Complex < Numeric

Represents complex numbers, represented internally as numbers with a real and imaginary part, both of which can be any scalar number. Note that scalar comparison operations (<<>, <, and so on) are not defined on complex numbers (which would argue that Complex should not be a subclass of Numeric, but that ship has sailed). Also see the standard library, somewhat confusingly named complex, on page 737 , for a way add complex number support to standard math functions, as well as the mathn library on page 767 for a way of integrating complex numbers into regular arithmetic (so that the square root of -1 returns Complex::I).

```
v1 = Complex(2,3) # => (2+3i)
v2 = Complex("0+2i") # Alternative constructor # => (0+2i)
v1 + v2 # => (2+5i)
v1 * v2 # => (-6+4i)
v2**2 # => (-4+0i)
v2**2 == -4 # => true
# Euler's theorem
include Math
E**(PI*Complex::I) # => (-1.0+1.22464679914735e-16i)
```


Class constants

I The imaginary unit.

Class methods

polar	Complex.polar (magnitude, angle $) \rightarrow$ complex		
	Returns the complex number represented by the given polar coordinates.		
	$\begin{array}{lll} \text { Complex.polar(1.23, 0.5) } & \# \text { => } & 1.07942655112516+0.58969341248317 \mathrm{i} \\ \text { Complex.polar(1, Math::PI/2) } & \#=> & 6.12323399573677 \mathrm{e}-17+1.0 \mathrm{i} \end{array}$		
rect	Complex.rect(read, imag) \rightarrow complex		
	Returns the complex number represented by the given real and imaginary parts.		
	Complex.rect(1.23, 0.5) \# => 1.23+0.5i		
rectangular			Complex.rectangular (read, imag) \rightarrow complex

Synonym for Complex.rect.

Instance methods

Arithmetic operations

Performs various arithmetic operations on complex.

complex	+	numeric	Addition
complex	-	numeric	Subtraction
complex	$*$	numeric	Multiplication
complex	$/$	numeric	Division
complex	$* *$	numeric	Exponentiation
complex	$-@$		Unary minus
complex	-+		Unary plus

== complex $==$ other \rightarrow true or false
Returns true if complex does equals other, converting other to a complex number if necessary.

Complex::I == Complex (0,1)	
Complex::I == Complex(1,0)	\# =>
Complex $(1,0)==1$	\# =>
Complex(1,0) == "1"	\#

abs

Returns the absolute value (magnitude) of complex.
Complex::I.abs \# => 1.0
Complex(1,1).abs \# => 1.4142135623731
abs2 complex.abs2 \rightarrow number

Returns the square of the absolute value (magnitude) of complex.
Complex::I.abs2 \# => 1
Complex(1,1).abs2 \# => 2
angle complex.angle \rightarrow number

Returns the angle between the x -axis and a line from the origin to complex. By convention, Complex $(0,0)$.angle is 0 .

Complex(1, 0).angle \# => 0.0
Complex(1, 1).angle \# => 0.785398163397448
Complex(0, 1).angle \# => 1.5707963267949
arg complex.arg \rightarrow number

Synonym for Complex\#angle.

Synonym for Complex\#conjugate.

conjugate

complex.conjugate \rightarrow a_complex
Returns the conjugate of complex (the reflection of complex around the x -axis).

Complex::I.conjugate	$\#$	=>
Complex(1,1).conjugate	$\#$	$(0-1 i)$
		$(1-1 i)$

denominator
complex.denominator \rightarrow number
Returns the lowest common multiple of the denominators of the real and imaginary parts of complex.

Complex(" $1 / 3+1 / 4 \mathrm{i} ")$. denominator	$\#=>$	12
C		

eql? complex.eql (other $) \rightarrow$ true or false
Returns true only if other is a complex number with real and imaginary parts eql? to complex's.

$\operatorname{Complex}(1,0) . e q l ?(\operatorname{Complex}(1,0))$	$\# ~=>$	true
$\operatorname{Complex}(1,0) . e q l ?(\operatorname{Complex}(1.0,0))$	$\#=>$	false
$\operatorname{Complex}(1,0) . e q l ?(1)$	$\#$ =>	false
$\operatorname{Complex}(1,0)==\operatorname{Complex}(1,0)$	$\#$ =>	true
$\operatorname{Complex}(1,0)==\operatorname{Complex}(1.0,0)$	$\# ~=>$	true
$\operatorname{Complex}(1,0)==1$	$\# ~=>$	true

fdiv complex.fdiv(other $) \rightarrow$ a_complex
Returns complex / other after converting the real and imaginary parts of complex to floats. (Contrast with Complex\#quo.)
c1 = Complex (1, 2)
c2 = Complex (2, 2)
c1 /c2 \# => $((3 / 4)+(1 / 4) * i)$
c1.fdiv(c2) \# => ($0.75+0.25 i$)
imag
complex.imag \rightarrow number

Returns the imaginary part of complex.
Complex(2, -3).imag \# => -3
imaginary complex.imaginary \rightarrow number

Synonym for Complex\#imag.

magnitude

complex.magnitude \rightarrow int or float
Returns the magnitude of complex(the distance of complex from the origin of the number line. The positive square root of real $^{2}+i m a g^{2}$.

```
Complex(3, 4).magnitude
# => 5.0
Complex::I.magnitude # => 1.0
```

If $c d$ is complex.denominator and re and $i m$ are the real and imaginary parts of complex, complex.numerator is as follows:

$$
\text { re.numerator } \times \frac{c d}{\text { re.denominator }}+\text { im.numerator } \times \frac{c d}{\text { im.denominator }} i
$$

| phase | | co |
| :--- | :--- | :--- | :--- |
| | Returns the phase angle of complex (the angle between | |
| the origin to $($ real, imag $)$), measured in radians. | | |
| Complex(3, 4).phase $\#$ 0.927295218001612
 Complex(-3, 4).phase $\#$ 2.21429743558818 | | |

polar complex. polar \rightarrow [magnitude, angle $]$

Returns complex as polar coordinates.
Complex(1,1).polar \# => [1.4142135623731, 0.785398163397448]
Complex(-2,-3).polar \# => [3.60555127546399, -2.15879893034246]
quo
complex.quo(other) \rightarrow a_complex
Returns complex / other after converting the real and imaginary parts of complex to rational numbers. (Contrast with Complex\#fdiv.)

```
c1 = Complex(1, 2)
c2 = Complex(2, 2)
    c1 /c2 # => ((3/4)+(1/4)*i)
    c1.quo(c2) # => ((3/4)+(1/4)*i)
```

rect
complex.rect \rightarrow [complex.real, complex.imag]

Returns an array containing the real and imaginary components of complex.
Complex::I.rect \# => [0, 1]
rectangular
complex.rectangular \rightarrow [complex.real, complex.imag]
Synonym for Complex\#rect.
real complex.real \rightarrow number
Returns the real part of complex.
Complex(2, 3).real \# => 2

Complex numbers are never real numbers (even if their imaginary part is zero).
Complex(1, 1).real? \# => false
Complex(1, 0).real? \# => false

to_f

complex.to_f \rightarrow float
Returns the real part of complex as a float, raising an exception if the imaginary part is not zero.

Complex(2, 0).to_f \# => 2.0

Returns the real part of complex as an integer, raising an exception if the imaginary part is not zero.

Complex(2.2, 0).to_i \# => 2

Returns the real part of complex as a rational number, raising an exception if the imaginary part is not zero.

Complex(2.5, 0).to_r \# => (5/2)

