
MARSHAL 583

M
a
rs

h
a
l

Module
Marshal

The marshaling library converts collections of Ruby objects into a byte stream, allowing

them to be stored outside the currently active script. This data may subsequently be read

and the original objects reconstituted. Marshaling is described starting on page 431. Also

see the YAML library on page 831.

Marshaled data has major and minor version numbers stored along with the object infor-

mation. In normal use, marshaling can load only data written with the same major version

number and an equal or lower minor version number. If Ruby’s “verbose” flag is set (nor-

mally using -d, -v, -w, or --verbose), the major and minor numbers must match exactly.

Marshal versioning is independent of Ruby’s version numbers. You can extract the version

by reading the first two bytes of marshaled data.

RUBY_VERSION # => "1.9.1"

[Marshal::MAJOR_VERSION, Marshal::MINOR_VERSION] # => [4, 8]

str = Marshal.dump("thing")

str.bytes.first(2) # => [4, 8]

Some objects cannot be dumped: if the objects to be dumped include bindings, procedure or

method objects, instances of class IO, or singleton objects, or if you try to dump anonymous

classes or modules, a TypeError will be raised.

If your class has special serialization needs (for example, if you want to serialize in some

specific format) or if it contains objects that would otherwise not be serializable, you can

implement your own serialization strategy using the instance methods marshal_dump and

marshal_load: If an object to be marshaled responds to marshal_dump, that method is called

instead of _dump. marshal_dump can return an object of any class (not just a String). A class

that implements marshal_dump must also implement marshal_load, which is called as an

instance method of a newly allocated object and passed the object originally created by

marshal_dump.

The following code uses this to store a Time object in the serialized version of an object.

When loaded, this object is passed to marshal_load, which converts this time to a printable

form, storing the result in an instance variable.

class TimedDump

attr_reader :when_dumped

attr_accessor :other_data

def marshal_dump

[Time.now, @other_data]

end

def marshal_load(marshal_data)

@when_dumped = marshal_data[0].strftime("%I:%M%p")

@other_data = marshal_data[1]

end

end

t = TimedDump.new

t.other_data = "wibble"

t.when_dumped # => nil

str = Marshal.dump(t)

newt = Marshal.load(str)

newt.when_dumped # => "01:26PM"

newt.other_data # => "wibble"

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=583

MARSHAL 584

M
a
rs

h
a
l

Module constants

MAJOR_VERSION Major part of marshal format version number.

MINOR_VERSION Minor part of marshal format version number.

Module methods

dump dump(obj 〈 , io 〉 , limit=–1)→ io

Serializes obj and all descendent objects. If io is specified, the serialized data will be written

to it; otherwise, the data will be returned as a String. If limit is specified, the traversal of

subobjects will be limited to that depth. If limit is negative, no checking of depth will be

performed.

class Klass

def initialize(str)

@str = str

end

def say_hello

@str

end

end

o = Klass.new("hello\n")

data = Marshal.dump(o)

obj = Marshal.load(data)

obj.say_hello # => "hello\n"

load load(from 〈 , proc 〉)→ obj

Returns the result of converting the serialized data in from into a Ruby object (possibly

with associated subordinate objects). from may be either an instance of IO or an object that

responds to to_str. If proc is specified, it will be passed each object as it is deserialized.

restore restore(from 〈 , proc 〉)→ obj

A synonym for Marshal.load.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=584

