
PROC 637

P
ro

c

Class
Proc < Object

Proc objects are blocks of code that have been bound to a set of local variables. Once bound,

the code may be called in different contexts and still access those variables.

def gen_times(factor)

return Proc.new {|n| n*factor }

end

times3 = gen_times(3)

times5 = gen_times(5)

times3.call(12) # => 36

times5.call(5) # => 25

times3.call(times5.call(4)) # => 60

Class methods

new Proc.new { block } → a_proc

Proc.new→ a_proc

Creates a new Proc object, bound to the current context. Proc.new may be called without a

block only within a method with an attached block, in which case that block is converted to

the Proc object.

def proc_from

Proc.new

end

proc = proc_from { "hello" }

proc.call # => "hello"

Instance methods

[] prc[〈 params 〉∗]→ obj

Synonym for Proc.call.

== prc== other→ true or false

Returns true if prc is the same as other.

=== prc=== other→ obj

1.9 Equivalent to prc.call(other). Allows you to use procs in when clauses. Allows us to write

stuff such as this:

even = lambda {|num| num.even? }

(0..3).each do |num|

case num

when even

puts "#{num} is even"

else

puts "#{num} is not even"

end

end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=637

PROC 638

P
ro

c

produces:

0 is even

1 is not even

2 is even

3 is not even

arity prc.arity→ integer

Returns the number of arguments required by the block. If the block is declared to take

no arguments, returns 0. If the block is known to take exactly n arguments, returns n. If

the block has optional arguments, return −(n + 1), where n is the number of mandatory

arguments. A proc with no argument declarations also returns −1, because it can accept

(and ignore) an arbitrary number of parameters.

Proc.new {}.arity # => 0

Proc.new {||}.arity # => 0

Proc.new {|a|}.arity # => 1

Proc.new {|a,b|}.arity # => 2

Proc.new {|a,b,c|}.arity # => 3

Proc.new {|*a|}.arity # => ­1

Proc.new {|a,*b|}.arity # => ­2

In Ruby 1.9,1.9 arity is defined as the number of parameters that would not be ignored. In 1.8,

Proc.new{ }.arity returns -1, and in 1.9 it returns 0.

call prc.call(〈 params 〉∗)→ obj

Invokes the block, setting the block’s parameters to the values in params using something

close to method-calling semantics. Returns the value of the last expression evaluated in the

block.

a_proc = Proc.new {|a, *b| b.collect {|i| i*a }}

a_proc.call(9, 1, 2, 3) # => [9, 18, 27]

a_proc[9, 1, 2, 3] # => [9, 18, 27]

If the block being called accepts a single parameter and you give call more than one param-

eter, only the first will be passed to the block. This is a change from Ruby 1.8.1.9

a_proc = Proc.new {|a| puts a}

a_proc.call(1,2,3)

produces:

1

If you want a block to receive an arbitrary number of arguments, define it to accept *args.

a_proc = Proc.new {|*a| p a}

a_proc.call(1,2,3)

produces:

[1, 2, 3]

Blocks created using Kernel.lambda check that they are called with exactly the right number

of parameters. à

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=638

PROC 639

P
ro

c

p_proc = Proc.new {|a,b| puts "Sum is: #{a + b}" }

p_proc.call(1,2,3)

p_proc = lambda {|a,b| puts "Sum is: #{a + b}" }

p_proc.call(1,2,3)

produces:

Sum is: 3

prog.rb:4:in `call': wrong number of arguments (3 for 2) (ArgumentError)

from /tmp/prog.rb:5:in `<main>'

curry prc.curry→ curried_proc

1.9 If you have a proc that takes arguments, you normally have to supply all of those arguments

if you want the proc to execute successfully. However, it is also possible to consider an n

argument proc to be the same as a single argument proc that returns a new proc that has this

first argument fixed and that takes n − 1 arguments. If you repeat this process recursively

for each of these subprocs, you end up with a proc that will take from zero to n arguements.

If you pass it all n, it simply executes the proc with those arguments. If you pass it m

arguments (where m < n), it returns a new proc that has those arguments prebaked in and

that takes m − n arguements. In this way, it is possible to partially apply arguments to a

proc.

add_three_numbers = lambda {|a,b,c| a + b + c}

add_10_to_two_numbers = add_three_numbers.curry[10]

add_33_to_one_number = add_10_to_two_numbers[23]

add_three_numbers[1,2,3] # => 6

add_10_to_two_numbers[1,2] # => 13

add_33_to_one_number[1] # => 34

lambda? prc.lambda?→ true or false

1.9 Returns true if prc has lambda semantics (that is, if argument passing acts as it does with

method calls). See the discussion starting on page 363.

source_location prc.source_location→ [filename, lineno] or nil

1.9 Returns the source filename and line number where prc was defined or nil if self was not

defined in Ruby source.

variable = 123

prc = lambda { "some proc" }

prc.source_location # => ["/tmp/prog.rb", 2]

to_proc prc.to_proc→ prc

Part of the protocol for converting objects to Proc objects. Instances of class Proc simply

return themselves.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=639

PROC 640

P
ro

c

to_s prc.to_s→ string

Returns a description of prc, including information on where it was defined.

def create_proc

Proc.new

end

my_proc = create_proc { "hello" }

my_proc.to_s # => "#<Proc:0x001c7abc@prog.rb:5>"

yield prc.yield(〈 params 〉∗)→ obj

1.9 Synonym for Proc#call.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=640

