Rational < Numeric

Rational numbers are expressed as the ratio of two integers. When the denominator exactly divides the numerator, a rational number is effectively an integer. Rationals allow exact representation of fractional numbers, but some real values cannot be expressed exactly and so cannot be represented as rationals.

Class Rational is normally relatively independent of the other numeric classes, in that the result of dividing two integers with the / operator will normally be a (truncated) integer (the quo method will always return a rational result). However, if the mathn library is loaded into a program, integer division may generate a Rational result. Also see the rational library on page 796 for additional methods on rational numbers.

```
r1 = Rational("1/2") # => 1/2
r2 = 4.quo(5) # => 4/5
r1 * r2 # => 2/5
```


Instance methods

Arithmetic operations

Performs various arithmetic operations on self.

self	+	numeric	Addition
self	-	numeric	Subtraction
self	$*$	numeric	Multiplication
self	$/$	numeric	Division
self	$\%$	numeric	Modulo
self	$* *$	numeric	Exponentiation
self	$-@$		Unary minus

Comparisons

Compares self to other numbers.

$$
<,<=,==,>=\text {, and }>\text {. }
$$

Comparison-Returns $-1,0$, or +1 depending on whether self is less than, equal to, or greater than numeric. Although Rational's grandparent, mixes in Comparable, Rational does not use that module for performing comparisons, instead implementing the comparison operators explicitly.

```
Rational("4/2") <=> Rational("98/49") # => 0
Rational("3/4") <=> 41 # => -1
Rational("0") <=> 0.0 # => 0
```

Returns true is self has the same value as numeric. Comparisons against integers and rational numbers are exact; comparisons against floats first convert self to a float.

```
ceil self.ceil }->\mathrm{ numeric
    Returns the smallest integer greater than or equal to self.
    Rational("22/7").ceil # => 4
    Rational("-22/7").ceil # => -3
\(\overline{\text { denominator }} \quad\) self.denominator \(\rightarrow\) a_number
Returns the denominator of self.
    Rational("2/3").denominator # => 3
\(\overline{\operatorname{div} \quad \operatorname{self.div(~} \text { numeric }) \rightarrow \text { integer }}\)
Returns the integral result of dividing self by numeric.
Rational("11/2") / 2 \# => 11/4
Rational("11/2").div 2 \# => 2
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{4}{*}{fdiv} & & self.fdiv( numeric ) \(\rightarrow\) float \\
\hline & \multicolumn{2}{|l|}{Returns the floating-point result of dividing self by numeric.} \\
\hline & Rational("11/2") / 2 \# => 11/4 & \\
\hline & Rational("11/2").fdiv 2 \# => 2.75 & \\
\hline floor & & self.floor \(\rightarrow\) numeric \\
\hline
\end{tabular}
Returns the largest integer less than or equal to self.
Rational("22/7").floor \# => 3
Rational("-22/7").floor \# => -4
numerator \(\quad\) self.numerator \(\rightarrow\) a_number
Returns the numerator of self.
Rational("2/3").numerator \# => 2
```



```
Returns the floating-point representation of self.
Rational("37/4").to_f \# => 9.25
```

Returns the truncated integer value of self.
Rational("19/10").to_i \# => 1
Rational("-19/10").to_i \# => -1

Returns self.

Returns self truncated to an integer.
Rational("22/7").truncate \# => 3
Rational("-22/7").truncate \# => -3

