a list of all the methods to which an object will respond (these

include methods in an object’s class and that class’s ancestors):

r = 1..10 # Create a Range object

list = r.methods

list.length # => 101

list[0..3] # => [:==, :===, :eql?, :hash]

We can check to see whether an object responds to a particular method:

r.respond_to?("frozen?") # => true

r.respond_to?(:has_key?) # => false

"me".respond_to?("==") # => true

1. Or under its bonnet, for objects created to the east of the Atlantic.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=421

LOOKING AT CLASSES 422

We can determine our object’s class and its unique object ID and test its relationship to other

classes:

num = 1

num.object_id # => 3

num.class # => Fixnum

num.kind_of? Fixnum # => true

num.kind_of? Numeric # => true

num.instance_of? Fixnum # => true

num.instance_of? Numeric # => false

Looking at Classes
Knowing about objects is one part of reflection, but to get the whole picture, you also need

to be able to look at classes—the methods and constants that they contain.

Looking at the class hierarchy is easy. You can get the parent of any particular class using

Class#superclass. For classes and modules, Module#ancestors lists both superclasses and

mixed-in modules:

klass = Fixnum

begin

print klass

klass = klass.superclass

print " < " if klass

end while klass

puts

p Fixnum.ancestors

produces:

Fixnum < Integer < Numeric < Object < BasicObject

[Fixnum, Integer, Numeric, Comparable, Object, Kernel, BasicObject]

If you want to build a complete class hierarchy, just run that code for every class in the

system. We can use ObjectSpace to iterate over all Class objects:

ObjectSpace.each_object(Class) do |klass|

...

end

Looking Inside Classes

We can find out a bit more about the methods and constants in a particular object. Instead of

just checking to see whether the object responds to a given message, we can ask for methods

by access level, and we can ask for just singleton methods.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=422

CALLING METHODS DYNAMICALLY 423

We can also take a look at the object’s constants, local, and instance variables:1.9

class Demo

@@var = 99

CONST = 1.23

private

def private_method

end

protected

def protected_method

end

public

def public_method

@inst = 1

i = 1

j = 2

local_variables

end

def Demo.class_method

end

end

Demo.private_instance_methods(false) # => [:private_method]

Demo.protected_instance_methods(false) # => [:protected_method]

Demo.public_instance_methods(false) # => [:public_method]

Demo.singleton_methods(false) # => [:class_method]

Demo.class_variables # => [:@@var]

Demo.constants(false) # => [:CONST]

demo = Demo.new

demo.instance_variables # => []

Get 'public_method' to return its local variables

and set an instance variable

demo.public_method # => [:i, :j]

demo.instance_variables # => [:@inst]

You may be wondering what all the false parameters were in the previous code. As of Ruby

1.8, these reflection methods will by default recurse into parent classes, their parents, and

so on, up the ancestor chain. Passing in false stops this kind of prying.

Given a list of method names, we may now be tempted to try calling them. Fortunately,

that’s easy with Ruby.

Calling Methods Dynamically
The Object#send method lets you tell an object to invoke a method by name. It works on

any object.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=423

CALLING METHODS DYNAMICALLY 424

"John Coltrane".send(:length) # => 13

"Miles Davis".send("sub", /iles/, '.') # => "M. Davis"

Another way of invoking methods dynamically uses Method objects. A Method object is

like a Proc object: it represents a chunk of code and a context in which it executes. In

this case, the code is the body of the method, and the context is the object that created the

method. Once we have our Method object, we can execute it sometime later by sending it

the message call:

trane = "John Coltrane".method(:length)

miles = "Miles Davis".method("sub")

trane.call # => 13

miles.call(/iles/, '.') # => "M. Davis"

You can pass the Method object around as you would any other object, and when you invoke

Method#call, the method is run just as if you had invoked it on the original object. It’s like

having a C-style function pointer but in a fully object-oriented style.

You can use Method objects where you could use proc objects. For example, they work with

iterators:

def double(a)

2*a

end

method_object = method(:double)

[1, 3, 5, 7].map(&method_object) # => [2, 6, 10, 14]

Method objects are bound to one particular object. You can create unbound methods (of

class UnboundMethod) and then subsequently bind them to one or more objects. The bind-

ing creates a new Method object. As with aliases, unbound methods are references to the

definition of the method at the time they are created:

unbound_length = String.instance_method(:length)

class String

def length

99

end

end

str = "cat"

str.length # => 99

bound_length = unbound_length.bind(str)

bound_length.call # => 3

As good things come in threes, here’s yet another way to invoke methods dynamically. The

eval method (and its variations such as class_eval, module_eval, and instance_eval) will

parse and execute an arbitrary string of legal Ruby source code.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=424

CALLING METHODS DYNAMICALLY 425

trane = %q{"John Coltrane".length}

miles = %q{"Miles Davis".sub(/iles/, '.')}

eval trane # => 13

eval miles # => "M. Davis"

When using eval, it can be helpful to state explicitly the context in which the expression

should be evaluated, rather than using the current context. You can obtain a context by

calling Kernel#binding at the desired point:

def get_a_binding

val = 123

binding

end

val = "cat"

the_binding = get_a_binding

eval("val", the_binding) # => 123

eval("val") # => "cat"

The first eval evaluates val in the context of the binding as it was when the method

get_a_binding was executing. In this binding, the variable val had a value of 123. The second

eval evaluates val in the top-level binding, where it has the value "cat".

Performance Considerations

As we’ve seen in this section, Ruby gives us several ways to invoke an arbitrary method of

some object: Object#send, Method#call, and the various flavors of eval.

You may prefer to use any one of these techniques depending on your needs, but be aware

that eval is significantly slower than the others (or, for optimistic readers, send and call are

significantly faster than eval):

Download samples/ospace_15.rb

require 'benchmark'

include Benchmark

test = "Stormy Weather"

m = test.method(:length)

n = 100000

bm(12) {|x|

x.report("call") { n.times { m.call } }

x.report("send") { n.times { test.send(:length) } }

x.report("eval") { n.times { eval "test.length" } }

}

produces:

user system total real

call 0.020000 0.000000 0.020000 (0.022663)

send 0.010000 0.000000 0.010000 (0.016671)

eval 0.780000 0.000000 0.780000 (0.776943)

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/ospace_15.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=425

SYSTEM HOOKS 426

System Hooks
A hook is a technique that lets you trap some Ruby event, such as object creation. Let’s take

a look at some common Ruby hook techniques.

Hooking Method Calls

The simplest hook technique in Ruby is to intercept calls to methods in system classes.

Perhaps you want to log all the operating system commands your program executes. Simply

rename the method Kernel.system and substitute it with one of your own that both logs the

command and calls the original Kernel method:

module Kernel

alias_method :old_system, :system

def system(*args)

result = old_system(*args)

puts "system(#{args.join(', ')}) returned #{result.inspect}"

result

end

end

system("date")

system("kangaroo", "hop 10", "skippy")

produces:

Mon Apr 13 13:26:15 CDT 2009

system(date) returned true

system(kangaroo, hop 10, skippy) returned nil

The problem with this technique is that you’re relying on there not being an existing method

called old_system. A better alternative is to make use of method objects, which are effec-

tively anonymous:

module Kernel

old_system_method = instance_method(:system)

define_method(:system) do |*args|

result = old_system_method.bind(self).call(*args)

puts "system(#{args.join(', ')}) returned #{result.inspect}"

result

end

end

system("date")

system("kangaroo", "hop 10", "skippy")

produces:

Mon Apr 13 13:26:15 CDT 2009

system(date) returned true

system(kangaroo, hop 10, skippy) returned nil

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=426

TRACING YOUR PROGRAM’S EXECUTION 427

Object Creation Hooks

Ruby lets you get involved when objects are created. If you can be present when every

object is born, you can do all sorts of interesting things: you can wrap them, add methods to

them, remove methods from them, and add them to containers to implement persistence—

you name it. We’ll show a simple example here. We’ll add a timestamp to every object as

it’s created. First, we’ll add a timestamp attribute to every object in the system. We can do

this by hacking class Object itself:

class Object

attr_accessor :timestamp

end

Then, we need to hook object creation to add this timestamp. One way to do this is to do

our method renaming trick on Class#new, the method that’s called to allocate space for a

new object. The technique isn’t perfect—some built-in objects, such as literal strings, are

constructed without calling new—but it’ll work just fine for objects we write.

class Class

old_new = instance_method :new

define_method :new do |*args, &block|

result = old_new.bind(self).call(*args, &block)

result.timestamp = Time.now

result

end

end

Finally, we can run a test. We’ll create a couple of objects a few milliseconds apart and

check their timestamps:

class Test

end

obj1 = Test.new

sleep(0.002)

obj2 = Test.new

obj1.timestamp.to_f # => 1239647175.73519

obj2.timestamp.to_f # => 1239647175.73724

Tracing Your Program’s Execution
While we’re having fun reflecting on all the objects and classes in our programs, let’s not

forget about the humble statements that make our code actually do things. It turns out that

Ruby lets us look at these statements, too.

First, you can watch the interpreter as it executes code. set_trace_func executes a proc with

all sorts of juicy debugging information whenever a new source line is executed, methods

are called, objects are created, and so on.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=427

TRACING YOUR PROGRAM’S EXECUTION 428

You’ll find a full description on page 576, but here’s a taste:

Download samples/ospace_21.rb

class Test

def test

a = 1

b = 2

end

end

set_trace_func lambda {|event, file, line, id, binding, classname|

printf "%8s %s:%2d %15s %15s\n", event, file, line, classname, id

}

t = Test.new

t.test

produces:

creturn prog.rb:10 Kernel set_trace_func

line prog.rb:11

ccall prog.rb:11 Class new

ccall prog.rb:11 BasicObject initialize

creturn prog.rb:11 BasicObject initialize

creturn prog.rb:11 Class new

line prog.rb:12

call prog.rb:2 Test test

line prog.rb:3 Test test

line prog.rb:4 Test test

return prog.rb:2 Test test

The method trace_var (described on page 579) lets you add a hook to a global variable;

whenever an assignment is made to the global, your proc is invoked.

How Did We Get Here?

That’s a fair question...one we ask ourselves regularly. Mental lapses aside, in Ruby at least

you can find out exactly “how you got there” by using the method caller, which returns an

Array of String objects representing the current call stack:

def cat_a

puts caller

end

def cat_b

cat_a

end

def cat_c

cat_b

end

cat_c

produces:

/tmp/prog.rb:5:in `cat_b'

/tmp/prog.rb:8:in `cat_c'

/tmp/prog.rb:10:in `<main>'

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/ospace_21.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=428

TRACING YOUR PROGRAM’S EXECUTION 429

Once you’ve figured out how you got there, where you go next is up to you.

Source Code

Ruby executes programs from plain old files. You can look at these files to examine the

source code that makes up your program using one of a number of techniques.

The special variable __FILE__ contains the name of the current source file. This leads to a

fairly short (if cheating) Quine—a program that outputs its own source code:

print File.read(__FILE__)

produces:

print File.read(__FILE__)

As we saw in the previous section, the method Kernel.caller returns the call stack as a list.

Each entry in this list starts off with a filename, a colon, and a line number in that file.

You can parse this information to display source. In the following example, we have a main

program, main.rb, that calls a method in a separate file, sub.rb. That method in turns invokes

a block, where we traverse the call stack and write out the source lines involved. Notice the

use of a hash of file contents, indexed by the filename.

Here’s the code that dumps out the call stack, including source information:

def dump_call_stack

file_contents = {}

puts "File Line Source Line"

puts "++"

caller.each do |position|

next unless position =~ /\A(.*?):(\d+)/

file = $1

line = Integer($2)

file_contents[file] ||= File.readlines(file)

printf("%15s:%3d %s", File.basename(file), line,

file_contents[file][line1].lstrip)

end

end

The (trivial) file sub.rb contains a single method:

def sub_method(v1, v2)

main_method(v1*3, v2*6)

end

And here’s the main program, which invokes the stack dumper after being called back by

the submethod:

require 'sub'

require 'stack_dumper'

def main_method(arg1, arg2)

dump_call_stack

end

sub_method(123, "cat")

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=429

BEHIND THE CURTAIN: THE RUBY VM 430

produces:

File Line Source Line

++

main.rb : 5 dump_call_stack

sub.rb : 2 main_method(v1*3, v2*6)

main.rb : 8 sub_method(123, "cat")

The SCRIPT_LINES_ _ constant is closely related to this technique. If a program initializes

a constant called SCRIPT_LINES_ _ with a hash, that hash will receive a new entry for

every file subsequently loaded into the interpreter using require or load. The entry’s key is

the name of the file, and the value is the source of the file as an array of strings.

Behind the Curtain: The Ruby VM
Ruby 1.91.9 comes with a new virtual machine, called YARV. As well as being faster than the

old interpreter, YARV exposes some of its state via Ruby classes.

If you’d like to know what Ruby is doing with all that code you’re writing, you can ask

YARV to show you the intermediate code that it is executing. You can ask it to compile the

Ruby code in a string or in a file and then disassemble it and even run it.2 Here’s a trivial

example:

code = RubyVM::InstructionSequence.compile('a = 1; puts 1 + a')

puts code.disassemble

produces:

== disasm: <RubyVM::InstructionSequence:<compiled>@<compiled>>==========

local table (size: 2, argc: 0 [opts: 0, rest: 1, post: 0, block: 1] s1)

[2] a

0000 trace 1 (1)

0002 putobject 1

0004 setlocal a

0006 trace 1

0008 putnil

0009 putobject 1

0011 getlocal a

0013 opt_plus

0014 send :puts, 1, nil, 8, <ic>

0020 leave

Maybe you want to know how Ruby handles #{ } substitutions in strings:

code = RubyVM::InstructionSequence.compile('a = 1; puts "a = #{a}."')

puts code.disassemble

2. People often ask if they can dump the opcodes out and later reload them. The answer is no—the interpreter

has the code to do this, but it is disabled because there is not yet an intermediate code verifier for YARV.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=430

MARSHALING AND DISTRIBUTED RUBY 431

produces:

== disasm: <RubyVM::InstructionSequence:<compiled>@<compiled>>==========

local table (size: 2, argc: 0 [opts: 0, rest: 1, post: 0, block: 1] s1)

[2] a

0000 trace 1 (1)

0002 putobject 1

0004 setlocal a

0006 trace 1

0008 putnil

0009 putobject "a = "

0011 getlocal a

0013 tostring

0014 putstring "."

0016 concatstrings 3

0018 send :puts, 1, nil, 8, <ic>

0024 leave

For a full list of the opcodes, print out RubyVM::INSTRUCTION_NAMES.

Marshaling and Distributed Ruby
Ruby features the ability to serialize objects, letting you store them somewhere and recon-

stitute them when needed. You can use this facility, for instance, to save a tree of objects

that represent some portion of application state—a document, a CAD drawing, a piece of

music, and so on.

Ruby calls this kind of serialization marshaling (think of railroad marshaling yards where

individual cars are assembled in sequence into a complete train, which is then dispatched

somewhere). Saving an object and some or all of its components is done using the method

Marshal.dump. Typically, you will dump an entire object tree starting with some given

object. Later, you can reconstitute the object using Marshal.load.

Here’s a short example. We have a class Chord that holds a collection of musical notes.

We’d like to save away a particularly wonderful chord so we can e-mail it to a couple of

hundred of our closest friends. They can then load it into their copy of Ruby and savor it

too. Let’s start with the classes for Note and Chord:

class Note < Struct.new(:value)

def to_s

value.to_s

end

end

class Chord

def initialize(arr)

@arr = arr

end

def play

@arr.join('')

end

end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=431

MARSHALING AND DISTRIBUTED RUBY 432

Now we’ll create our masterpiece and use Marshal.dump to save a serialized version to disk:

c = Chord.new([Note.new("G"),

Note.new("Bb"),

Note.new("Db"),

Note.new("E")])

File.open("posterity", "w+") do |f|

Marshal.dump(c, f)

end

Finally, our grandchildren read it in and are transported by our creation’s beauty:

chord = Marshal.load(File.open("posterity"))

chord.play # => "GBbDbE"

Custom Serialization Strategy

Not all objects can be dumped: bindings, procedure objects, instances of class IO, and sin-

gleton objects cannot be saved outside the running Ruby environment (a TypeError will be

raised if you try). Even if your object doesn’t contain one of these problematic objects, you

may want to take control of object serialization yourself.

Marshal provides the hooks you need. In the objects that require custom serialization, simply

implement two instance methods: one called marshal_dump, which writes the object out to

a string, and one called marshal_load, which reads a string that you had previously created

and uses it to initialize a newly allocated object. (In earlier Ruby versions you’d use methods

called _dump and _load, but the new versions play better with Ruby 1.8’s new allocation

scheme.) The instance method marshal_dump should return an object representing the state

to be dumped. When the object is subsequently reconstituted using Marshal.load, the method

marshal_load will be called with this object and will use it to set the state of its receiver—it

will be run in the context of an allocated but not initialized object of the class being loaded.

For instance, here is a sample class that defines its own serialization. For whatever reasons,

Special doesn’t want to save one of its internal data members, @volatile. The author has

decided to serialize the two other instance variables in an array.

class Special

def initialize(valuable, volatile, precious)

@valuable = valuable

@volatile = volatile

@precious = precious

end

def marshal_dump

[@valuable, @precious]

end

def marshal_load(variables)

@valuable = variables[0]

@precious = variables[1]

@volatile = "unknown"

end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=432

MARSHALING AND DISTRIBUTED RUBY 433

def to_s

"#@valuable #@volatile #@precious"

end

end

obj = Special.new("Hello", "there", "World")

puts "Before: obj = #{obj}"

data = Marshal.dump(obj)

obj = Marshal.load(data)

puts "After: obj = #{obj}"

produces:

Before: obj = Hello there World

After: obj = Hello unknown World

For more details, see the reference section on Marshal beginning on page 583.

YAML for Marshaling

The Marshal module is built into the interpreter and uses a binary format to store objects

externally. Although fast, this binary format has one major disadvantage: if the interpreter

changes significantly, the marshal binary format may also change, and old dumped files may

no longer be loadable.

An alternative is to use a less fussy external format, preferably one using text rather than

binary files. One option, supplied as a standard library, is YAML.3

We can adapt our previous marshal example to use YAML. Rather than implement specific

loading and dumping methods to control the marshal process, we simply define the method

to_yaml_properties, which returns a list of instance variables to be saved:

require 'yaml'

class Special

def initialize(valuable, volatile, precious)

@valuable = valuable

@volatile = volatile

@precious = precious

end

def to_yaml_properties

%w{ @precious @valuable }

end

def to_s

"#@valuable #@volatile #@precious"

end

end

3. http://www.yaml.org. YAML stands for YAML Ain’t Markup Language, but that hardly seems important.

Report erratum

http://www.yaml.org
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=433

MARSHALING AND DISTRIBUTED RUBY 434

obj = Special.new("Hello", "there", "World")

puts "Before: obj = #{obj}"

data = YAML.dump(obj)

obj = YAML.load(data)

puts "After: obj = #{obj}"

produces:

Before: obj = Hello there World

After: obj = Hello World

We can have a look at what YAML creates as the serialized form of the object—it’s pretty

simple:

obj = Special.new("Hello", "there", "World")

puts YAML.dump(obj)

produces:

 !ruby/object:Special

precious: World

valuable: Hello

Distributed Ruby

Since we can serialize an object or a set of objects into a form suitable for out-of-process

storage, we can use this capability for the transmission of objects from one process to

another. Couple this capability with the power of networking, and voilà—you have a dis-

tributed object system. To save you the trouble of having to write the code, we suggest using

Masatoshi Seki’s Distributed Ruby library (drb), which is now available as a standard Ruby

library.

Using drb, a Ruby process may act as a server, as a client, or as both. A drb server acts as a

source of objects, while a client is a user of those objects. To the client, it appears that the

objects are local, but in reality the code is still being executed remotely.

A server starts a service by associating an object with a given port. Threads are created

internally to handle incoming requests on that port, so remember to join the drb thread

before exiting your program:

require 'drb'

class TestServer

def add(*args)

args.inject {|n,v| n + v}

end

end

server = TestServer.new

DRb.start_service('druby://localhost:9000', server)

DRb.thread.join # Don't exit just yet!

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=434

COMPILE TIME? RUNTIME? ANYTIME! 435

A simple drb client simply creates a local drb object and associates it with the object on the

remote server; the local object is a proxy:

require 'drb'

DRb.start_service()

obj = DRbObject.new(nil, 'druby://localhost:9000')

Now use obj

puts "Sum is: #{obj.add(1, 2, 3)}"

The client connects to the server and calls the method add, which uses the magic of inject

to sum its arguments. It returns the result, which the client prints out:

Sum is: 6

The initial nil argument to DRbObject indicates that we want to attach to a new distributed

object. We could also use an existing object.

Ho hum, you say. This sounds like Java’s RMI, or CORBA, or whatever. Yes, it is a func-

tional distributed object mechanism—but it is written in just a few hundred lines of Ruby

code. No C, nothing fancy, just plain old Ruby code. Of course, it has no naming service or

trader service, or anything like you’d see in CORBA, but it is simple and reasonably fast.

On my 2.5GHz Power Mac system, this sample code runs at about 1,300 remote message

calls per second. And if you do need naming services, DRb has a ring server that might fit

the bill.

And, if you like the look of Sun’s JavaSpaces, the basis of the JINI architecture, you’ll be

interested to know that drb is distributed with a short module that does the same kind of

thing. JavaSpaces is based on a technology called Linda. To prove that its Japanese author

has a sense of humor, Ruby’s version of Linda is known as Rinda.

Compile Time? Runtime? Anytime!
The important thing to remember about Ruby is that there isn’t a big difference between

“compile time” and “runtime.” It’s all the same. You can add code to a running process. You

can redefine methods on the fly, change their scope from public to private, and so on. You

can even alter basic types, such as Class and Object.

Once you get used to this flexibility, it is hard to go back to a static language such as C++

or even to a half-static language such as Java.

But then, why would you want to do that?

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=435

