
RANGE 656

R
a
n
g
e

Class
Range < Object

A Range represents an interval—a set of values with a start and an end. Ranges may be

constructed using the s..e and s...e literals or using Range.new. Ranges constructed using

.. run from the start to the end inclusively. Those created using ... exclude the end value.

When used as an iterator, ranges return each value in the sequence.

(1..5).to_a # => []

(5..1).to_a # => [5, 4, 3, 2, 1]

('a'..'e').to_a # => ["a", "b", "c", "d", "e"]

('a'...'e').to_a # => ["a", "b", "c", "d"]

Ranges can be constructed using objects of any type, as long as the objects can be compared

using their <=> operator and they support the succ method to return the next object in

sequence.

class Xs # represent a string of 'x's

include Comparable

attr :length

def initialize(n)

@length = n

end

def succ

Xs.new(@length + 1)

end

def <=>(other)

@length <=> other.length

end

def inspect

'x' * @length

end

end

r = Xs.new(3)..Xs.new(6) # => xxx..xxxxxx

r.to_a # => [xxx, xxxx, xxxxx, xxxxxx]

r.member?(Xs.new(5)) # => true

In the previous code example, class Xs includes the Comparable module. This is because

Enumerable#member? checks for equality using ==. Including Comparable ensures that the

== method is defined in terms of the <=> method implemented in Xs.

Mixes in

Enumerable:

all?, any?, collect, count, cycle, detect, drop, drop_while, each_cons,

each_slice, each_with_index, entries, find, find_all, find_index, first, grep,

group_by, include?, inject, map, max, max_by, member?, min, min_by, minmax,

minmax_by, none?, one?, partition, reduce, reject, select, sort, sort_by,

take, take_while, to_a, zip

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=656

RANGE 657

R
a
n
g
e

Class methods

new Range.new(start, end, exclusive=false)→ rng

Constructs a range using the given start and end. If the third parameter is omitted or is false,

the range will include the end object; otherwise, it will be excluded.

Instance methods

== rng == obj→ true or false

Returns true if obj is a range whose beginning and end are the same as those in rng (com-

pared using ==) and whose exclusive flag is the same as rng.

=== rng === val→ true or false

If rng excludes its end, returns rng.start ≤ val < rng.end. If rng is inclusive, returns

rng.start ≤ val ≤ rng.end. Note that this implies that val need not be a member of the

range itself (for example, a float could fall between the start and end values of a range of

integers). Conveniently, the === operator is used by case statements.

case 74.95

when 1...50 then puts "low"

when 50...75 then puts "medium"

when 75...100 then puts "high"

end

produces:

medium

Implemented internally by calling include?.

begin rng.begin→ obj

Returns the first object of rng.

cover? rng.cover?(obj)→ true or false

1.9 Returns true if obj lies between the start and end of the range. For ranges defined with

min..max, this means min ≤ obj ≤ max. For ranges defined with min...max, it means

min ≤ obj < max.

(1..10).cover?(0) # => false

(1..10).cover?(1) # => true

(1..10).cover?(5) # => true

(1..10).cover?(9.5) # => true

(1..10).cover?(10) # => true

(1...10).cover?(10) # => false

each rng.each {| i | block } → rng

Iterates over the elements rng, passing each in turn to the block. Successive elements are

generated using the succ method.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=657

RANGE 658

R
a
n
g
e

(10..15).each do |n|

print n, ' '

end

produces:

10 11 12 13 14 15

end rng.end→ obj

Returns the object that defines the end of rng.

(1..10).end # => 10

(1...10).end # => 10

eql? rng.eql?(obj)→ true or false

Returns true if obj is a range whose beginning and end are the same as those in rng (com-

pared using eql?) and whose exclusive flag is the same as rng.

exclude_end? rng.exclude_end?→ true or false

Returns true if rng excludes its end value.

first rng.first(n = 1)→ obj or array

1.9 Returns the first (or first n) elements of rng.

('aa'..'bb').first # => "aa"

('aa'..'bb').first(5) # => ["aa", "ab", "ac", "ad", "ae"]

include? rng.include?(val)→ true or false

Returns true if val is one of the values in rng (that is if Range#each would return val at

some point). If the range is defined to span numbers1.9 , this method returns true if the value

lies between the start and end of the range, even if it is not actually a member (that is, it has

the same behavior as Range#cover?). Otherwise, the parameter must be a member of the

range.

r = 1..10

r.include?(5) # => true

r.include?(5.5) # => true

r.include?(10) # => true

r = 1...10

r.include?(10) # => false

r = 'a'..'z'

r.include?('b') # => true

r.include?('ruby') # => false

last rng.last(n = 1)→ obj or array

1.9 Returns the last (or last n) elements of rng.

('aa'..'bb').last # => "bb"

('aa'..'bb').last(5) # => ["ax", "ay", "az", "ba", "bb"]

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=658

RANGE 659

R
a
n
g
e

max rng.max→ obj

rng.max {| a,b | block } → obj

Returns1.9 the maximum value in the range. The block is used to compare values if present.

(3..2).max # => 2

(3..2).max {|a,b| a*a <=> b*b } # => 3

member? rng.member?(val)→ true or false

Synonym for Range#include?.

min rng.min→ obj

rng.min {| a,b | block } → obj

1.9 Returns the minimum value in the range. The block is used to compare values if present.

(3..2).min # => 3

(3..2).min {|a,b| a*a <=> b*b } # => 0

step rng.step(n=1) 〈 {| obj | block } 〉 → rng or enum

1.9 Iterates over rng, passing each nth element to the block. If the range contains numbers, addi-

tion by one is used to generate successive elements. Otherwise, step invokes succ to iterate

through range elements. If no block is given, an enumerator is returned. The following code

uses class Xs defined at the start of this section:

range = Xs.new(1)..Xs.new(10)

range.step(2) {|x| p x}

enum = range.step(3)

p enum.to_a

produces:

x

xxx

xxxxx

xxxxxxx

xxxxxxxxx

[x, xxxx, xxxxxxx, xxxxxxxxxx]

Here’s step with numbers:

(1..5).step(1).to_a # => [1, 2, 3, 4, 5]

(1..5).step(2).to_a # => [1, 3, 5]

(1..5).step(1.5).to_a # => [1.0, 2.5, 4.0]

(1.0..5.0).step(1).to_a # => [1.0, 2.0, 3.0, 4.0, 5.0]

(1.0..5.0).step(2).to_a # => [1.0, 3.0, 5.0]

(1.0..5.0).step(1.5).to_a # => [1.0, 2.5, 4.0]

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=659

