
FILE 506

F
ile

Class
File < IO

A File is an abstraction of any file object accessible by the program and is closely associated

with class IO, page 546. File includes the methods of module FileTest as class methods,

allowing you to write (for example) File.exist?("foo").

In this section, permission bits are a platform-specific set of bits that indicate permissions

of a file. On Unix-based systems, permissions are viewed as a set of three octets, for the

owner, the group, and the rest of the world. For each of these entities, permissions may be

set to read, write, or execute the file.

Owner Group Other

r w x r w x r w x

4 2 1 4 2 1 4 2 1

The permission bits 0644 (in octal) would thus be interpreted as read/write for owner and

read-only for group and other. Higher-order bits may also be used to indicate the type of file

(plain, directory, pipe, socket, and so on) and various other special features. If the permis-

sions are for a directory, the meaning of the execute bit changes; when set, the directory can

be searched.

Each file has three associated times. The atime is the time the file was last accessed. The

ctime is the time that the file status (not necessarily the file contents) were last changed.

Finally, the mtime is the time the file’s data was last modified. In Ruby, all these times are

returned as Time objects.

On non-POSIX operating systems, there may be only the ability to make a file read-only

or read/write. In this case, the remaining permission bits will be synthesized to resemble

typical values. For instance, on Windows the default permission bits are 0644, which means

read/write for owner and read-only for all others. The only change that can be made is to

make the file read-only, which is reported as 0444.

See also Pathname on page 788 and IO on page 546.

Class methods

absolute_path File.absolute_path(filename 〈 , dirstring 〉)→ filename

1.9 Converts a path name to an absolute path name. Relative paths are referenced from the

current working directory of the process unless dirstring is given, in which case it will be

used as the starting point. Path names starting with ~ are not expanded, in contrast with

File#expand_path.

puts File.absolute_path("bin")

puts File.absolute_path("../../bin", "/tmp/x")

produces:

/Users/dave/BS2/titles/RUBY3/Book/bin

/bin

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=506

FILE 507

F
ile

atime File.atime(filename)→ time

Returns a Time object containing the last access time for the named file, or returns epoch if

the file has not been accessed.

File.atime("testfile") # => 20090413 13:26:21 0500

basename File.basename(filename 〈 , suffix 〉)→ string

Returns the last component of the filename given in filename. If suffix is given and is present

at the end of filename, it is removed. Any extension can be removed by giving an extension

of .*.

File.basename("/home/gumby/work/ruby.rb") # => "ruby.rb"

File.basename("/home/gumby/work/ruby.rb", ".rb") # => "ruby"

File.basename("/home/gumby/work/ruby.rb", ".*") # => "ruby"

blockdev? File.blockdev?(filename)→ true or false

Returns true if the named file is a block device and returns false if it isn’t or if the operating

system doesn’t support this feature.

File.blockdev?("testfile") # => false

chardev? File.chardev?(filename)→ true or false

Returns true if the named file is a character device and returns false if it isn’t or if the

operating system doesn’t support this feature.

File.chardev?("/dev/tty") # => true

chmod File.chmod(permission 〈 , filename 〉+)→ int

Changes permission bits on the named file(s) to the bit pattern represented by permission.

Actual effects are operating system dependent (see the beginning of this section). On Unix

systems, see chmod(2) for details. Returns the number of files processed.

File.chmod(0644, "testfile", "out") # => 2

chown File.chown(owner, group 〈 , filename 〉+)→ int

Changes the owner and/or group of the named file(s) to the given numeric owner and group

IDs. Only a process with superuser privileges may change the owner of a file. The current

owner of a file may change the file’s group to any group to which the owner belongs. A nil

or −1 owner or group ID is ignored. Returns the number of files processed.

File.chown(nil, 100, "testfile")

ctime File.ctime(filename)→ time

Returns a Time object containing the time that the file status associated with the named file

was changed.

File.ctime("testfile") # => 20090413 13:26:22 0500

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=507

FILE 508

F
ile

delete File.delete(〈 filename 〉+)→ int

Deletes the named file(s). Returns the number of files processed. See also Dir.rmdir.

File.open("testrm", "w+") {}

File.delete("testrm") # => 1

directory? File.directory?(path)→ true or false

Returns true if the named file is a directory; returns false otherwise.

File.directory?(".") # => true

dirname File.dirname(filename)→ filename

Returns all components of the filename given in filename except the last one.

File.dirname("/home/gumby/work/ruby.rb") # => "/home/gumby/work"

File.dirname("ruby.rb") # => "."

executable? File.executable?(filename)→ true or false

Returns true if the named file is executable. The tests are made using the effective owner of

the process.

File.executable?("testfile") # => false

executable_real? File.executable_real?(filename)→ true or false

Same as File#executable? but tests using the real owner of the process.

exist? File.exist?(filename)→ true or false

Returns true if the named file or directory exists.

File.exist?("testfile") # => true

exists? File.exists? (filename)→ true or false

Synonym for File.exist?.

expand_path File.expand_path(filename 〈 , dirstring 〉)→ filename

Converts a path name to an absolute path name. Relative paths are referenced from the

current working directory of the process unless dirstring is given, in which case it will be

used as the starting point. The given path name may start with a ~, which expands to the

process owner’s home directory (the environment variable HOME must be set correctly).

~user expands to the named user’s home directory. See also File#absolute_path.

File.expand_path("~/bin") # => "/Users/dave/bin"

File.expand_path("../../bin", "/tmp/x") # => "/bin"

extname File.extname(path)→ string

Returns the extension (the portion of filename in path after the period).

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=508

FILE 509

F
ile

File.extname("test.rb") # => ".rb"

File.extname("a/b/d/test.rb") # => ".rb"

File.extname("test") # => ""

file? File.file?(filename)→ true or false

Returns true if the named file is a regular file (not a device file, directory, pipe, socket, and

so on).

File.file?("testfile") # => true

File.file?(".") # => false

fnmatch File.fnmatch(glob_pattern, path, 〈 flags 〉)→ true or false

Returns true if path matches against glob_pattern. (As of Ruby 1.91.9 , File.fnmatch is an alias

for Dir.fnmatch.) The pattern is not a regular expression; instead, it follows rules similar to

shell filename globbing. A glob_pattern may contain the following metacharacters.

* Matches zero or more characters in a file or directory name.

** Matches zero or more characters, ignoring name boundaries. Most often used

to scan subdirectories recursively.

? Matches any single character.

[charset] Matches any character from the given set of characters. A range of characters

is written as from-to. The set may be negated with an initial caret (^).

\ Escapes any special meaning of the next character.

flags is a bitwise OR of the FNM_xxx parameters listed on the next page. See also Dir.glob

on page 480.

File.fnmatch('cat', 'cat') # => true

File.fnmatch('cat', 'category') # => false

File.fnmatch('c?t', 'cat') # => true

File.fnmatch('c\?t', 'cat') # => false

File.fnmatch('c??t', 'cat') # => false

File.fnmatch('c*', 'cats') # => true

File.fnmatch('c/**/t', 'c/a/b/c/t') # => true

File.fnmatch('c**t', 'c/a/b/c/t') # => true

File.fnmatch('c**t', 'cat') # => true

File.fnmatch('**.txt', 'notes.txt') # => true

File.fnmatch('**.txt', 'some/dir/tree/notes.txt') # => true

File.fnmatch('c*t', 'cat') # => true

File.fnmatch('c\at', 'cat') # => true

File.fnmatch('c\at', 'cat', File::FNM_NOESCAPE) # => false

File.fnmatch('a?b', 'a/b') # => true

File.fnmatch('a?b', 'a/b', File::FNM_PATHNAME) # => false

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=509

FILE 510

F
ile

Table 27.3. Match-Mode Constants

FNM_NOESCAPE Backslash does not escape special characters in globs, and a backslash

in the pattern must match a backslash in the filename.

FNM_PATHNAME Forward slashes in the filename are treated as separating parts of a

path and so must be explicitly matched in the pattern.

FNM_DOTMATCH If this option is not specified, filenames containing leading periods

must be matched by an explicit period in the pattern. A leading period

is one at the start of the filename or (if FNM_PATHNAME is specified)

following a slash.

FNM_CASEFOLD Filename matches are case insensitive

File.fnmatch('*', '.profile') # => false

File.fnmatch('*', '.profile', File::FNM_DOTMATCH) # => true

File.fnmatch('*', 'dave/.profile') # => true

File.fnmatch('*', 'dave/.profile', File::FNM_DOTMATCH) # => true

File.fnmatch('*', 'dave/.profile', File::FNM_PATHNAME) # => false

File.fnmatch('*/*', 'dave/.profile', File::FNM_PATHNAME) # => false

STRICT = File::FNM_PATHNAME | File::FNM_DOTMATCH

File.fnmatch('*/*', 'dave/.profile', STRICT) # => true

fnmatch? File.fnmatch?(glob_pattern, path, 〈 flags 〉)→ (true or false)

Synonym for File#fnmatch.

ftype File.ftype(filename)→ filetype

Identifies the type of the named file. The return string is one of file, directory, characterSpe-

cial, blockSpecial, fifo, link, socket, or unknown.

File.ftype("testfile") # => "file"

File.ftype("/dev/tty") # => "characterSpecial"

system("mkfifo wibble") # => true

File.ftype("wibble") # => "fifo"

grpowned? File.grpowned?(filename)→ true or false

Returns true if the effective group ID of the process is the same as the group ID of the named

file. On Windows, returns false.

File.grpowned?("/etc/passwd") # => false

identical? File.identical?(name1, name2)→ true or false

1.9 Returns true only if name1 and name2 refer to the same file. Two separate files with the

same content are not considered to be identical.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=510

FILE 511

F
ile

File.identical?("testfile", "./code/../testfile") # => true

File.symlink("testfile", "wibble")

File.identical?("testfile", "wibble") # => true

File.link("testfile", "wobble")

File.identical?("testfile", "wobble") # => true

File.identical?("wibble", "wobble") # => true

join File.join(〈 string 〉+)→ filename

Returns a new string formed by joining the strings using File::SEPARATOR. The various

separators are listed in Table 27.4 on the next page.

File.join("usr", "mail", "gumby") # => "usr/mail/gumby"

lchmod File.lchmod(permission, 〈 filename 〉+)→ 0

Equivalent to File.chmod but does not follow symbolic links (so it will change the permis-

sions associated with the link, not the file referenced by the link). Often not available.

lchown File.lchown(owner, group, 〈 filename 〉+)→ 0

Equivalent to File.chown but does not follow symbolic links (so it will change the owner

associated with the link, not the file referenced by the link). Often not available.

link File.link(oldname, newname)→ 0

Creates a new name for an existing file using a hard link. Will not overwrite newname if it

already exists (in which case link raises a subclass of SystemCallError). Not available on all

platforms.

File.link("testfile", "testfile.2") # => 0

f = File.open("testfile.2")

f.gets # => "This is line one\n"

File.delete("testfile.2")

lstat File.lstat(filename)→ stat

Returns status information for file as an object of type File::Stat. Same as IO#stat (see page

561), but does not follow the last symbolic link. Instead, reports on the link itself.

File.symlink("testfile", "link2test") # => 0

File.stat("testfile").size # => 66

File.lstat("link2test").size # => 8

File.stat("link2test").size # => 66

mtime File.mtime(filename)→ time

Returns a Time object containing the modification time for the named file.

File.mtime("testfile") # => 20090413 12:45:10 0500

File.mtime("/tmp") # => 20090413 13:16:08 0500

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=511

FILE 512

F
ile

Table 27.4. Path Separator Constants (Platform-Specific)

ALT_SEPARATOR Alternate path separator (\ on Windows, nil otherwise).

PATH_SEPARATOR Separator for filenames in a search path (such as : or ;).

SEPARATOR Separator for directory components in a filename (such as \ or /).

Separator Alias for SEPARATOR.

new File.new(filename, modestring="r")→ file

File.new(filename 〈 , modenum 〈 , permission 〉 〉)→ file

File.new(fd 〈 , modenum 〈 , permission 〉 〉)→ file

Opens the file named by filename according to modestring (the default is "r") and returns

a new File object. The modestring is described in Table 27.7 on page 5471.9 —it contains

both information on the way the file is to be opened and optionally on the encodings to

be associated with the file data. The file mode may optionally be specified as a Fixnum by

or-ing together the flags described in Table 27.5 on page 514. Optional permission bits may

be given in permission. These mode and permission bits are platform dependent; on Unix

systems, see open(2) for details. If the first parameter is an integer (or can be converted to

an integer using to_int, it is assumed to be the file descriptor or an already-open file. In that

case, the call is passed to IO.new for processing. See also IO.open on page 514 for a block

form of File.new.

open for reading, default external encoding

f = File.new("testfile", "r")

open for reading, assume contents are utf8

f = File.new("testfile", "r:utf8")

open for read/write. external utf8 data will be converted to iso88591

when read, and converted from 88591 to utf8 on writing

f = File.new("newfile", "w+:utf8:iso88591")

same as specifying "w+"

f = File.new("newfile", File::CREAT|File::TRUNC|File::RDWR, 0644)

owned? File.owned?(filename)→ true or false

Returns true if the effective user ID of the process is the same as the owner of the named

file.

File.owned?("/etc/passwd") # => false

path File.path(obj)→ string

1.9 Returns the path of obj. If obj responds to to_path, its value is returned. Otherwise, attempt

to convert obj to a string and return that value.

File.path("testfile") # => "testfile"

File.path("/tmp/../tmp/xxx") # => "/tmp/../tmp/xxx"

f = File.open("/tmp/../tmp/xxx")

File.path(f) # => "/tmp/../tmp/xxx"

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=512

FILE 513

F
ile

pipe? File.pipe?(filename)→ true or false

Returns true if the OS supports pipes and the named file is one; false otherwise.

File.pipe?("testfile") # => false

readable? File.readable?(filename)→ true or false

Returns true if the named file is readable by the effective user ID of this process.

File.readable?("testfile") # => true

readable_real? File.readable_real?(filename)→ true or false

Returns true if the named file is readable by the real user ID of this process.

File.readable_real?("testfile") # => true

readlink File.readlink(filename)→ filename

Returns the given symbolic link as a string. Not available on all platforms.

File.symlink("testfile", "link2test") # => 0

File.readlink("link2test") # => "testfile"

rename File.rename(oldname, newname)→ 0

Renames the given file or directory to the new name. Raises a SystemCallError if the file

cannot be renamed.

File.rename("afile", "afile.bak") # => 0

setgid? File.setgid?(filename)→ true or false

Returns true if the named file’s set-group-id permission bit is set and returns false if it isn’t

or if the operating system doesn’t support this feature.

File.setgid?("/usr/sbin/lpc") # => false

setuid? File.setuid?(filename)→ true or false

Returns true if the named file’s set-user-id permission bit is set and returns false if it isn’t or

if the operating system doesn’t support this feature.

File.setuid?("/bin/su") # => false

size File.size(filename)→ int

Returns the size of the file in bytes.

File.size("testfile") # => 66

size? File.size?(filename)→ int or nil

Returns nil if the named file is of zero length; otherwise, returns the size. Usable as a condi-

tion in tests.

File.size?("testfile") # => 66

File.size?("/dev/zero") # => nil

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=513

FILE 514

F
ile

Table 27.5. Open-Mode Constants

File::APPEND Opens the file in append mode; all writes will occur at end of file.

File::CREAT Creates the file on open if it does not exist.

File::EXCL When used with File::CREAT, opens will fail if the file exists.

File::NOCTTY When opening a terminal device (see IO#isatty on page 557), does not

allow it to become the controlling terminal.

File::NONBLOCK Opens the file in nonblocking mode.

File::RDONLY Opens for reading only.

File::RDWR Opens for reading and writing.

File::TRUNC Opens the file and truncates it to zero length if the file exists.

File::WRONLY Opens for writing only.

socket? File.socket?(filename)→ true or false

Returns true if the named file is a socket and returns false if it isn’t or if the operating system

doesn’t support this feature.

split File.split(filename)→ array

Splits the given string into a directory and a file component and returns them in a two-

element array. See also File.dirname and File.basename.

File.split("/home/gumby/.profile") # => ["/home/gumby", ".profile"]

File.split("ruby.rb") # => [".", "ruby.rb"]

stat File.stat(filename)→ stat

Returns a File::Stat object for the named file (see File::Stat, page 518).

stat = File.stat("testfile")

stat.mtime # => 20090413 12:45:10 0500

stat.ftype # => "file"

sticky? File.sticky?(filename)→ true or false

Returns true if the named file has its sticky bit set and returns false if it doesn’t or if the

operating system doesn’t support this feature.

symlink File.symlink(oldname, newname)→ 0 or nil

Creates a symbolic link called newname for the file oldname. Returns nil on all platforms

that do not support symbolic links.

File.symlink("testfile", "link2test") # => 0

symlink? File.symlink?(filename)→ true or false

Returns true if the named file is a symbolic link and returns false if it isn’t or if the operating

system doesn’t support this feature.

File.symlink("testfile", "link2test") # => 0

File.symlink?("link2test") # => true

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=514

FILE 515

F
ile

truncate File.truncate(filename, int)→ 0

Truncates the file filename to be at most int bytes long. Not available on all platforms.

f = File.new("out", "w")

f.write("1234567890") # => 10

f.close # => nil

File.truncate("out", 5) # => 0

File.size("out") # => 5

umask File.umask(〈 int 〉)→ int

Returns the current umask value for this process. If the optional argument is given, sets the

umask to that value and returns the previous value. Umask values are excluded from the

default permissions; so a umask of 0222 would make a file read-only for everyone. See also

the discussion of permissions on page 506.

File.umask(0006) # => 18

File.umask # => 6

unlink File.unlink(〈 filename 〉+)→ int

Synonym for File.delete. See also Dir.rmdir.

File.open("testrm", "w+") {} # => nil

File.unlink("testrm") # => 1

utime File.utime(accesstime, modtime 〈 , filename 〉+)→ int

Changes the access and modification times on a number of files. The times must be instances

of class Time or integers representing the number of seconds since epoch. Returns the num-

ber of files processed. Not available on all platforms.

File.utime(0, 0, "testfile") # => 1

File.mtime("testfile") # => 19691231 18:00:00 0600

File.utime(0, Time.now, "testfile") # => 1

File.mtime("testfile") # => 20090413 13:26:23 0500

world_readable? File.world_readable?(filename)→ perm_int or nil

1.9 If filename is readable by others, returns an integer representing the file permission bits of

filename. Returns nil otherwise. The meaning of the bits is platform dependent; on Unix

systems, see stat(2).

File.world_readable?("/etc/passwd") # => 420

File.world_readable?("/etc/passwd").to_s(8) # => "644"

world_writable? File.world_writable?(filename)→ perm_int or nil

1.9 If filename is writable by others, returns an integer representing the file permission bits of

filename. Returns nil otherwise. The meaning of the bits is platform dependent; on Unix

systems, see stat(2).

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=515

FILE 516

F
ile

File.world_writable?("/etc/passwd") # => nil

File.world_writable?("/tmp") # => 511

File.world_writable?("/tmp").to_s(8) # => "777"

writable? File.writable?(filename)→ true or false

Returns true if the named file is writable by the effective user ID of this process.

File.writable?("/etc/passwd") # => false

File.writable?("testfile") # => true

writable_real? File.writable_real?(filename)→ true or false

Returns true if the named file is writable by the real user ID of this process.

zero? File.zero?(filename)→ true or false

Returns true if the named file is of zero length and returns false otherwise.

File.zero?("testfile") # => false

File.open("zerosize", "w") {}

File.zero?("zerosize") # => true

Instance methods

atime file.atime→ time

Returns a Time object containing the last access time for file, or returns epoch if the file has

not been accessed.

File.new("testfile").atime # => 19691231 18:00:00 0600

chmod file.chmod(permission)→ 0

Changes permission bits on file to the bit pattern represented by permission. Actual effects

are platform dependent; on Unix systems, see chmod(2) for details. Follows symbolic links.

See the discussion of permissions on page 506. Also see File#lchmod.

f = File.new("out", "w");

f.chmod(0644) # => 0

chown file.chown(owner, group)→ 0

Changes the owner and group of file to the given numeric owner and group IDs. Only a

process with superuser privileges may change the owner of a file. The current owner of a

file may change the file’s group to any group to which the owner belongs. A nil or −1 owner

or group id is ignored. Follows symbolic links. See also File#lchown.

File.new("testfile").chown(502, 1000)

ctime file.ctime→ time

Returns a Time object containing the time that the file status associated with file was changed.

File.new("testfile").ctime # => 20090413 13:26:23 0500

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=516

FILE 517

F
ile

flock file.flock (locking_constant)→ 0 or false

Locks or unlocks a file according to locking_constant (a logical or of the values shown

in Table 27.6 on the following page). Returns false if File::LOCK_NB is specified and the

operation would otherwise have blocked. Not available on all platforms.

File.new("testfile").flock(File::LOCK_UN) # => 0

lchmod file.lchmod(permission)→ 0

Equivalent to File#chmod but does not follow symbolic links (so it will change the permis-

sions associated with the link, not the file referenced by the link). Often not available.

lchown file.lchown(owner, group)→ 0

Equivalent to File#chown but does not follow symbolic links (so it will change the owner

associated with the link, not the file referenced by the link). Often not available.

lstat file.lstat→ stat

Same as IO#stat but does not follow the last symbolic link. Instead, reports on the link itself.

File.symlink("testfile", "link2test") # => 0

File.stat("testfile").size # => 66

f = File.new("link2test")

f.lstat.size # => 8

f.stat.size # => 66

mtime file.mtime→ time

Returns a Time object containing the modification time for file.

File.new("testfile").mtime # => 20090413 13:26:23 0500

path file.path→ filename

Returns the path name used to create file as a string. Does not normalize the name.

File.new("testfile").path # => "testfile"

File.new("/tmp/../tmp/xxx", "w").path # => "/tmp/../tmp/xxx"

to_path file.to_path→ filename

Alias for File#path.

truncate file.truncate(int)→ 0

Truncates file to at most int bytes. The file must be opened for writing. Not available on all

platforms.

f = File.new("out", "w")

f.syswrite("1234567890") # => 10

f.truncate(5) # => 0

f.close() # => nil

File.size("out") # => 5

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=517

