
Chapter 26

Locking Ruby in the Safe

Walter Webcoder has a great idea for a portal site: the Web Arithmetic Page. Surrounded by

all sorts of cool mathematical links and banner ads that will make him rich is a simple web

form containing a text field and a button. Users type an arithmetic expression into the field,

click the button, and the answer is displayed. All the world’s calculators become obsolete

overnight; Walter cashes in and retires to devote his life to his collection of car license plate

numbers.

Implementing the calculator is easy, thinks Walter. He accesses the contents of the form field

using Ruby’s CGI library and uses the eval method to evaluate the string as an expression:

Download samples/taint_1.rb

require 'cgi'

cgi = CGI.new("html4")

Fetch the value of the form field "expression"

expr = cgi["expression"].to_s

begin

result = eval(expr)

rescue Exception => detail

handle bad expressions

end

display result back to user...

Roughly seven seconds after Walter puts the application online, a twelve-year-old from

Waxahachie with glandular problems and no real life types system("rm *") into the form,

and like his computer’s files, Walter’s dreams come tumbling down.

Walter learned an important lesson: All external data is dangerous. Don’t let it close to

interfaces that can modify your system. In this case, the content of the form field was the

external data, and the call to eval was the security breach.

Fortunately, Ruby provides support for reducing this risk. All information from the out-

side world can be marked as tainted. When running in a safe mode, potentially dangerous

methods will raise a SecurityError if passed a tainted object.

Report erratum436

http://media.pragprog.com/titles/ruby3/code/samples/taint_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=436

SAFE LEVELS 437

Safe Levels
The variable $SAFE determines Ruby’s level of paranoia. Table 26.1 on page 440 gives

more details of the checks performed at each safe level.

$SAFE Constraints

0 No checking of the use of externally supplied (tainted) data is performed. This is

Ruby’s default mode.

≥ 1 Ruby disallows the use of tainted data by potentially dangerous operations.

≥ 2 Ruby prohibits the loading of program files from globally writable locations.

≥ 3 All newly created objects are considered tainted and untrusted.

≥ 4 Ruby effectively partitions the running program in two. Nontrusted objects may

not be modified.

The default value of $SAFE is zero under most circumstances. However, if a Ruby script is

run setuid or setgid1 or if it run under mod_ruby, its safe level is automatically set to 1. The

safe level may also be set by using the -T command-line option and by assigning to $SAFE

within the program. It is not possible to lower the value of $SAFE by assignment.

The current value of $SAFE is inherited when new threads are created. However, within each

thread, the value of $SAFE may be changed without affecting the value in other threads.

This facility may be used to implement secure “sandboxes,” areas where external code may

run safely without risk to the rest of your application or system. Do this by wrapping code

that you load from a file in its own, anonymous module. This will protect your program’s

namespace from any unintended alteration.

Download samples/taint_2.rb

File.open(filename,"w") do |f|

f.print ... # write untrusted program into file.

end

Thread.start do

$SAFE = 4

load(filename, true)

end

With a $SAFE level of 4, you can load only wrapped files. See the description of Kernel.load

on page 571 for details.

This concept is used by Clemens Wyss on Ruby CHannel (http://www.ruby.ch). On this

site, you can run the code from the first edition of this book. You can also type Ruby code

into a window and execute it. And yet he doesn’t lose sleep at night, because his site runs

your code in a sandbox.

1. A Unix script may be flagged to be run under a different user or group ID than the person running it. This

allows the script to have privileges that the user does not have; the script can access resources that the user would

otherwise be prohibited from using. These scripts are called setuid or setgid.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/taint_2.rb
http://www.ruby.ch
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=437

TAINTED OBJECTS 438

You can find a listing of the Ruby source code for this sandbox on the Web at

http://www.approximity.com/cgibin/rubybuch_wiki/wpage.rb?nd=214.

The safe level in effect when a Proc object is created is stored with that object. The safe

level may be set during the execution of a proc object without affecting the safe level of the

code that invoked tha proc. A proc may not be passed to a method if it is tainted and the

current safe level is greater than that in effect when the block was created.

Tainted Objects
Any Ruby object derived from some external source (for example, a string read from a file

or an environment variable) is automatically marked as being tainted. If your program uses

a tainted object to derive a new object, then that new object will also be tainted, as shown

in the following code. Any object with external data somewhere in its past will be tainted.

This tainting process is performed regardless of the current safe level. You can see whether

an object is tainted using Object#tainted?.

internal data

=============

x1 = "a string"

x1.tainted? # => false

x2 = x1[2, 4]

x2.tainted? # => false

x1 =~ /([az])/ # => 0

$1.tainted? # => false

external data

=============

y1 = ENV["HOME"]

y1.tainted? # => true

y2 = y1[2, 4]

y2.tainted? # => true

y1 =~ /([az])/ # => 2

$1.tainted? # => true

You can force any object to become tainted by invoking its taint method. If the safe level

is less than 3, you can remove the taint from an object by invoking untaint.2 This is not

something to do lightly.

Trusted Objects
Ruby 1.91.9 adds trust, a new dimension to the concept of safety. All objects are marked as

being trusted or untrusted. In addition, running code can be trusted or not. And, when you’re

running untrusted code, objects that you create are untrusted, and the only objects that you

can modify are those that are marked untrusted. What this in effect means is that you can

create a sandbox to execute untrusted code, and code in that sandbox cannot affect objects

outside that sandbox.

2. You can also use some devious tricks to do this without using untaint. We’ll leave it up to your darker side to

find them.

Report erratum

http://www.approximity.com/cgi-bin/rubybuch_wiki/wpage.rb?nd=214
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=438

TRUSTED OBJECTS 439

Let’s get more specific. Objects created while Ruby’s safe level is less than 3 are trusted.

However, objects created while the safe level is 3 or 4 will be untrusted. Code running at

safe levels 3 and 4 is also considered to be untrusted. Because untrusted code can modify

only untrusted objects, code at safe levels 3 and 4 will not be able to modify objects created

at a lower safe level.

Download samples/taint_5.rb

dog = "dog is trusted"

cat = lambda { $SAFE = 3; "cat is untrusted" }.call

puts "dog.untrusted? = #{dog.untrusted?}"

puts "cat.untrusted? = #{cat.untrusted?}"

running at safe level 1, these operations will succeed

puts dog.upcase!

puts cat.upcase!

running at safe level 4, we can modify the cat

lambda { $SAFE = 4; cat.downcase! }.call

puts "cat is now '#{cat}'"

but we can't modify the dog

lambda { $SAFE = 4; dog.downcase! }.call

puts "so we never get here"

produces:

dog.untrusted? = false

cat.untrusted? = true

DOG IS TRUSTED

CAT IS UNTRUSTED

cat is now 'cat is untrusted'

prog.rb:17:in `downcase!': Insecure: can't modify string (SecurityError)

from /tmp/prog.rb:17:in `block in <main>'

from /tmp/prog.rb:17:in `call'

from /tmp/prog.rb:17:in `<main>'

You can set and unset the trusted status of an object using Object#untrust and Object#trust

(but you have to be at below safe level 4 to call untrust and below safe level 3 to call trust).

The method Object#untrusted? returns true if an object is untrusted.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/taint_5.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=439

TRUSTED OBJECTS 440

Table 26.1. Definition of the Safe Levels
$SAFE >= 1

• The environment variables RUBYLIB and RUBYOPT are not processed, and the current directory is

not added to the path.

• The command-line options -e, -i, -I, -r, -s, -S, and -x are not allowed.

• Can’t start processes from $PATH if any directory in it is world-writable.

• Can’t manipulate or chroot to a directory whose name is a tainted string.

• Can’t glob tainted strings.

• Can’t eval tainted strings.

• Can’t load or require a file whose name is a tainted string (unless the load is wrapped1.9).

• Can’t manipulate or query the status of a file or pipe whose name is a tainted string.

• Can’t execute a system command or exec a program from a tainted string.

• Can’t pass trap a tainted string.

$SAFE >= 2

• Can’t change, make, or remove directories, or use chroot.

• Can’t load a file from a world-writable directory.

• Can’t load a file from a tainted filename starting with ~.

• Can’t use File#chmod, File#chown, File#lstat, File.stat, File#truncate, File.umask, File#flock,

IO#ioctl, IO#stat, Kernel#fork, Kernel#syscall, Kernel#trap. Process.setpgid, Process.setsid,

Process.setpriority, or Process.egid=.

• Can’t handle signals using trap.

$SAFE >= 3

• All objects are tainted when they are created.

• Can’t untaint objects.

• Can’t add trust to an object.

• Objects are created untrusted.

$SAFE >= 4

• Can’t modify a nontainted array, hash, or string.

• Can’t modify a global variable.

• Can’t access instance variables of nontainted objects.

• Can’t change an environment variable.

• Can’t close or reopen nontainted files.

• Can’t freeze nontainted objects.

• Can’t change visibility of methods (private/public/protected).

• Can’t make an alias in a nontainted class or module.

• Can’t get metainformation (such as method or variable lists).

• Can’t define, redefine, remove, or undef a method in a nontainted class or module.

• Can’t modify Object.

• Can’t remove instance variables or constants from nontainted objects.

• Can’t manipulate threads, terminate a thread other than the current thread, or set abort_on_exception.

• Can’t have thread local variables.

• Can’t raise an exception in a thread with a lower $SAFE value.

• Can’t move threads between ThreadGroups.

• Can’t invoke exit, exit!, or abort.

• Can load only wrapped files and can’t include modules in untainted classes and modules.

• Can’t convert symbol identifiers to object references.

• Can’t write to files or pipes.

• Can’t use autoload.

• Can’t taint objects.

• Can’t untrust an object.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=440

