
IO 546

I
O

Class
IO < Object

Subclasses: File

Class IO is the basis for all input and output in Ruby. An I/O stream may be duplexed (that

is, bidirectional) and so may use more than one native operating system stream.

Many of the examples in this section use class File, the only standard subclass of IO. The

two classes are closely associated.

As used in this section, portname may take any of the following forms:

• A plain string represents a filename suitable for the underlying operating system.

• A string starting with | indicates a subprocess. The remainder of the string following

the | is invoked as a process with appropriate input/output channels connected to it.

• A string equal to |- will create another Ruby instance as a subprocess.

The IO class uses the Unix abstraction of file descriptors (fds), small integers that represent

open files. Conventionally, standard input has an fd of 0, standard output an fd of 1, and

standard error an fd of 2.

Ruby will convert pathnames between different operating system conventions if possible.

For instance, on a Windows system the filename /gumby/ruby/test.rb will be opened as

\gumby\ruby\test.rb. When specifying a Windows-style filename in a double-quoted Ruby

string, remember to escape the backslashes.

"c:\\gumby\\ruby\\test.rb"

Our examples here will use the Unix-style forward slashes; File::SEPARATOR can be used

to get the platform-specific separator character.

I/O ports may be opened in any one of several different modes, which are shown in this

section as mode. This mode string must be one of the values listed in Table 27.7 on the

next page. As of Ruby 1.91.9 , the mode may also contain information on the external and

internal encoding of the data associated with the port. If an external encoding is specified,

Ruby assumes that the data it received from the operating system uses that encoding. If no

internal encoding is given, strings read from the port will have this encoding. If an internal

encoding is given, data will be transcoded from the external to the internal encoding, and

strings will have that encoding. The reverse happens on output.

The file mode may optionally be specified as a Fixnum by or-ing together the flags described

in Table 27.5 on page 514. (Yes, it is bad coupling that the IO class uses constants defined

in a child.)

Mixes in

Enumerable:

all?, any?, collect, count, cycle, detect, drop, drop_while, each_cons,

each_slice, each_with_index, entries, find, find_all, find_index, first, grep,

group_by, include?, inject, map, max, max_by, member?, min, min_by, minmax,

minmax_by, none?, one?, partition, reduce, reject, select, sort, sort_by,

take, take_while, to_a, zip

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=546

IO 547

I
O

Table 27.7. Mode Strings

Modes can be represented as an integer formed by or-ing together values from Table 27.7.

They are more commonly represented as a string. Mode strings have the form "file-

mode[:external-encoding[:internal-encoding]]". The file-mode portion is one of the options

listed in the following table. The two encodings are the names (or aliases) of encodings

supported by your interpreter. See Chapter 17 on page 264 for more information.

Mode Meaning

r Read-only, starts at beginning of file (default mode).

r+ Read/write, starts at beginning of file.

w Write-only, truncates an existing file to zero length or creates a new file for writing.

w+ Read/write, truncates existing file to zero length or creates a new file for reading

and writing.

a Write-only, starts at end of file if file exists; otherwise, creates a new file for writ-

ing.

a+ Read/write, starts at end of file if file exists; otherwise, creates a new file for read-

ing and writing.

b Binary file mode (may appear with any of the key letters listed earlier). As of

Ruby 1.91.9 , this modifier should be supplied on all ports opened in binary mode (on

Unix as well as on DOS/Windows). To read a file in binary mode and receive the

data as a stream of bytes, use the modestring "rb:ascii-8bit".

Class methods

binread IO.binread((name) 〈 , length 〈 , offset 〉 〉)→ string

1.9 Opens name with mode rb:ASCII-8BIT, reads length bytes starting at offset, and then closes

the file. The bytes are returned in a string with ASCII-8BIT encoding. offset defaults to 0,

and length defaults to the number of bytes between offset and the end of the file.

IO.binread("testfile", 20) # => "This is line one\nThi"

IO.binread("testfile", 20, 20) # => "s is line two\nThis i"

str = IO.binread("testfile")

str.encoding # => #<Encoding:ASCII8BIT>

str1 = IO.read("testfile")

str1.encoding # => #<Encoding:UTF8>

copy_stream IO.copy_stream(from, to 〈 , max_length 〈 , offset 〉 〉)→ integer

1.9 Copies from to to. These may be specified as either filenames or as open IO streams. You

may optionally specify a maximum length to copy and a byte offset to start the copy from.

Returns the number of bytes copied.

IO.copy_stream("testfile", "newfile", 10, 10)

ip = File.open("/etc/passwd")

op = File.open("extract", "w")

op.puts "First 20 characters of /etc/passwd"

IO.copy_stream(ip, op, 20)

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=547

IO 548

I
O

op.puts "\nEnd of extract"

op.close

puts File.readlines("extract")

produces:

First 20 characters of /etc/passwd

##

User Database

#

End of extract

for_fd IO.for_fd(int, mode)→ io

Synonym for IO.new.

foreach io.foreach(portname, separator=$/ 〈 , options 〉) {| line | block } → nil

io.foreach(portname, limit 〈 , options 〉) {| line | block } → nil

io.foreach(portname, separator, limit 〈 , options 〉) {| line | block } → nil

1.9 Executes the block for every line in the named I/O port, where lines are separated by sepa-

rator. If separator is nil, the entire file is passed as a single string. If the limit argument is

present and positive, at most that many characters will be returned in each iteration. If only

the limit argument is given and that argument is negative, then encodings will be ignored

while looking for the record separator, which increases performance.

IO.foreach("testfile") {|x| puts "GOT: #{x}" }

produces:

GOT: This is line one

GOT: This is line two

GOT: This is line three

GOT: And so on...

options is an optional hash used to pass parameters to the1.9 underlying open call used by read.

It may contain one or more of

key Value(s)

encoding: The encoding for the string, either as "external" or "external:internal"

mode: The mode string to be passed to open

open_args: An array containing the arguments to be passed to open; other options are

ignored if this one is present

IO.foreach("testfile", nil, mode: "rb", encoding: "ascii8bit") do |content|

puts content.encoding

end

IO.foreach("testfile", nil, open_args: ["r:iso88591"]) do |content|

puts content.encoding

end

produces:

ASCII8BIT

ISO88591

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=548

IO 549

I
O

new IO.new(int, mode)→ io

Returns a new IO object (a stream) for the given integer file descriptor and mode. See also

IO#fileno and IO.for_fd.

a = IO.new(2, "w") # '2' is standard error

STDERR.puts "Hello"

a.puts "World"

produces:

Hello

World

open IO.open(〈 args 〉+)→ io

IO.open(〈 args 〉+) {| io | block } → obj

IO.open creates a new IO object, passing args to that object’s initialize method. If no block is

given, simply returns that object. If a block is given, passes the IO object to the block. When

the block exits (even via exception or program termination), the io object will be closed. If

the block is present, IO.open returns the value of the block. The rough implementation is as

follows:

class IO

def open(*args)

file = return_value = self.new(*args)

begin

return_value = yield(file)

ensure

file.close

end if block_given?

return_value

end

end

Note that subclasses of IO such as File can use open even though their constructors take

different parameters. Calling File.open(...) will invoke File’s constructor, not IO’s.

IO.open(1, "w") do |io|

io.puts "Writing to stdout"

end

produces:

Writing to stdout

File.open("testfile", mode: "r", encoding: "utf8") do |f|

puts f.read

end

produces:

This is line one

This is line two

This is line three

And so on...

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=549

IO 550

I
O

pipe IO.pipe→ [read_file, write_file]

Creates a pair of pipe endpoints (connected to each other) and returns them as a two-element

array of IO objects. write_file is automatically placed into sync mode. Not available on all

platforms.

In the following example, the two processes close the ends of the pipe that they are not

using. This is not just a cosmetic nicety. The read end of a pipe will not generate an end-of-

file condition if any writers have the pipe still open. In the case of the parent process, the

rd.read will never return if it does not first issue a wr.close.

rd, wr = IO.pipe

if fork

wr.close

puts "Parent got: <#{rd.read}>"

rd.close

Process.wait

else

rd.close

puts "Sending message to parent"

wr.write "Hi Dad"

wr.close

end

produces:

Sending message to parent

Parent got: <Hi Dad>

popen IO.popen(cmd, mode="r")→ io

IO.popen(cmd, mode="r") {| io | block } → obj

Runs the specified command string as a subprocess; the subprocess’s standard input and

output will be connected to the returned IO object. The parameter cmd may be a string or

(in Ruby 1.9) an array of strings. In the latter case, the array is used as the argv parameter

for the new process, and no special shell processing is performed on the strings. In addition,1.9

if the array starts with a hash, it will be used to set environment variables in the subprocess,

and if it ends with a hash, the hash will be used to set execution options for the subprocess.

See Kernel.spawn for details. If cmd is a string, it will be subject to shell expansion. If the

cmd string starts with a minus sign (–) and the operating system supports fork(2), then the

current Ruby process is forked. The default mode for the new file object is r, but mode may

be set to any of the modes in Table 27.7 on page 547.

If a block is given, Ruby will run the command as a child connected to Ruby with a pipe.

Ruby’s end of the pipe will be passed as a parameter to the block. In this case, IO.popen

returns the value of the block.

If a block is given with a cmd_string of "–", the block will be run in two separate processes:

once in the parent and once in a child. The parent process will be passed the pipe object as

a parameter to the block, the child version of the block will be passed nil, and the child’s

standard in and standard out will be connected to the parent through the pipe. Not available

on all platforms. Also see the Open3 library on page 783 and Kernel#exec on page 568.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=550

IO 551

I
O

pipe = IO.popen("uname")

p(pipe.readlines)

puts "Parent is #{Process.pid}"

IO.popen("date") {|pipe| puts pipe.gets }

IO.popen("") {|pipe| STDERR.puts "#{Process.pid} is here, pipe=#{pipe}" }

produces:

["Darwin\n"]

Parent is 84543

Mon Apr 13 13:26:27 CDT 2009

84543 is here, pipe=#<IO:0x0a2fd0>

84546 is here, pipe=

Here’s an example that uses the Ruby 1.9 options to merge standard error and standard

output into a single stream. Note that buffering means that the error output comes back

ahead of the standard output.

pipe = IO.popen(["bc", { STDERR => STDOUT }], "r+")

pipe.puts '1 + 3; bad_function()'

pipe.close_write

puts pipe.readlines

produces:

Runtime error (func=(main), adr=8): Function bad_function not defined.

4

read IO.read(portname, 〈 length=$/ 〈 , offset 〉 〉 〈 , options 〉)→ string

1.9 Opens the file, optionally seeks to the given offset, and then returns length bytes (defaulting

to the rest of the file). read ensures the file is closed before returning.

options is an optional hash used to pass parameters to the underlying open call used by read.

See IO.foreach for details.

IO.read("testfile") # => "This is line one\nThis is line

two\nThis is line three\nAnd so

on...\n"

IO.read("testfile", 20) # => "This is line one\nThi"

IO.read("testfile", 20, 10) # => "ne one\nThis is line "

readlines IO.readlines(portname, separator=$/ 〈 , options 〉)→ array

IO.readlines(portname, limit 〈 , options 〉)→ array

IO.readlines(portname, separator, limit 〈 , options 〉)→ array

1.9 Reads the entire file specified by portname as individual lines and returns those lines in

an array. Lines are separated by separator. If separator is nil, the entire file is passed as

a single string. If the limit argument is present and positive, at most that many characters

will be returned in each iteration. If only the limit argument is given and that argument

is negative, then encodings will be ignored while looking for the record separator, which

increases performance. options is an optional hash used to pass parameters to the underlying

open call used by read. See IO.foreach for details.

a = IO.readlines("testfile")

a[0] # => "This is line one\n"

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=551

IO 552

I
O

select IO.select(read_array 〈 , write_array 〈 , error_array 〈 , timeout 〉 〉 〉)→ array

or nil

See Kernel#select on page 576.

sysopen IO.sysopen(path, 〈 mode 〈 , perm 〉 〉)→ int

Opens the given path, returning the underlying file descriptor as a Fixnum.

IO.sysopen("testfile") # => 4

try_convert IO.try_convert(obj)→ an_io or nil

1.9 If obj is not already an I/O object, attempt to convert it to one by calling its to_io method.

Returns nil if no conversion could be made.

class SillyIOObject

def to_io

STDOUT

end

end

IO.try_convert(SillyIOObject.new) # => #<IO:<STDOUT>>

IO.try_convert("Shemp") # => nil

Instance methods

<< io << obj→ io

String Output—Writes obj to io. obj will be converted to a string using to_s.

STDOUT << "Hello " << "world!\n"

produces:

Hello world!

binmode io.binmode→ io

Puts io into binary mode.1.9 It is more common to use the "b" modifier in the mode string to set

binary mode when you open a file. Binary mode is required when reading or writing files

containing bit sequences that are not valid in the encoding of the file. Once a stream is in

binary mode, it cannot be reset to nonbinary mode.

binmode? io.binmode?→ true or false

1.9 Returns true if io is in binary mode.

f = File.open("/etc/passwd")

f.binmode? # => false

f = File.open("/etc/passwd", "rb:binary")

f.binmode? # => true

bytes io.bytes→ enumerator

1.9 Returns an enumerator that iterates over the bytes (not characters) in io, returning each as

an integer. See also IO#getbyte.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=552

IO 553

I
O

file = File.open("testfile")

enum = file.bytes

enum.first(10) # => [84, 104, 105, 115, 32, 105, 115, 32, 108, 105]

chars io.chars→ enumerator

1.9 Returns an enumerator that allows iteration over the characters in io.

file = File.open("testfile")

enum = file.chars

enum.first(7) # => ["T", "h", "i", "s", " ", "i", "s"]

close io.close→ nil

Closes io and flushes any pending writes to the operating system. The stream is unavailable

for any further data operations; an IOError is raised if such an attempt is made. I/O streams

are automatically closed when they are claimed by the garbage collector.

close_on_exec? io.close_on_exec?→ true or false

1.9 Returns the state of the close on exec flag for io. Raises NotImplemented if not available.

close_on_exec= io.close_on_exec = true or false→ nil

1.9 Sets the close on exec flag for io. Raises NotImplemented if not available. I/O objects with

this flag set will be closed across exec() calls.

close_read io.close_read→ nil

Closes the read end of a duplex I/O stream (in other words, one that contains both a read

and a write stream, such as a pipe). Raises an IOError if the stream is not duplexed.

f = IO.popen("/bin/sh","r+")

f.close_read

f.readlines

produces:

prog.rb:3:in `readlines': not opened for reading (IOError)

from /tmp/prog.rb:3:in `<main>'

close_write io.close_write→ nil

Closes the write end of a duplex I/O stream (in other words, one that contains both a read

and a write stream, such as a pipe). Will raise an IOError if the stream is not duplexed.

f = IO.popen("/bin/sh","r+")

f.close_write

f.print "nowhere"

produces:

prog.rb:3:in `write': not opened for writing (IOError)

from /tmp/prog.rb:3:in `print'

from /tmp/prog.rb:3:in `<main>'

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=553

IO 554

I
O

closed? io.closed?→ true or false

Returns true if io is completely closed (for duplex streams, both reader and writer) and

returns false otherwise.

f = File.new("testfile")

f.close # => nil

f.closed? # => true

f = IO.popen("/bin/sh","r+")

f.close_write # => nil

f.closed? # => false

f.close_read # => nil

f.closed? # => true

each io.each(separator=$/) {| line | block } → io

io.each(limit) {| line | block } → io

io.each(separator, limit) {| line | block } → io

io.each(args..)→ enum

1.9 Executes the block for every line in io, where lines are separated by separator. If separator

is nil, the entire file is passed as a single string. If the limit argument is present and positive,

at most that many characters will be returned in each iteration. If only the limit argument is

given and that argument is negative, then encodings will be ignored while looking for the

record separator, which increases performance.

Returns an enumerator if no block is given.

f = File.new("testfile")

f.each {|line| puts "#{f.lineno}: #{line}" }

produces:

1: This is line one

2: This is line two

3: This is line three

4: And so on...

each_byte io.each_byte {| byte | block } → nil

io.each_byte→ enum

1.9 Calls the given block once for each byte (a Fixnum in the range 0 to 255) in io, passing the

byte as an argument. The stream must be opened for reading or an IOerror will be raised.

Returns an enumerator if no block is given.

f = File.new("testfile")

checksum = 0

f.each_byte {|x| checksum ^= x } # => #<File:testfile>

checksum # => 12

each_char io.each_char {| char | block } → nil

io.each_char→ enum

1.9 Calls the given block passing it each character (a string of length 1) in io. The stream must

be opened for reading or an IOerror will be raised. Returns an enumerator if no block is

given.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=554

IO 555

I
O

f = File.new("testfile")

result = []

f.each_char {|ch| result << ch} # => #<File:testfile>

result[0, 10] # => ["T", "h", "i", "s", " ", "i",

"s", " ", "l", "i"]

each_line io.each_line(...) {| line | block } → io

Synonym for IO#each.

eof io.eof→ true or false

Returns true if io is at end of file. The stream must be opened for reading or an IOError will

be raised.

f = File.open("testfile")

f.eof # => false

dummy = f.readlines

f.eof # => true

eof? io.eof?→ true or false

Synonym for IO#eof.

external_encoding io.external_encoding→ encoding

1.9 Returns the encoding object representing the external encoding of this I/O object.

io = File.open("testfile", "r:utf8:iso88591")

io.external_encoding # => #<Encoding:UTF8>

io.internal_encoding # => #<Encoding:ISO88591>

fcntl io.fcntl(cmd, arg)→ int

Provides a mechanism for issuing low-level commands to control or query file-oriented I/O

streams. Commands (which are integers), arguments, and the result are platform dependent.

If arg is a number, its value is passed directly. If it is a string, it is interpreted as a binary

sequence of bytes. On Unix platforms, see fcntl(2) for details. The Fcntl module provides

symbolic names for the first argument (see page 753). Not implemented on all platforms.

fileno io.fileno→ int

Returns an integer representing the numeric file descriptor for io.

STDIN.fileno # => 0

STDOUT.fileno # => 1

flush io.flush→ io

Flushes any buffered data within io to the underlying operating system (note that this is

Ruby internal buffering only; the OS may buffer the data as well).

STDOUT.print "no newline"

STDOUT.flush

produces:

no newline

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=555

IO 556

I
O

fsync io.fsync→ 0 or nil

Immediately writes all buffered data in io to disk. Returns nil if the underlying operating

system does not support fsync(2). Note that fsync differs from using IO#sync=. The latter

ensures that data is flushed from Ruby’s buffers but does not guarantee that the underlying

operating system actually writes it to disk.

getbyte io.getbyte→ fixnum or nil

1.9 Returns the next 8-bit byte (as opposed to an encoded character) from IO or returns nil at

end of file. See also IO#bytes.

file = File.open("testfile")

file.getbyte # => 84

file.getbyte # => 104

getc io.getc→ string or nil

1.9 Gets the next character from io. Returns nil if called at end of file.

f = File.new("testfile")

f.getc # => "T"

f.getc # => "h"

gets io.gets(separator=$/)→ string or nil

io.gets(limit)→ string or nil

io.gets(separator, limit)→ string or nil

1.9 Reads the next “line” from the I/O stream; lines are separated by separator. A separator of

nil reads the entire contents, and a zero-length separator reads the input a paragraph at a time

(two or more successive newlines in the input separate paragraphs). If separator is nil, the

entire file is passed as a single string. If the limit argument is present and positive, at most

that many characters will be returned in each iteration. If only the limit argument is given

and that argument is negative, then encodings will be ignored while looking for the record

separator, which increases performance. The line read in will be returned and also assigned

to $_ (although the setting of $_ is considered ugly—it may be removed in future). Returns

nil if called at end of file.

file = File.new("testfile")

file.gets # => "This is line one\n"

$_ # => "This is line one\n"

file.gets(10) # => "This is li"

file.gets("line") # => "ne two\nThis is line"

file.gets("line", 4) # => " thr"

internal_encoding io.internal_encoding→ encoding

1.9 Returns the encoding object representing the internal encoding of this I/O object.

io = File.open("testfile", "r:utf8:iso88591")

io.external_encoding # => #<Encoding:UTF8>

io.internal_encoding # => #<Encoding:ISO88591>

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=556

IO 557

I
O

ioctl io.ioctl(cmd, arg)→ int

Provides a mechanism for issuing low-level commands to control or query I/O devices. The

command (which is an integer), arguments, and results are platform dependent. If arg is a

number, its value is passed directly. If it is a string, it is interpreted as a binary sequence of

bytes. On Unix platforms, see ioctl(2) for details. Not implemented on all platforms.

isatty io.isatty→ true or false

Returns true if io is associated with a terminal device (tty) and returns false otherwise.

File.new("testfile").isatty # => false

File.new("/dev/tty").isatty # => true

lineno io.lineno→ int

Returns the current line number in io. The stream must be opened for reading. lineno counts

the number of times gets is called, rather than the number of newlines encountered. The

two values will differ if gets is called with a separator other than newline. See also the $.

variable.

f = File.new("testfile")

f.lineno # => 0

f.gets # => "This is line one\n"

f.lineno # => 1

f.gets # => "This is line two\n"

f.lineno # => 2

lineno= io.lineno = int→ int

Manually sets the current line number to the given value. $. is updated only on the next read.

f = File.new("testfile")

f.gets # => "This is line one\n"

$. # => 1

f.lineno = 1000

f.lineno # => 1000

$. # lineno of last read # => 1

f.gets # => "This is line two\n"

$. # lineno of last read # => 1001

lines io.lines(separator=$/)→ enumerator

io.lines(limit)→ enumerator

io.lines(separator, limit)→ enumerator

1.9 Returns an enumerator which allows iteration over the lines in io, where lines are terminated

by separator. If separator is nil, the entire file is passed as a single string. If the limit argu-

ment is present and positive, at most that many characters will be returned in each iteration.

If only the limit argument is given and that argument is negative, then encodings will be

ignored while looking for the record separator, which increases performance.

pid io.pid→ int

Returns the process ID of a child process associated with io. This will be set by IO.popen.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=557

IO 558

I
O

pipe = IO.popen("")

if pipe

STDERR.puts "In parent, child pid is #{pipe.pid}"

else

STDERR.puts "In child, pid is #{$$}"

end

produces:

In parent, child pid is 84605

In child, pid is 84605

pos io.pos→ int

Returns the current offset (in bytes) of io.

f = File.new("testfile")

f.pos # => 0

f.gets # => "This is line one\n"

f.pos # => 17

pos= io.pos = int→ 0

Seeks to the given position (in bytes) in io.

f = File.new("testfile")

f.pos = 17

f.gets # => "This is line two\n"

print io.print(〈 obj=$_ 〉∗)→ nil

Writes the given object(s) to io. The stream must be opened for writing. If the output record

separator ($\) is not nil, it will be appended to the output. If no arguments are given, prints

$_. Objects that aren’t strings will be converted by calling their to_s method. Returns nil.

STDOUT.print("This is ", 100, " percent.\n")

produces:

This is 100 percent.

printf io.printf(format 〈 , obj 〉∗)→ nil

Formats and writes to io, converting parameters under control of the format string. See

Kernel#sprintf on page 577 for details.

putc io.putc(obj)→ obj

Writes the given character (the first byte from String or a Fixnum) on io. Note that this is not

encoding safe, because the byte may be just part of a multibyte sequence.

STDOUT.putc "ABC"

STDOUT.putc 65

produces:

AA

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=558

IO 559

I
O

puts io.puts(〈 obj 〉∗)→ nil

Writes the given objects to io as with IO#print. Writes a newline after any that do not already

end with a newline sequence. If called with an array argument, writes each element on a new

line. If called without arguments, outputs a single newline.

STDOUT.puts("this", "is", "a", "test")

produces:

this

is

a

test

read io.read(〈 int 〈 , buffer 〉 〉)→ string or nil

Reads at most int bytes from the I/O stream or to the end of file if int is omitted. Returns nil

if called at end of file. If buffer (a String) is provided, it is resized accordingly, and input is

read directly into it.

f = File.new("testfile")

f.read(16) # => "This is line one"

str = "cat"

f.read(10, str) # => "\nThis is l"

str # => "\nThis is l"

readbyte io.getbyte→ fixnum

1.9 Returns the next 8-byte byte (as opposed to an encoded character) from IO, raising EOFError

at end of file. See also IO#bytes.

readchar io.readchar→ string

Reads a character as with IO#getc but raises an EOFError on end of file.

readline io.readline(separator=$/)→ string or nil

io.readline(limit)→ string or nil

io.readline(separator, limit)→ string or nil

1.9 Reads a line as with IO#gets, but raises an EOFError on end of file.

readlines io.readlines(separator=$/)→ array

io.readlines(limit)→ array

io.readlines(separator, limit)→ array

1.9 Returns all of the lines in io as an array. Lines are separated by the optional separator. If

separator is nil, the entire file is passed as a single string. If the limit argument is present

and positive, at most that many characters will be returned in each iteration. If only the

limit argument is given and that argument is negative, then encodings will be ignored while

looking for the record separator, which increases performance.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=559

IO 560

I
O

f = File.new("testfile")

f.readlines # => ["This is line one\n", "This is line two\n",

"This is line three\n", "And so on...\n"]

f = File.new("testfile")

f.readlines("line") # => ["This is line", " one\nThis is line", "

two\nThis is line", " three\nAnd so on...\n"]

f = File.new("testfile")

f.readlines(10) # => ["This is li", "ne one\n", "This is li", "ne

two\n", "This is li", "ne three\n", "And so

on.", "..\n"]

readpartial io.readpartial(limit, result="")→ result

1.9 Data read from files and devices is normally buffered. When reading line by line (for exam-

ple using IO#gets), Ruby will read many lines at a time into an internal buffer and then return

lines from that buffer. This buffering is normally transparent—Ruby will refill the buffer

automatically when required. However, when reading from a device or pipe (as opposed to

a file), you sometimes want to read whatever is in the buffer, reading from the device or

pipe only if the buffer is empty when the read starts. This is what readpartial does. If any

data is available in local buffers, it will be returned immediately. readpartial will read from

the device or pipe (potentially blocking) only if the buffer is empty. Raises EOFError when

it reached EOF. See also IO#read_nonblock.

The following example comes from the internal documentation, with thanks to the anony-

mous author:

r, w = IO.pipe # buffer pipe content

w << "abc" # "" "abc".

r.readpartial(4096) #=> "abc" "" ""

r.readpartial(4096) # blocks because buffer and pipe is empty.

r, w = IO.pipe # buffer pipe content

w << "abc" # "" "abc"

w.close # "" "abc" EOF

r.readpartial(4096) #=> "abc" "" EOF

r.readpartial(4096) # raises EOFError

r, w = IO.pipe # buffer pipe content

w << "abc\ndef\n" # "" "abc\ndef\n"

r.gets #=> "abc\n" "def\n" ""

w << "ghi\n" # "def\n" "ghi\n"

r.readpartial(4096) #=> "def\n" "" "ghi\n"

r.readpartial(4096) #=> "ghi\n" "" ""

read_nonblock io.readpartial(limit, result="")→ result

1.9 Effectively the same as IO#readpartial, except in cases where no buffered data is available.

In this case, it puts io into nonblocking mode before attempting to read data. This means

that the call may return EAGAIN and EINTR errors, which should be handled by the caller.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=560

IO 561

I
O

reopen io.reopen(other_io)→ io

io.reopen(path, mode)→ io

Reassociates io with the I/O stream given in other_io or to a new stream opened on path.

This may dynamically change the actual class of this stream.

f1 = File.new("testfile")

f2 = File.new("testfile")

f2.readlines[0] # => "This is line one\n"

f2.reopen(f1) # => #<File:testfile>

f2.readlines[0] # => "This is line one\n"

rewind io.rewind→ 0

Positions io to the beginning of input, resetting lineno to zero.

f = File.new("testfile")

f.readline # => "This is line one\n"

f.rewind # => 0

f.lineno # => 0

f.readline # => "This is line one\n"

seek io.seek(int, whence=SEEK_SET)→ 0

Seeks to a given offset int in the stream according to the value of whence.

IO::SEEK_CUR Seeks to int plus current position

IO::SEEK_END Seeks to int plus end of stream (you probably want a negative value for

int)

IO::SEEK_SET Seeks to the absolute location given by int

f = File.new("testfile")

f.seek(13, IO::SEEK_END) # => 0

f.readline # => "And so on...\n"

set_encoding io.set_encoding(external, internal=external)→ io

io.set_encoding("external-name:internal-name")→ io

Sets the external and internal encodings for io. In the first form, encodings can be specified

by name (using strings) or as encoding objects. In the second form, the external and internal

encoding names are separated by a colon in a string.

f = File.new("testfile")

f.internal_encoding # => nil

f.external_encoding # => #<Encoding:UTF8>

f.set_encoding("ascii8bit:iso88591") # => #<File:testfile>

f.internal_encoding # => #<Encoding:ISO88591>

f.external_encoding # => #<Encoding:ASCII8BIT>

stat io.stat→ stat

Returns status information for io as an object of type File::Stat.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=561

IO 562

I
O

f = File.new("testfile")

s = f.stat

"%o" % s.mode # => "100644"

s.blksize # => 4096

s.atime # => 20090413 13:26:28 0500

sync io.sync→ true or false

Returns the current “sync mode” of io. When sync mode is true, all output is immediately

flushed to the underlying operating system and is not buffered by Ruby. See also IO#fsync.

sync= io.sync = bool→ true or false

Sets the “sync mode” to true or false. When sync mode is true, all output is immediately

flushed to the underlying operating system and is not buffered internally. Returns the new

state. See also IO#fsync.

f = File.new("testfile")

f.sync = true

sysread io.sysread(int 〈 , buffer 〉)→ string

Reads int bytes from io using a low-level read and returns them as a string. If buffer (a

String) is provided, input is read directly in to it. Do not mix with other methods that read

from io, or you may get unpredictable results. Raises SystemCallError on error and EOFError

at end of file.

f = File.new("testfile")

f.sysread(16) # => "This is line one"

str = "cat"

f.sysread(10, str) # => "\nThis is l"

str # => "\nThis is l"

sysseek io.sysseek(offset, whence=SEEK_SET)→ int

Seeks to a given offset in the stream according to the value of whence (see IO#seek for

values of whence). Returns the new offset into the file.

f = File.new("testfile")

f.sysseek(13, IO::SEEK_END) # => 53

f.sysread(10) # => "And so on."

syswrite io.syswrite(string)→ int

Writes the given string to io using a low-level write. Returns the number of bytes written.

Do not mix with other methods that write to io, or you may get unpredictable results. Raises

SystemCallError on error.

f = File.new("out", "w")

f.syswrite("ABCDEF") # => 6

tell io.tell→ int

Synonym for IO#pos.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=562

IO 563

I
O

to_i io.to_i→ int

Synonym for IO#fileno.

to_io io.to_io→ io

Returns io.

tty? io.tty?→ true or false

Synonym for IO#isatty.

ungetbyte io.ungetbyte(string or int)→ nil

1.9 Pushes back one or more bytes onto io, such that a subsequent buffered read will return

them. Has no effect with unbuffered reads (such as IO#sysread).

f = File.new("testfile") # => #<File:testfile>

c = f.getbyte # => 84

f.ungetbyte(c) # => nil

f.getbyte # => 84

f.ungetbyte("cat") # => nil

f.getbyte # => 99

f.getbyte # => 97

ungetc io.ungetc(string)→ nil

Pushes back one or more characters onto io, such that a subsequent buffered read will return

them. Has no effect with unbuffered reads (such as IO#sysread).

encoding: utf8

f = File.new("testfile") # => #<File:testfile>

c = f.getc # => "T"

f.ungetc(c) # => nil

f.getc # => "T"

f.ungetc("δog") # => nil

f.getc # => "δ"
f.getc # => "o"

write io.write(string)→ int

Writes the given string to io. The stream must be opened for writing. If the argument is not

a string, it will be converted to a string using to_s. Returns the number of bytes written.

count = STDOUT.write("This is a test\n")

puts "That was #{count} bytes of data"

produces:

This is a test

That was 15 bytes of data

write_nonblock io.write_nonblock(string)→ int

Writes the given string to io after setting io into nonblocking mode. The stream must be

opened for writing. If the argument is not a string, it will be converted to a string using

to_s. Returns the number of bytes written. Your application should expect to receive errors

typical of nonblocking I/O (including EAGAIN and EINTR).

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=563

