
KERNEL 564

K
e
rn

e
l

Module
Kernel

The Kernel module is included by class Object, so its methods are available in every Ruby

object. The Kernel instance methods are documented in class Object beginning on page 622.

This section documents the private methods. These methods are called without a receiver

and thus can be called in functional form.

Module methods

_ _callee_ _ _ _callee_ _→ symbol or nil

1.9 Returns the name of the current method or nil outside the context of a method.

def fred

puts "I'm in #{__callee__.inspect}"

end

fred

puts "Then in #{__callee__.inspect}"

produces:

I'm in :fred

Then in nil

_ _method_ _ _ _method_ _→ symbol or nil

1.9 Synonym for _ _callee_ _.

Array Array(arg)→ array

Returns arg as an Array. First tries to call arg.to_ary, then arg.to_a. If both fail, creates a

single element array containing arg (or an empty array if arg is nil).1.9

Array(1..5) # => [1, 2, 3, 4, 5]

Complex Complex(real, imag=0)→ complex

1.9 Returns the complex number with the given real and imaginary parts.

Complex(1) # => 1+0i

Complex("1") # => 1+0i

Complex("1", "3/2") # => 1+3/2i

Complex("3+2i") # => 3+2i

Float Float(arg)→ float

Returns arg converted to a float. Numeric types are converted directly; the rest are converted

using arg.to_f. Converting nil generates a TypeError.

Float(1) # => 1.0

Float("123.456") # => 123.456

Integer Integer(arg)→ int

Converts arg to a Fixnum or Bignum. Numeric types are converted directly (floating-point

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=564

KERNEL 565

K
e
rn

e
l

numbers are truncated). If arg is a String, leading radix indicators (0, 0b, and 0x) are hon-

ored. Others are converted using to_int and to_i. This behavior is different from that of

String#to_i. Converting nil generates a TypeError.1.9

Integer(123.999) # => 123

Integer("0x1a") # => 26

Integer(Time.new) # => 1239647202

Rational Rational(numerator, denominator=1)→ complex

1.9 Returns the rational number with the given representation.

Rational(1) # => 1/1

Rational("1") # => 1/1

Rational("1", "2") # => 1/2

Rational(1, 0.5) # => 2/1

Rational("3/2") # => 3/2

Rational("3/2", "4/5") # => 15/8

String String(arg)→ string

Converts arg to a String by calling its to_s method.

String(self) # => "main"

String(self.class) # => "Object"

String(123456) # => "123456"

` (backquote) `cmd ` → string

Returns the standard output of running cmd in a subshell. The built-in syntax %x{. . . }

described on page 149 uses this method. Sets $? to the process status.

`date` # => "Mon Apr 13 13:26:42 CDT 2009\n"

`ls testdir`.split[1] # => "main.rb"

`echo oops && exit 99` # => "oops\n"

$?.exitstatus # => 99

abort abort

abort(msg)

Terminates execution immediately with an exit code of 1. The optional String parameter is

written to standard error before the program terminates.

at_exit at_exit { block }→ proc

Converts block to a Proc object (and therefore binds it at the point of call) and registers it

for execution when the program exits. If multiple handlers are registered, they are executed

in reverse order of registration.

def do_at_exit(str1)

at_exit { print str1 }

end

at_exit { puts "cruel world" }

do_at_exit("goodbye ")

exit

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=565

KERNEL 566

K
e
rn

e
l

produces:

goodbye cruel world

autoload autoload(name, file_name)→ nil

Registers file_name to be loaded (using Kernel.require) the first time that the module name

(which may be a String or a symbol) is accessed.

autoload(:MyModule, "/usr/local/lib/modules/my_module.rb")

Module.autoload lets you define namespace-specific autoload hooks:

module X

autoload :XXX, "xxx.rb"

end

Note that xxx.rb should define a class in the correct namespace. That is, in this example

xxx.rb should contain the following:

class X::XXX

...

end

autoload? autoload?(name)→ file_name or nil

Returns the name of the file that will be autoloaded when the string or symbol name is

referenced in the top-level context or returns nil if there is no associated autoload.

autoload(:Fred, "module_fred") # => nil

autoload?(:Fred) # => "module_fred"

autoload?(:Wilma) # => nil

binding binding→ a_binding

Returns a Binding object, describing the variable and method bindings at the point of call.

This object can be used when calling eval to execute the evaluated command in this envi-

ronment. Also see the description of class Binding beginning on page 469.

def get_binding(param)

return binding

end

b = get_binding("hello")

eval("param", b) # => "hello"

block_given? block_given?→ true or false

Returns true if yield would execute a block in the current context.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=566

KERNEL 567

K
e
rn

e
l

def try

if block_given?

yield

else

"no block"

end

end

try # => "no block"

try { "hello" } # => "hello"

block = lambda { "proc object" }

try(&block) # => "proc object"

caller caller(〈 int 〉)→ array

Returns the current execution stack—an array containing strings in the form file:line or

file:line: in ‘method’. The optional int parameter determines the number of initial stack

entries to omit from the result.

def a(skip)

caller(skip)

end

def b(skip)

a(skip)

end

def c(skip)

b(skip)

end

c(0) # => ["/tmp/prog.rb:2:in `a'", "/tmp/prog.rb:5:in `b'",

"/tmp/prog.rb:8:in `c'", "/tmp/prog.rb:10:in `<main>'"]

c(1) # => ["/tmp/prog.rb:5:in `b'", "/tmp/prog.rb:8:in `c'",

"/tmp/prog.rb:11:in `<main>'"]

c(2) # => ["/tmp/prog.rb:8:in `c'", "/tmp/prog.rb:12:in `<main>'"]

c(3) # => ["/tmp/prog.rb:13:in `<main>'"]

catch catch(object=Object.new) { block } → obj

1.9 catch executes its block. If a throw is encountered, Ruby searches up its stack for a catch

block with a parameter identical to the throw’s parameter. If found, that block is terminated,

and catch returns the value given as the second parameter to throw. If throw is not called,

the block terminates normally, and the value of catch is the value of the last expression

evaluated. catch expressions may be nested, and the throw call need not be in lexical scope.

Prior to Ruby 1.91.9 the parameters to catch and throw had to be symbols—they can now be

any object. When using literals, it probably makes sense to use only immediate objects.

def routine(n)

print n, ' '

throw :done if n <= 0

routine(n1)

end

catch(:done) { routine(4) }

produces:

4 3 2 1 0

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=567

KERNEL 568

K
e
rn

e
l

chomp chomp(〈 rs 〉)→ $_ or string

Equivalent to $_ = $_.chomp(rs), except no assignment is made if chomp doesn’t change

$_. See String#chomp on page 675.1.9 Available only with the -n or -p command-line options

are present.

chop chop→ string

(Almost) equivalent to ($_.dup).chop!, except that if chop would perform no action, $_ is

unchanged and nil is not returned. See String#chop! on page 676.1.9 Available only with the

-n or -p command-line options are present.

eval eval(string 〈 , binding 〈 , file 〈 , line 〉 〉 〉)→ obj

Evaluates the Ruby expression(s) in string. If binding is given, the evaluation is performed

in its context. The binding must be a Binding object.1.9 If the optional file and line parameters

are present, they will be used when reporting syntax errors.

def get_binding(str)

return binding

end

str = "hello"

eval "str + ' Fred'" # => "hello Fred"

eval "str + ' Fred'", get_binding("bye") # => "bye Fred"

Local variables assigned within an eval are available after the eval only if they were defined

at the outer scope before the eval executed. In this way, eval has the same scoping rules as

blocks.

a = 1

eval "a = 98; b = 99"

puts a

puts b

produces:

98

prog.rb:4:in `<main>': undefined local variable or method `b' for

main:Object (NameError)

exec exec(〈 env, 〉 command 〈 , args 〉∗, 〈 options 〉)

1.9 Replaces the current process by running the given external command. If exec is given a sin-

gle argument, that argument is taken as a line that is subject to shell expansion before being

executed. If command contains a newline or any of the characters *?{}[]<>()~\&|\$;'`",

or under Windows if command looks like a shell-internal command (for example dir), com-

mand is run under a shell. On Unix system, Ruby does this by prepending sh c. Under

Windows, it uses the name of a shell in either RUBYSHELL or COMSPEC.

If multiple arguments are given, the second and subsequent arguments are passed as param-

eters to command with no shell expansion. If the first argument is a two-element array,

the first element is the command to be executed, and the second argument is used as the

argv[0] value, which may show up in process listings. In MSDOS environments, the com-

mand is executed in a subshell; otherwise, one of the exec(2) system calls is used, so the

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=568

KERNEL 569

K
e
rn

e
l

running command may inherit some of the environment of the original program (including

open file descriptors). Raises SystemCallError if the command couldn’t execute (typically

Errno::ENOENT).

exec "echo *" # echoes list of files in current directory

never get here

exec "echo", "*" # echoes an asterisk

never get here

env, if present, is a hash that adds to the environment variables in the subshell. An entry with

a nil value clears the corresponding environment variable. The keys must be strings. options,

if present, is a hash that controls the setup of the subshell. The possible keys and their

meanings are listed in Table 27.8 on page 580. See also Kernel.spawn and Kernel.system.

exit exit(true | false | status=1)

Initiates the termination of the Ruby script. If called in the scope of an exception handler,

raises a SystemExit exception. This exception may be caught. Otherwise, exits the process

using exit(2). The optional parameter is used to return a status code to the invoking environ-

ment. With an argument of true, exits with a status of zero. With an argument that is false

(or no argument), exits with a status of 1; otherwise, exits with the given status. The default

exit value is 1.

fork { exit 99 }

Process.wait

puts "Child exits with status: #{$?.exitstatus}"

begin

exit

puts "never get here"

rescue SystemExit

puts "rescued a SystemExit exception"

end

puts "after begin block"

produces:

Child exits with status: 99

rescued a SystemExit exception

after begin block

Just prior to termination, Ruby executes any at_exit functions and runs any object finalizers

(see ObjectSpace beginning on page 635).

at_exit { puts "at_exit function" }

ObjectSpace.define_finalizer("xxx", lambda { |obj| puts "in finalizer" })

exit

produces:

at_exit function

in finalizer

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=569

KERNEL 570

K
e
rn

e
l

exit! exit!(true | false | status=1)

Similar to Kernel.exit, but exception handling, at_exit functions, and finalizers are bypassed.

fail fail

fail(message)

fail(exception 〈 , message 〈 , array 〉 〉)

Synonym for Kernel.raise.

fork fork 〈 { block } 〉 → int or nil

Creates a subprocess. If a block is specified, that block is run in the subprocess, and the

subprocess terminates with a status of zero. Otherwise, the fork call returns twice, once in

the parent, returning the process ID of the child, and once in the child, returning nil. The

child process can exit using Kernel.exit! to avoid running any at_exit functions. The parent

process should use Process.wait to collect the termination statuses of its children or use

Process.detach to register disinterest in their status; otherwise, the operating system may

accumulate zombie processes.

fork do

3.times {|i| puts "Child: #{i}" }

end

3.times {|i| puts "Parent: #{i}" }

Process.wait

produces:

Parent: 0

Child: 0

Child: 1

Child: 2

Parent: 1

Parent: 2

format format(format_string 〈 , arg 〉∗)→ string

Synonym for Kernel.sprintf.

gem gem(gem_name 〈 , version 〉)→ true or false

1.9 Adds the given gem to the applications include path, so that subsequent requires will search.

Defaults to the latest version of the gem if no version information is given. See section Gems

and Versions on page 243 for more information and examples.

gets gets(separator=$/)→ string or nil

Returns (and assigns to $_) the next line from the list of files in ARGV (or $*) or from

standard input if no files are present on the command line. Returns nil at end of file. The

optional argument specifies the record separator. The separator is included with the contents

of each record. A separator of nil reads the entire contents, and a zero-length separator

reads the input one paragraph at a time, where paragraphs are divided by two consecutive

newlines. If multiple filenames are present in ARGV, gets(nil) will read the contents one file

at a time.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=570

KERNEL 571

K
e
rn

e
l

ARGV << "testfile"

print while gets

produces:

This is line one

This is line two

This is line three

And so on...

The style of programming using $_ as an implicit parameter is gradually losing favor in the

Ruby community.

global_variables global_variables→ array

Returns an array of the names of global variables.

global_variables.grep /std/ # => [:$stdin, :$stdout, :$stderr]

gsub gsub(pattern, replacement)→ string

gsub(pattern) { block } → string

Equivalent to $_.gsub(. . .), except that $_ will be updated if substitution occurs.1.9 Available

only with the -n or -p command-line options are present.

iterator? iterator?→ true or false

Deprecated synonym for Kernel.block_given?.

lambda lambda { block } → proc

Creates a new procedure object from the given block. See page 364 for an explanation

of the difference between procedure objects created using lambda and those created using

Proc.new. Note that lambda is now preferred over proc.

prc = lambda { "hello" }

prc.call # => "hello"

load load(file_name, wrap=false)→ true

Loads and executes the Ruby program in the file file_name. If the filename does not resolve

to an absolute path, the file is searched for in the library directories listed in $:. If the

optional wrap parameter is true, the loaded script will be executed under an anonymous

module, protecting the calling program’s global namespace. In no circumstance will any

local variables in the loaded file be propagated to the loading environment.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=571

KERNEL 572

K
e
rn

e
l

local_variables local_variables→ array

Returns the names of the current local variables.

fred = 1

for i in 1..10

...

end

local_variables # => [:fred, :i]

Note that local variables are associated with bindings.

def fred

a = 1

b = 2

binding

end

freds_binding = fred

eval("local_variables", freds_binding) # => [:a, :b]

loop loop 〈 { block } 〉
Repeatedly executes the block.

loop do

print "Type something: "

line = gets

break if line.nil? || line =~ /^[qQ]/

...

end

loop1.9 silently rescues the StopIteration exception, which works well with external iterators.

enum1 = [1, 2, 3].to_enum

enum2 = [10, 20].to_enum

loop do

puts enum1.next + enum2.next

end

produces:

11

22

open open(name 〈 , mode 〈 , permission 〉 〉)→ io or nil

open(name 〈 , mode 〈 , permission 〉 〉) {| io | block } → obj

Creates an IO object connected to the given stream, file, or subprocess.1.9

If name does not start with a pipe character (|), treats it as the name of a file to open using

the specified mode defaulting to "r" (see the table of valid modes on page 547). If a file

is being created, its initial permissions may be set using the third parameter, which is an

integer. If this third parameter is present, the file will be opened using the low-level open(2)

rather than fopen(3) call.

If a block is specified, it will be invoked with the IO object as a parameter, which will be

automatically closed when the block terminates. The call returns the value of the block in

this case.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=572

KERNEL 573

K
e
rn

e
l

If name starts with a pipe character, a subprocess is created, connected to the caller by a pair

of pipes. The returned IO object may be used to write to the standard input and read from

the standard output of this subprocess. If the command following the | is a single minus

sign, Ruby forks, and this subprocess is connected to the parent. In the subprocess, the open

call returns nil. If the command is not "–", the subprocess runs the command. If a block is

associated with an open("|–") call, that block will be run twice—once in the parent and once

in the child. The block parameter will be an IO object in the parent and nil in the child. The

parent’s IO object will be connected to the child’s STDIN and STDOUT. The subprocess will

be terminated at the end of the block.

open("testfile", "r:iso88591") do |f|

print f.gets

end

produces:

This is line one

Open a subprocess, and read its output:

cmd = open("|date")

print cmd.gets

cmd.close

produces:

Mon Apr 13 13:26:43 CDT 2009

Open a subprocess running the same Ruby program:

f = open("|", "w+")

if f.nil?

puts "in Child"

exit

else

puts "Got: #{f.gets}"

end

produces:

Got: in Child

Open a subprocess using a block to receive the I/O object:

open("|") do |f|

if f.nil?

puts "in Child"

else

puts "Got: #{f.gets}"

end

end

produces:

Got: in Child

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=573

KERNEL 574

K
e
rn

e
l

p p(〈 obj 〉+)→ obj

1.9 For each object, writes obj.inspect followed by the current output record separator to the

program’s standard output. Also see the PrettyPrint library on page 790.

Info = Struct.new(:name, :state)

p Info['dave', 'TX']

produces:

#<struct Info name="dave", state="TX">

print print(〈 obj 〉∗)→ nil

Prints each object in turn to STDOUT. If the output field separator ($,) is not nil, its con-

tents will appear between each field. If the output record separator ($\) is not nil, it will be

appended to the output. If no arguments are given, prints $_. Objects that aren’t strings will

be converted by calling their to_s method.

print "cat", [1,2,3], 99, "\n"

$, = ", "

$\ = "\n"

print "cat", [1,2,3], 99

produces:

cat[1, 2, 3]99

cat, [1, 2, 3], 99,

printf printf(io, format 〈 , obj 〉∗)→ nil

printf(format 〈 , obj 〉∗)→ nil

Equivalent to

io.write sprintf(format, obj . . .)

or

STDOUT.write sprintf(format, obj . . .)

proc proc { block }→ a_proc

Creates a new procedure object from the given block. Mildly deprecated in favor of Ker-

nel#lambda.

prc = proc {|name| "Goodbye, #{name}" }

prc.call('Dave') # => "Goodbye, Dave"

putc putc(obj)→ obj

1.9 Equivalent to STDOUT.putc(obj). If obj is a string, output its first byte as a character; other-

wise, attempts to convert obj to an integer and outputs the corresponding character code.

putc 65

putc 66.123

putc "CAT"

putc 12 # newline

produces:

ABC

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=574

KERNEL 575

K
e
rn

e
l

puts puts(〈 arg 〉∗)→ nil

Equivalent to STDOUT.puts(arg...).

raise raise

raise(message)

raise(exception 〈 , message 〈 , array 〉 〉)

With no arguments, raises the exception in $! or raises a RuntimeError if $! is nil. With a sin-

gle String argument (or1.9 an argument that responds to to_str), raises a RuntimeError with the

string as a message. Otherwise, the first parameter should be the name of an Exception class

(or an object that returns an Exception when its exception method is called). The optional

second parameter sets the message associated with the exception, and the third parameter is

an array of callback information. Exceptions are caught by the rescue clause of begin. . . end

blocks.

raise "Failed to create socket"

raise ArgumentError, "No parameters", caller

rand rand(max=0)→ number

Converts max to an integer using max1 = max.to_i.abs. If the result is zero, returns a

pseudorandom floating-point number greater than or equal to 0.0 and less than 1.0. Oth-

erwise, returns a pseudorandom integer greater than or equal to zero and less than max1.

Kernel.srand may be used to ensure repeatable sequences of random numbers between dif-

ferent runs of the program. Ruby currently uses a modified Mersenne Twister with a period

of 219937 − 1.

srand 1234 # => 286573333591514665868880867940088004452

[rand, rand] # => [0.191519450378892, 0.622108771039832]

[rand(10), rand(1000)] # => [4, 664]

srand 1234 # => 1234

[rand, rand] # => [0.191519450378892, 0.622108771039832]

readline readline(〈 separator=$/ 〉)→ string

Equivalent to Kernel.gets, except readline raises EOFError at end of file.

readlines readlines(〈 separator=$/ 〉)→ array

Returns an array containing the lines returned by calling Kernel.gets(separator) until the

end of file.

require require(library_name)→ true or false

Ruby tries to load library_name, returning true if successful. If the filename does not resolve

to an absolute path, it will be searched for in the directories listed in $:. If the file has the

extension .rb, it is loaded as a source file; if the extension is .so, .o, or .dll,2 Ruby loads

the shared library as a Ruby extension. Otherwise, Ruby tries adding .rb, .so, and so on, to

2. Or whatever the default shared library extension is on the current platform.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=575

KERNEL 576

K
e
rn

e
l

the name. The name of the loaded feature is added to the array in $". A feature will not be

loaded if its name already appears in $".3 require returns true if the feature was successfully

loaded.

require 'mylibrary.rb'

require 'dbdriver'

require_relative require_relative(library_path)→ true or false

1.9 Requires a library whose path is relative to the file containing the call. Thus, if the file

/usr/local/mylib/bin contains the file myprog.rb and that program contains the following line:

require_relative "../lib/mylib"

Ruby will look for mylib in /usr/local/mylib/lib.

require_relative cannot be called interactively in irb.

select select(read_array 〈 , write_array 〈 , error_array 〈 , timeout 〉 〉 〉)→ array or nil

Performs a low-level select call, which waits for data to become available from input/output

devices. The first three parameters are arrays of IO objects or nil. The last is a timeout in

seconds, which should be an Integer or a Float. The call waits for data to become available

for any of the IO objects in read_array, for buffers to have cleared sufficiently to enable

writing to any of the devices in write_array, or for an error to occur on the devices in

error_array. If one or more of these conditions are met, the call returns a three-element

array containing arrays of the IO objects that were ready. Otherwise, if there is no change

in status for timeout seconds, the call returns nil. If all parameters are nil, the current thread

sleeps forever.

select([STDIN], nil, nil, 1.5) # => [[#<IO:<STDIN>>], [], []]

set_trace_func set_trace_func(proc)→ proc

set_trace_func(nil)→ nil

Establishes proc as the handler for tracing or disables tracing if the parameter is nil. proc

takes up to six parameters: an event name, a filename, a line number, an object ID, a bind-

ing, and the name of a class. proc is invoked whenever an event occurs. Events are c-call

(calls a C-language routine), c-return (returns from a C-language routine), call (calls a Ruby

method), class (starts a class or module definition), end (finishes a class or module defini-

tion), line (executes code on a new line), raise (raises an exception), and return (returns from

a Ruby method). Tracing is disabled within the context of proc.

See the example starting on page 427 for more information.

sleep sleep(numeric=0)→ fixnum

Suspends the current thread for numeric seconds (which may be a Float with fractional

seconds). Returns the actual number of seconds slept (rounded), which may be less than that

3. As of Ruby 1.9 this name is converted to an absolute path, so that require 'a';require './a' will load a.rb just

once.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=576

KERNEL 577

K
e
rn

e
l

asked for if the thread was interrupted by a SIGALRM or if another thread calls Thread#run.

An argument of zero causes sleep to sleep forever.

Time.now # => 20090413 13:26:43 0500

sleep 1.9 # => 2

Time.now # => 20090413 13:26:45 0500

spawn spawn(〈 env, 〉 command 〈 , args 〉∗, 〈 options 〉)→ pid

1.9 Executes command in a subshell, returning immediately. (Compare with Kernel.system,

which waits for the command to complete before returning to the caller.) Returns the process

ID for the subprocess running the command. The arguments are processed in the same way

as for Kernel.exec on page 568. Raises SystemCallError if the command couldn’t execute

(typically Errno::ENOENT).

pid = spawn("echo hello")

puts "Back in main program"

rc, status = Process::waitpid2(pid)

puts "Status = #{status}"

produces:

Back in main program

hello

Status = pid 85719 exit 0

env, if present, is a hash that adds to the environment variables in the subshell. An entry

with a nil value clears the corresponding environment variable. The keys must be strings.

pid = spawn({"FRED" => "caveman"}, "echo FRED = $FRED")

Process::waitpid2(pid)

produces:

FRED = caveman

options, if present, is a hash that controls the setup of the subshell. The possible keys and

their meanings are listed in Table 27.8 on page 580.

reader, writer = IO.pipe

pid = spawn("echo '4*a(1)' | bc l", [STDERR, STDOUT] => writer)

writer.close

Process::waitpid2(pid)

reader.gets # => "3.14159265358979323844\n"

sprintf sprintf(format_string 〈 , arguments 〉∗)→ string

Returns the string resulting from applying format_string to any additional arguments. With-

in the format string, any characters other than format sequences are copied to the result.

A format sequence consists of a percent sign; followed by optional flags, width, and preci-

sion indicators, and an optional name;1.9 and then terminated with a field type character. The

field type controls how the corresponding sprintf argument is to be interpreted, and the flags

modify that interpretation. The flag characters are shown in Table 27.9 on page 581, and the

field type characters are listed in Table 27.10.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=577

KERNEL 578

K
e
rn

e
l

The field width is an optional integer, followed optionally by a period and a precision. The

width specifies the minimum number of characters that will be written to the result for this

field. For numeric fields, the precision controls the number of decimal places displayed. As

of Ruby 1.91.9 , number zero is converted to a zero-length string if a precision of 0 is given. For

string fields, the precision determines the maximum number of characters to be copied from

the string. (Thus, the format sequence %10.10s will always contribute exactly ten characters

to the result.)

sprintf("%d %04x", 123, 123) # => "123 007b"

sprintf("%08b '%4s'", 123, 123) # => "01111011 ' 123'"

sprintf("%1$*2$s %2$d %1$s", "hello", 8) # => " hello 8 hello"

sprintf("%1$*2$s %2$d", "hello", 8) # => "hello 8"

sprintf("%+g:% g:%g", 1.23, 1.23, 1.23) # => "+1.23: 1.23:1.23"

In Ruby 1.91.9 , you can pass a hash as the second argument and insert values from this hash

into the string. The notation <name> can be used between a percent sign and a field-type

character, in which case the name will be used to look up a value in the hash, and that value

will be formatted according to the field specification. The notation {name} is equivalent to

<name>s, substituting the corresponding value as a string. You can use width and other flag

characters between the opening percent sign and the {.

sprintf("%<number>d %04<number>x", number: 123) # => "123 007b"

sprintf("%08<number>b '%5{number}'", number: 123) # => "01111011 ' 123'"

sprintf("%6{k}: %{v}", k: "Dave", v: "Ruby") # => " Dave: Ruby"

srand srand(〈 number 〉)→ old_seed

Seeds the pseudorandom number generator to the value of number.to_i. If number is omitted

or zero, seeds the generator using a system1.9 random number generator if available; otherwise,

seeds it using a combination of the time, the process ID, and a sequence number. (This

is also the behavior if Kernel.rand is called without previously calling srand, but without

the sequence.) By setting the seed to a known value, scripts that use rand can be made

deterministic during testing. The previous seed value is returned. Also see Kernel.rand on

page 575.

sub sub(pattern, replacement)→ $_

sub(pattern) { block }→ $_

Equivalent to $_.sub(args), except that $_ will be updated if substitution occurs.1.9 Available

only with the -n or -p command-line options are present.

syscall syscall(fixnum 〈 , args 〉∗)→ int

Calls the operating system function identified by fixnum. The arguments must be either

String objects or Integer objects that fit within a native long. Up to nine parameters may be

passed. The function identified by fixnum is system dependent. On some Unix systems, the

numbers may be obtained from a header file called syscall.h.

syscall 4, 1, "hello\n", 6 # '4' is write(2) on our system

produces:

hello

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=578

KERNEL 579

K
e
rn

e
l

system system(〈 env, 〉 command 〈 , args 〉∗, 〈 options 〉)→ true or false or nil

1.9 Executes command in a subshell, returning true if the command was found and ran success-

fully, false is the command exited with a nonzero exit status, and nil if the command failed to

execute. An error status is available in $?. The arguments are processed in the same way as

for Kernel.exec on page 568. env, if present, is a hash that adds to the environment variables

in the subshell. An entry with a nil value clears the corresponding environment variable. The

keys must be strings. options, if present, is a hash that controls the setup of the subshell. The

possible keys and their meanings are listed in Table 27.8 on the following page. See also

Kernel.spawn.

system("echo *")

system("echo", "*")

system({"WILMA" => "shopper"}, "echo $WILMA")

produces:

config.h main.rb

*
shopper

test test(cmd, file1 〈 , file2 〉)→ obj

Uses the integer cmd to perform various tests on file1 (Table 27.11 on page 582) or on file1

and file2 (Table 27.12).

throw throw(symbol 〈 , obj 〉)

Transfers control to the end of the active catch block waiting for symbol. Raises NameError

if there is no catch block for the symbol. The optional second parameter supplies a return

value for the catch block, which otherwise defaults to nil. For examples, see Kernel.catch on

page 567.

trace_var trace_var(symbol, cmd)→ nil

trace_var(symbol) {| val | block } → nil

Controls tracing of assignments to global variables. The parameter symbol identifies the

variable (as either a string name or a symbol identifier). cmd (which may be a string or a Proc

object) or the block is executed whenever the variable is assigned and receives the variable’s

new value as a parameter. Only explicit assignments are traced. Also see Kernel.untrace_var.

trace_var :$dave, lambda {|v| puts "$dave is now '#{v}'" }

$dave = "hello"

$dave.sub!(/ello/, "i")

$dave += " Dave"

produces:

$dave is now 'hello'

$dave is now 'hi Dave'

trap trap(signal, proc)→ obj

trap(signal) { block } → obj

See the Signal module on page 668.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=579

KERNEL 580

K
e
rn

e
l

untrace_var untrace_var(symbol 〈 , cmd 〉)→ array or nil

Removes tracing for the specified command on the given global variable and returns nil. If no

command is specified, removes all tracing for that variable and returns an array containing

the commands actually removed.

warn warn msg

Writes the given message to STDERR (unless $VERBOSE is nil, perhaps because the -W0

command-line option was given).

warn "Danger, Will Robinson!"

produces:

Danger, Will Robinson!

Table 27.8. Options to Spawn and System

Option Effect on new process

:pgroup => true | 0 | int If true or 0, the new process will be a process group leader.

Otherwise, the process will belong to group int.

:rlimit_xxx => val | [cur, max] Sets a resource limit. See Process.getrlimit for information

on the available limits.

:unsetenv_others => true Clears all environment variables; then sets only those

passed in the env parameter.

:chdir => dir Changes to directory dir before running the process.

:umask => int Specifies the umask for the process.

fd_desc => stream Sets the process’s standard input, output, or error to

stream. See the description that follows this table for infor-

mation.

:close_others => true | false By default, all file descriptors apart from 0, 1, and 2 are

closed. You can specify false to leave them open.

io_obj => :close Explicitly closes the file descriptor corresponding to

io_obj in the child process.

The fd_desc parameter identifies an I/O stream to be opened or assigned in the child process.

It can be one of :in, STDIN, or 0 to represent standard input; :out, STDOUT, or 1 to represent

standard output; or :err, STDERR, or 2 to represent standard error. It can also be an array

containing one or more of these, in which case all fds in the array will be opened on the

same stream.

The stream parameter can be the following:

• One of :in, STDIN, or 0 to represent the current standard input; :out, STDOUT, or 1 to

represent the current standard output; or :err, STDERR, or 2 to represent the current

standard error.

• A string representing the name of a file or device.

• An array. The first element is the name of a file or device, the optional second ele-

ment is the mode, and the optional third element the permission. See the description of

File#new on page 512 for details.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=580

KERNEL 581

K
e
rn

e
l

Table 27.9. sprintf Flag Characters

Flag Applies To Meaning

(space) bdEefGgiouXx Leaves a space at the start of positive numbers.

digit$ all Specifies the absolute argument number for this field. Abso-

lute and relative argument numbers cannot both be used in a

sprintf string.

beEfgGoxX Uses an alternative format. For the conversions b, o, X, and

x, prefixes the result with b, 0, 0X, 0x, respectively. For E,

e, f, G, and g, forces a decimal point to be added, even if no

digits follow. For G and g, does not remove trailing zeros.

+ bdEefGgiouXx Adds a leading plus sign to positive numbers.

- all Left-justifies the result of this conversion.

0 (zero) bdEefGgiouXx Pads with zeros, not spaces.

* all Uses the next argument as the field width. If negative, left-

justifies the result. If the asterisk is followed by a number

and a dollar sign, uses the indicated argument as the width.

Table 27.10. sprintf Field Types

Field Conversion

B Converts argument as a binary number (0B0101 if # modifier used).

b Converts argument as a binary number (0b0101 if # modifier used).

c Argument is the numeric code for a single character.

d Converts argument as a decimal number.

E Equivalent to e but uses an uppercase E to indicate the exponent.

e Converts floating point-argument into exponential notation with one digit before

the decimal point. The precision determines the number of fractional digits

(defaulting to six).

f Converts floating-point argument as [-]ddd.ddd, where the precision determines

the number of digits after the decimal point.

G Equivalent to g but uses an uppercase E in exponent form.

g Converts a floating-point number using exponential form if the exponent is less

than −4 or greater than or equal to the precision, or in d.dddd form otherwise.

i Identical to d.

o Converts argument as an octal number.

p The value of argument.inspect.

s Argument is a string to be substituted. If the format sequence contains a precision,

at most that many characters will be copied.

u Treats argument as an unsigned decimal number.

X Converts argument as a hexadecimal number using uppercase letters. Negative

numbers will be displayed with two leading periods (representing an infinite string

of leading FFs).

x Converts argument as a hexadecimal number. Negative numbers will be displayed

with two leading periods (representing an infinite string of leading FFs.)

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=581

KERNEL 582

K
e
rn

e
l

Table 27.11. File Tests with a Single Argument

Flag Description Returns

?A Last access time for file1 Time

?b True if file1 is a block device true or false

?c True if file1 is a character device true or false

?C Last change time for file1 Time

?d True if file1 exists and is a directory true or false

?e True if file1 exists true or false

?f True if file1 exists and is a regular file true or false

?g True if file1 has the setgid bit set (false under NT) true or false

?G True if file1 exists and has a group ownership equal to the caller’s

group

true or false

?k True if file1 exists and has the sticky bit set true or false

?l True if file1 exists and is a symbolic link true or false

?M Last modification time for file1 Time

?o True if file1 exists and is owned by the caller’s effective UID true or false

?O True if file1 exists and is owned by the caller’s real UID true or false

?p True if file1 exists and is a fifo true or false

?r True if file1 is readable by the effective UID/GID of the caller true or false

?R True if file1 is readable by the real UID/GID of the caller true or false

?s If file1 has nonzero size, returns the size; otherwise, returns nil Integer or nil

?S True if file1 exists and is a socket true or false

?u True if file1 has the setuid bit set true or false

?w True if file1 exists and is writable by the effective UID/ GID true or false

?W True if file1 exists and is writable by the real UID/GID true or false

?x True if file1 exists and is executable by the effective UID/GID true or false

?X True if file1 exists and is executable by the real UID/GID true or false

?z True if file1 exists and has a zero length true or false

Table 27.12. File Tests with Two Arguments

Flag Description

?- True if file1 is a hard link to file2

?= True if the modification times of file1 and file2 are equal

?< True if the modification time of file1 is prior to that of file2

?> True if the modification time of file1 is after that of file2

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=582

