
METHOD 591

M
e
th

o
d

Class
Method < Object

Method objects are created by Object#method. They are associated with a particular object

(not just with a class). They may be used to invoke the method within the object and as a

block associated with an iterator. They may also be unbound from one object (creating an

UnboundMethod) and bound to another.

def square(n)

n*n

end

meth = self.method(:square)

meth.call(9) # => 81

[1, 2, 3].collect(&meth) # => [1, 4, 9]

Instance methods

[] meth[〈 args 〉∗]→ object

Synonym for Method.call.

== meth== other→ true or false

Returns true if meth is the same method as other.

def fred()

puts "Hello"

end

alias bert fred # => nil

m1 = method(:fred)

m2 = method(:bert)

m1 == m2 # => true

arity meth.arity→ fixnum

Returns an indication of the number of arguments accepted by a method. See Figure 27.2

on the next page. See also Method#parameters.

call meth.call(〈 args 〉∗)→ object

Invokes the meth with the specified arguments, returning the method’s return value.

m = 12.method("+")

m.call(3) # => 15

m.call(20) # => 32

eql? meth.eql?(other)→ true or false

Returns true if meth is the same method as other. à

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=591

METHOD 592

M
e
th

o
d

Figure 27.2. Method#arity in Action

Method#arity returns a non-negative integer for methods that take a fixed number of
arguments. For Ruby methods that take a variable number of arguments, returns −n−
1, where n is the number of required arguments. For methods written in C, returns −1
if the call takes a variable number of arguments.

class C

def one; end

def two(a); end

def three(*a); end

def four(a, b); end

def five(a, b, *c); end

def six(a, b, *c, &d); end

end

c = C.new

c.method(:one).arity # => 0

c.method(:two).arity # => 1

c.method(:three).arity # => 1

c.method(:four).arity # => 2

c.method(:five).arity # => 3

c.method(:six).arity # => 3

"cat".method(:size).arity # => 0

"cat".method(:replace).arity # => 1

"cat".method(:squeeze).arity # => 1

"cat".method(:count).arity # => 1

def fred()

puts "Hello"

end

alias bert fred # => nil

m1 = method(:fred)

m2 = method(:bert)

m1.eql?(m2) # => true

name meth.name→ string

1.9 Returns the name of the method meth.

method = "cat".method(:upcase)

method.name # => :upcase

owner meth.owner→ module

1.9 Returns the class or module in which meth is defined.

method = "cat".method(:upcase)

method.owner # => String

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=592

METHOD 593

M
e
th

o
d

receiver meth.receiver→ obj

1.9 Returns the object on which meth is defined.

method = "cat".method(:upcase)

method.receiver # => "cat"

source_location meth.source_location→ [filename, lineno] or nil

1.9 Returns the source filename and line number where meth was defined or nil if self was not

defined in Ruby source.

internal_method = "cat".method(:upcase)

internal_method.source_location # => nil

require 'set'

set = Set.new

ruby_method = set.method(:clear)

ruby_method.source_location # => ["/usr/lib/ruby/1.9.1/set.rb",

114]

to_proc meth.to_proc→ prc

Returns a Proc object corresponding to this method. Because to_proc is called by the inter-

preter when passing block arguments, method objects may be used following an ampersand

to pass a block to another method call. See the example at the start of this section.

unbind meth.unbind→ unbound_method

Dissociates meth from its current receiver. The resulting UnboundMethod can subsequently

be bound to a new object of the same class (see UnboundMethod on page 724).

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=593

