637

Class

Proc < Object

Proc objects are blocks of code that have been bound to a set of local variables. Once bound,
the code may be called in different contexts and still access those variables.

def gen_times(factor)
return Proc.new {|n| nxfactor }
end

times3 = gen_times(3)
times5 = gen_times(5)

times3.call(12) # =>
times5.call(5) # => 25
times3.call(times5.call(4)) # =>

Class methods

new Proc.new { block } — a_proc
Proc.new — a_proc

Creates a new Proc object, bound to the current context. Proc.new may be called without a
block only within a method with an attached block, in which case that block is converted to
the Proc object.

def proc_from
Proc.new
end
proc = proc_from { "hello" }
proc.call # => "hello"

Instance methods

[1 prel { params)*] — obj

Synonym for Proc.call.

== prc== other — true or false

Returns true if prc is the same as other.

prc=== other — obj

19 , Equivalent to prc.call(other). Allows you to use procs in when clauses. Allows us to write
stuff such as this:

even = lambda {|num| num.even? }
(0..3).each do |num]|
case num
when even
puts "#{num} is even"
else
puts "#{num} is not even"
end
end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=637

638

produces:

0 is even
1 is not even
2 is even
3 is not even

arity pre.arity — integer

Returns the number of arguments required by the block. If the block is declared to take
no arguments, returns 0. If the block is known to take exactly n arguments, returns n. If
the block has optional arguments, return —(n + 1), where n is the number of mandatory
arguments. A proc with no argument declarations also returns —1, because it can accept
(and ignore) an arbitrary number of parameters.

Proc.new {}.arity #=> 0
Proc.new {||}.arity #
Proc.new {]al|}.arity #
Proc.new {|a,b|}.arity # =>
Proc.new {|a,b,c|}.arity #
Proc.new {|*al|}.arity #
Proc.new {|a,*b|}.arity # = -2

2 s InRuby 1.9, arity is defined as the number of parameters that would not be ignored. In 1.8,
Proc.new{ }.arity returns -1, and in 1.9 it returns O.

call pre.call((params)*) — obj

Invokes the block, setting the block’s parameters to the values in params using something
close to method-calling semantics. Returns the value of the last expression evaluated in the
block.

a_proc = Proc.new {|a, *b| b.collect {|i| ixa }}

a_proc.call(9, 1, 2, 3) # => [9, 18, 27]

a_proc[9, 1, 2, 3] # => [9, 18, 27]

If the block being called accepts a single parameter and you give call more than one param-
=2 / eter, only the first will be passed to the block. This is a change from Ruby 1.8.

a_proc = Proc.new {|a| puts a}
a_proc.call(1,2,3)

produces:
1
If you want a block to receive an arbitrary number of arguments, define it to accept *args.

a_proc = Proc.new {|*a| p a}
a_proc.call(1,2,3)

produces:

1, 2, 3]

Blocks created using Kernel.lambda check that they are called with exactly the right number
of parameters.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=638

639

p_proc = Proc.new {|a,b| puts "Sum is: #{a + b}" }
p_proc.call(l1,2,3)

p_proc = lambda {|a,b| puts "Sum is: #{a + b}" }
p_proc.call(l1,2,3)

produces:

Sum is: 3
prog.rb:4:in “call': wrong number of arguments (3 for 2) (ArgumentError)
from /tmp/prog.rb:5:in “<main>'

curry pre.curry — curried_proc

19 , you have a proc that takes arguments, you normally have to supply all of those arguments

if you want the proc to execute successfully. However, it is also possible to consider an n
argument proc to be the same as a single argument proc that returns a new proc that has this
first argument fixed and that takes n — 1 arguments. If you repeat this process recursively
for each of these subprocs, you end up with a proc that will take from zero to n arguements.
If you pass it all n, it simply executes the proc with those arguments. If you pass it m
arguments (where m < m), it returns a new proc that has those arguments prebaked in and
that takes m — n arguements. In this way, it is possible to partially apply arguments to a
proc.

add_three_numbers = lambda {|a,b,c|] a + b + ¢}
add_10_to_two_numbers = add_three_numbers.curry[10]
add_33_to_one_number = add_10_to_two_numbers[23]

add_three_numbers[1,2,3] #=> 6
add_10_to_two_numbers[1,2] # => 13
#

add_33_to_one_number[1] = 34
lambda? prec.Jambda? — true or false
19 , Returns true if prc has lambda semantics (that is, if argument passing acts as it does with

method calls). See the discussion starting on page 363.

source_location pre.source_location — [filename, lineno | or nil
19 , Returns the source filename and line number where prc was defined or nil if self was not

defined in Ruby source.

variable = 123
prc = lambda { "some proc" }
prc.source_location # => ["/tmp/prog.rb", 2]

to_proc pre.to_proc — prc

Part of the protocol for converting objects to Proc objects. Instances of class Proc simply
return themselves.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=639

to_s prc.to_s — string

Returns a description of prc, including information on where it was defined.

def create_proc
Proc.new
end

my_proc = create_proc { "hello" }
my_proc.to_s # => "#<Proc:0x001lc7abc@prog.rb:5>"

yield pre.yield((params)*) — obj

19 , Synonym for Proc#call.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=640

