
RATIONAL 660

R
a
ti
o
n
a
l

Class
Rational < Numeric

Rational numbers are expressed as the ratio of two integers. When the denominator exactly

divides the numerator, a rational number is effectively an integer. Rationals allow exact

representation of fractional numbers, but some real values cannot be expressed exactly and

so cannot be represented as rationals.1.9

Class Rational is normally relatively independent of the other numeric classes, in that the

result of dividing two integers with the / operator will normally be a (truncated) integer (the

quo method will always return a rational result). However, if the mathn library is loaded

into a program, integer division may generate a Rational result. Also see the rational library

on page 796 for additional methods on rational numbers.

r1 = Rational("1/2") # => 1/2

r2 = 4.quo(5) # => 4/5

r1 * r2 # => 2/5

Instance methods

Arithmetic operations

Performs various arithmetic operations on self.

self + numeric Addition

self – numeric Subtraction

self * numeric Multiplication

self / numeric Division

self % numeric Modulo

self ** numeric Exponentiation

self -@ Unary minus

Comparisons

Compares self to other numbers.

<, <=, ==, >=, and >.

<=> self <=> numeric→−1, 0, +1

Comparison—Returns −1, 0, or +1 depending on whether self is less than, equal to, or

greater than numeric. Although Rational’s grandparent, mixes in Comparable, Rational does

not use that module for performing comparisons, instead implementing the comparison

operators explicitly.

Rational("4/2") <=> Rational("98/49") # => 0

Rational("3/4") <=> 41 # => 1

Rational("0") <=> 0.0 # => 0

== self == numeric

Returns true is self has the same value as numeric. Comparisons against integers and rational

numbers are exact; comparisons against floats first convert self to a float.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=660


RATIONAL 661

R
a
ti
o
n
a
l

ceil self.ceil→ numeric

Returns the smallest integer greater than or equal to self.

Rational("22/7").ceil # => 4

Rational("22/7").ceil # => 3

denominator self.denominator→ a_number

Returns the denominator of self.

Rational("2/3").denominator # => 3

div self.div( numeric )→ integer

Returns the integral result of dividing self by numeric.

Rational("11/2") / 2 # => 11/4

Rational("11/2").div 2 # => 2

fdiv self.fdiv( numeric )→ float

Returns the floating-point result of dividing self by numeric.

Rational("11/2") / 2 # => 11/4

Rational("11/2").fdiv 2 # => 2.75

floor self.floor→ numeric

Returns the largest integer less than or equal to self.

Rational("22/7").floor # => 3

Rational("22/7").floor # => 4

numerator self.numerator→ a_number

Returns the numerator of self.

Rational("2/3").numerator # => 2

quo self.quo( numeric )→ numeric

1.9 Synonym for Rational#/.

round self.round→ numeric

Rounds self to the nearest integer.

Rational("22/7").round # => 3

Rational("22/7").round # => 3

to_f self.to_f→ float

Returns the floating-point representation of self.

Rational("37/4").to_f # => 9.25

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=661


RATIONAL 662

R
a
ti
o
n
a
l

to_i self.to_i→ integer

Returns the truncated integer value of self.

Rational("19/10").to_i # => 1

Rational("19/10").to_i # => 1

to_r self.to_r→ self

Returns self.

truncate self.truncate→ numeric

Returns self truncated to an integer.

Rational("22/7").truncate # => 3

Rational("22/7").truncate # => 3

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=662

