
PROCESS::STATUS 650

P
ro

c
e
s
s
::

S
ta

tu
s

Class
Process::Status < Object

Process::Status encapsulates the information on the status of a running or terminated system

process. The built-in variable $? is either nil or a Process::Status object.

fork { exit 99 } # => 84972

Process.wait # => 84972

$?.class # => Process::Status

$?.to_i # => 25344

$? >> 8 # => 99

$?.stopped? # => false

$?.exited? # => true

$?.exitstatus # => 99

POSIX systems record information on processes using a 16-bit integer. The lower bits

record the process status (stopped, exited, signaled), and the upper bits possibly contain

additional information (for example, the program’s return code in the case of exited pro-

cesses). Before Ruby 1.8, these bits were exposed directly to the Ruby program. Ruby now

encapsulates these in a Process::Status object. To maximize compatibility, however, these

objects retain a bit-oriented interface. In the descriptions that follow, when we talk about

the integer value of stat, we’re referring to this 16-bit value.

Instance methods

== stat == other→ true or false

Returns true if the integer value of stat equals other.

& stat & num→ fixnum

Logical AND of the bits in stat with num.

fork { exit 0x37 }

Process.wait

sprintf('%04x', $?.to_i) # => "3700"

sprintf('%04x', $? & 0x1e00) # => "1600"

>> stat >> num→ fixnum

Shifts the bits in stat right num places.

fork { exit 99 } # => 84978

Process.wait # => 84978

$?.to_i # => 25344

$? >> 8 # => 99

coredump? stat.coredump→ true or false

Returns true if stat generated a coredump when it terminated. Not available on all platforms.

exited? stat.exited?→ true or false

Returns true if stat exited normally (for example using an exit call or finishing the program).

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=650


PROCESS::STATUS 651

P
ro

c
e
s
s
::

S
ta

tu
s

exitstatus stat.exitstatus→ fixnum or nil

Returns the least significant 8 bits of the return code of stat. Available only if exited? is true.

fork { } # => 84981

Process.wait # => 84981

$?.exited? # => true

$?.exitstatus # => 0

fork { exit 99 } # => 84982

Process.wait # => 84982

$?.exited? # => true

$?.exitstatus # => 99

pid stat.pid→ fixnum

Returns the ID of the process associated with this status object.

fork { exit } # => 84985

Process.wait # => 84985

$?.pid # => 84985

signaled? stat.signaled?→ true or false

Returns true if stat terminated because of an uncaught signal.

pid = fork { sleep 100 }

Process.kill(9, pid) # => 1

Process.wait # => 84988

$?.signaled? # => true

stopped? stat.stopped?→ true or false

Returns true if this process is stopped. This is returned only if the corresponding wait call

had the WUNTRACED flag set.

success? stat.success?→ nil, or true or false

Returns true if stat refers to a process that exited successfully, returns false if it exited with

a failure, and returns nil if stat does not refer to a process that has exited.

stopsig stat.stopsig→ fixnum or nil

Returns the number of the signal that caused stat to stop (or nil if self is not stopped).

termsig stat.termsig→ fixnum or nil

Returns the number of the signal that caused stat to terminate (or nil if self was not termi-

nated by an uncaught signal).

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=651


PROCESS::STATUS 652

P
ro

c
e
s
s
::

S
ta

tu
s

to_i stat.to_i→ fixnum

Returns the bits in stat as a Fixnum. Poking around in these bits is platform dependent.

fork { exit 0xab } # => 84991

Process.wait # => 84991

sprintf('%04x', $?.to_i) # => "ab00"

to_s stat.to_s→ string

Equivalent to stat.to_i.to_s.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=652

