
PROCESS 641

P
ro

c
e
s
s

Module
Process

The Process module is a collection of methods used to manipulate processes. Programs

that want to manipulate real and effective user and group IDs should also look at the Pro-

cess::GID, and Process::UID modules. Much of the functionality here is duplicated in the

Process::Sys module.

Module constants

PRIO_PGRP Process group priority.

PRIO_PROCESS Process priority.

PRIO_USER User priority.

WNOHANG Does not block if no child has exited. Not available on all platforms.

WUNTRACED Returns stopped children as well. Not available on all platforms.

RLIM[IT]_xxx Used by getrlimit and setrlimit

.

Module methods

abort abort

abort(msg)

Synonym for Kernel.abort.

daemon Process.daemon(stay_in_dir = false, keep_stdio_open = false)→ 0 or -1

1.9 Puts the current process into the background (either by forking and calling Process.setssid

or by using the daemon(2) call if available). Sets the current working directory to / unless

stay_in_dir is true. Redirects standard input, output, and error to /dev/null unless

keep_stdio_open is true. Not available on all platforms.

detach Process.detach(pid)→ thread

Some operating systems retain the status of terminated child processes until the parent col-

lects that status (normally using some variant of wait()). If the parent never collects this

status, the child stays around as a zombie process. Process.detach prevents this by setting

up a separate Ruby thread whose sole job is to reap the status of the process pid when

it terminates. Use detach only when you do not intend to explicitly wait for the child to

terminate. detach checks the status only periodically (currently once each second).

In this first example, we don’t reap the first child process, so it appears as a zombie in the

process status display.

pid = fork { sleep 0.1 }

sleep 1

system("ps o pid,state p #{pid}")

produces:

PID STAT

85786 ZN+

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=641

PROCESS 642

P
ro

c
e
s
s

In the next example, Process.detach is used to reap the child automatically—no child pro-

cesses are left running.

pid = fork { sleep 0.1 }

Process.detach(pid)

sleep 1

system("ps o pid,state p #{pid}")

produces:

PID STAT

egid Process.egid→ int

Returns the effective group ID for this process.

Process.egid # => 501

egid= Process.egid= int→ int

Sets the effective group ID for this process.

euid Process.euid→ int

Returns the effective user ID for this process.

Process.euid # => 501

euid= Process.euid= int

Sets the effective user ID for this process. Not available on all platforms.

exec Process.exec(command 〈 , args 〉)
1.9 Synonym for Kernel.exec.

exit Process.exit(int=0)

Synonym for Kernel.exit.

exit! Process.exit!(true | false | status=1)

Synonym for Kernel.exit!. No exit handlers are run. 0, 1, or status is returned to the under-

lying system as the exit status.

Process.exit!(0)

fork Process.fork 〈 { block } 〉 → int or nil

See Kernel.fork on page 570.

getpgid Process.getpgid(int)→ int

Returns the process group ID for the given process ID. Not available on all platforms.

Process.getpgid(Process.ppid()) # => 82263

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=642

PROCESS 643

P
ro

c
e
s
s

getpgrp Process.getpgrp→ int

Returns the process group ID for this process. Not available on all platforms.

Process.getpgid(0) # => 82263

Process.getpgrp # => 82263

getpriority Process.getpriority(kind, int)→ int

Gets the scheduling priority for specified process, process group, or user. kind indicates

the kind of entity to find: one of Process::PRIO_PGRP, Process::PRIO_USER, or Pro-

cess::PRIO_PROCESS. int is an ID indicating the particular process, process group, or

user (an ID of 0 means current). Lower priorities are more favorable for scheduling. Not

available on all platforms.

Process.getpriority(Process::PRIO_USER, 0) # => 19

Process.getpriority(Process::PRIO_PROCESS, 0) # => 19

getrlimit Process.getrlimit(name)→ [current, max]

1.9 Returns the current and maximum resource limit for the named resource. The name may

be a symbol or a string from the following list. It may also be an operating-specific inte-

ger constant. The Process module defines constants corresponding to these integers: the

constants are named RLIMIT_ followed by one of the following: AS, CORE, CPU, DATA,

FSIZE, MEMLOCK, NOFILE, NPROC, RSS or STACK. Consult your operating systems

getrlimit(2) man page for details. The return array may contain actual values, or one of

the constants RLIM_INFINITY, RLIM_SAVED_CUR, or RLIM_SAVED_MAX. Not available

on all platforms. See also Process.setrlimit.

Process.getrlimit(:STACK) # => [67104768, 67104768]

Process.getrlimit("STACK") # => [67104768, 67104768]

Process.getrlimit(Process::RLIMIT_STACK) # => [67104768, 67104768]

gid Process.gid→ int

Returns the group ID for this process.

Process.gid # => 501

gid= Process.gid= int→ int

Sets the group ID for this process.

groups Process.groups→ groups

Returns an array of integer supplementary group IDs. Not available on all platforms. See

also Process.maxgroups.

Process.groups # => [501, 98, 101, 102, 80]

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=643

PROCESS 644

P
ro

c
e
s
s

groups= Process.groups = array→ groups

Sets the supplementary group IDs from the given array, which may contain either numbers

or group names (as strings). Not available on all platforms. Available only to superusers.

See also Process.maxgroups.

initgroups Process.initgroups(user, base_group)→ groups

Initializes the group access list using the operating system’s initgroups call. Not available

on all platforms. May require superuser privilege.

Process.initgroups("dave", 500)

kill Process.kill(signal, 〈 pid 〉+)→ int

Sends the given signal to the specified process ID(s) or to the current process if pid is zero.

signal may be an integer signal number or a string or symbol1.9 representing a POSIX signal

name (either with or without a SIG prefix). If signal is negative (or starts with a – sign), kills

process groups instead of processes. Not all signals are available on all platforms.

pid = fork do

Signal.trap(:USR1) { puts "Ouch!"; exit }

... do some work ...

end

...

Process.kill(:USR1, pid)

Process.wait

produces:

Ouch!

maxgroups Process.maxgroups→ count

The Process module has a limit on the number of supplementary groups it supports in the

calls Process.groups and Process.groups=. The maxgroups call returns that limit (by default

32), and the maxgroups= call sets it.

Process.maxgroups # => 32

Process.maxgroups = 64

Process.maxgroups # => 64

maxgroups= Process.maxgroups= limit→ count

Sets the maximum number of supplementary group IDs that can be processed by the groups

and groups= methods. If a number larger that 4096 is given, 4096 will be used.

pid Process.pid→ int

Returns the process ID of this process. Not available on all platforms.

Process.pid # => 85816

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=644

PROCESS 645

P
ro

c
e
s
s

ppid Process.ppid→ int

Returns the process ID of the parent of this process. Always returns 0 on Windows. Not

available on all platforms.

puts "I am #{Process.pid}"

Process.fork { puts "Dad is #{Process.ppid}" }

produces:

I am 85818

Dad is 85818

setpgid Process.setpgid(pid, int)→ 0

Sets the process group ID of pid (0 indicates this process) to int. Not available on all plat-

forms.

setpgrp Process.setpgrp→ 0

Equivalent to setpgid(0,0). Not available on all platforms.

setpriority Process.setpriority(kind, int, int_priority)→ 0

See Process#getpriority.

Process.setpriority(Process::PRIO_USER, 0, 19) # => 0

Process.setpriority(Process::PRIO_PROCESS, 0, 19) # => 0

Process.getpriority(Process::PRIO_USER, 0) # => 19

Process.getpriority(Process::PRIO_PROCESS, 0) # => 19

setrlimit Process.setrlimit(name, soft_limit, hard_limit=soft_limit)→ nil

1.9 Sets the limit for the named resource. See Process.getrlimit for a description of resource

naming. See your system’s man page for setrlimit(2) for a description of the limits. Not

available on all platforms.

setsid Process.setsid→ int

Establishes this process as a new session and process group leader, with no controlling tty.

Returns the session ID. Not available on all platforms.

Process.setsid # => 85823

spawn Process.spawn(command 〈 , args 〉∗)→ pid

1.9 Synonym for Kernel.spawn.

times Process.times→ struct_tms

Returns a Tms structure (see Struct::Tms on page 700) that contains user and system CPU

times for this process.

t = Process.times

[t.utime, t.stime] # => [0.0, 0.0]

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=645

PROCESS 646

P
ro

c
e
s
s

uid Process.uid→ int

Returns the user ID of this process.

Process.uid # => 501

uid= Process.uid= int→ numeric

Sets the (integer) user ID for this process. Not available on all platforms.

wait Process.wait→ int

Waits for any child process to exit and returns the process ID of that child. Also sets $? to

the Process::Status object containing information on that process. Raises a SystemError if

there are no child processes. Not available on all platforms.

Process.fork { exit 99 } # => 85830

Process.wait # => 85830

$?.exitstatus # => 99

waitall Process.waitall→ [[pid1,status], . . .]

Waits for all children, returning an array of pid/status pairs (where status is an object of

class Process::Status).

fork { sleep 0.2; exit 2 } # => 85833

fork { sleep 0.1; exit 1 } # => 85834

fork { exit 0 } # => 85835

Process.waitall # => [[85835, #<Process::Status: pid 85835

exit 0>], [85834, #<Process::Status:

pid 85834 exit 1>], [85833,

#<Process::Status: pid 85833 exit 2>]]

wait2 Process.wait2→ [pid, status]

Waits for any child process to exit and returns an array containing the process ID and the exit

status (a Process::Status object) of that child. Raises a SystemError if no child processes

exist.

Process.fork { exit 99 } # => 85838

pid, status = Process.wait2

pid # => 85838

status.exitstatus # => 99

waitpid Process.waitpid(pid, int=0)→ pid

Waits for a child process to exit depending on the value of pid:

< −1 Any child whose progress group ID equals the absolute value of pid.

−1 Any child (equivalent to wait).

0 Any child whose process group ID equals that of the current process.

> 0 The child with the given PID.

int may be a logical or of the flag values Process::WNOHANG (do not block if no child

available) or Process::WUNTRACED (return stopped children that haven’t been reported).

Not all flags are available on all platforms, but a flag value of zero will work on all platforms.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=646

PROCESS 647

P
ro

c
e
s
s

include Process

pid = fork { sleep 3 } # => 85841

Time.now # => 20090413 13:26:49 0500

waitpid(pid, Process::WNOHANG) # => nil

Time.now # => 20090413 13:26:49 0500

waitpid(pid, 0) # => 85841

Time.now # => 20090413 13:26:52 0500

waitpid2 Process.waitpid2(pid, int=0)→ [pid, status]

Waits for the given child process to exit, returning that child’s process ID and exit status (a

Process::Status object). int may be a logical or of the values Process::WNOHANG (do not

block if no child available) or Process::WUNTRACED (return stopped children that haven’t

been reported). Not all flags are available on all platforms, but a flag value of zero will work

on all platforms.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=647

