
MUTEX 612

M
u
te

x

Class
Mutex < Object

A mutex is a semaphore object that can be used to synchronize access to resources shared

across threads.1.9 We discuss mutexes (and other synchronization mechanisms) starting on

page 191. Because the code examples tend to be long, I haven’t duplicated them in this

library description.

Instance methods

lock mutex.lock→ mutex

Takes a lock on mutex. Suspends if mutex is already locked by another thread and raises a

ThreadError if the mutex is already locked by the calling thread.

locked? mutex.locked?→ true or false

Returns the current locked state of mutex.

sleep mutex.sleep(time | nil)→ seconds_slept

Releases the current thread’s lock on mutex, sleeps for time seconds (or forever if nil is

passed), and then regains the lock. Returns the number of seconds actually slept.

synchronize mutex.synchronize { block }→ obj

Locks mutex, executes the block, and then unlocks mutex. Returns the value returned by the

block.

try_lock mutex.try_lock→ true or false

If mutex is not currently locked, locks it and returns true. Otherwise, returns false. (That is,

try_lock is like lock, but it will never wait for a mutex to become available.)

unlock mutex.unlock→ mutex

Unlock mutex, which must be locked by the current thread.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=612

