
FIBER 505

F
ib

e
r

Class
Fiber < Object

A fiber is a lightweight asymetrical coroutine.1.9 Code in a fiber is created in a suspended state.

It runs when resumed and can suspend itself (passing a value back to the code that resumed

it). There is a full description of fibers on page 184.

fibs = Fiber.new do

n1 = n2 = 1

loop do

Fiber.yield n1

n1, n2 = n2, n1+n2

end

end

10.times { print fibs.resume, ' ' }

produces:

1 1 2 3 5 8 13 21 34 55

Class methods

new Fiber.new { block }→ fiber

Uses the block as a new, suspended fiber.

yield Fiber.yield(〈 val 〉∗)→ obj

Suspends execution of the current fiber. Any parameters will be returned as the value of the

resume call that awoke the fiber. Similarly, any values passed to resume will become the

return value of the subsequent yield.

f = Fiber.new do

num = 1

loop do

num += Fiber.yield(num)

end

end

square = 1

10.times do

square = f.resume(square)

print square, ' '

end

produces:

1 2 4 8 16 32 64 128 256 512

Instance methods

resume fiber.resume(〈 (〉∗val))→ obj

Resumes fiber. See Fiber.yield for a discussion and example of parameter passing.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=505

