
BINDING 469

B
in

d
in

g

Class
Binding < Object

Objects of class Binding encapsulate the execution context at some particular place in the

code and retain this context for future use. The variables, methods, value of self, and possi-

bly an iterator block accessible in this context are all retained. Binding objects can be created

using Kernel#binding and are made available to the callback of Kernel#set_trace_func.

These binding objects can be passed as the second argument of the Kernel#eval method,

establishing an environment for the evaluation.

class Demo

def initialize(n)

@secret = n

end

def get_binding

return binding()

end

end

k1 = Demo.new(99)

b1 = k1.get_binding

k2 = Demo.new(3)

b2 = k2.get_binding

Pass to eval...

eval("@secret", b1) # => 99

Or eval via binding...

b2.eval("@secret") # => 3

eval("@secret") # => nil

Instance methods

eval bind.eval(string 〈 , file 〈 , line 〉 〉)→ obj

1.9 Evaluates the Ruby code in string using the context of bind. Equivalent to calling Ker-

nel#eval with a second argument of bind. See the start of this section for an example.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=469

