
SIGNAL 668

S
ig

n
a
l

Module
Signal

Many operating systems allow signals to be sent to running processes. Some signals have a

defined effect on the process, and others may be trapped at the code level and acted upon.

For example, your process may trap the USR1 signal and use it to toggle debugging, and it

may use TERM to initiate a controlled shutdown.

pid = fork do

Signal.trap("USR1") do

$debug = !$debug

puts "Debug now: #$debug"

end

Signal.trap(:TERM) do # symbols work too...

puts "Terminating..."

exit

end

. . . do some work . . .

end

Process.detach(pid)

Controlling program:

Process.kill("USR1", pid)

...

Process.kill(:USR1, pid)

...

Process.kill("TERM", pid)

produces:

Debug now: true

Debug now: false

Terminating...

The list of available signal names and their interpretation is system dependent. Signal deliv-

ery semantics may also vary between systems; in particular, signal delivery may not always

be reliable.

Module methods

list Signal.list→ hash

Returns a list of signal names mapped to the corresponding underlying signal numbers.

Signal.list # => {"ABRT"=>6, "ALRM"=>14, "BUS"=>10, "CHLD"=>20,

"CLD"=>20, "CONT"=>19, "EMT"=>7, "EXIT"=>0, "FPE"=>8,

"HUP"=>1, "ILL"=>4, "INFO"=>29, "INT"=>2, "IO"=>23,

"IOT"=>6, "KILL"=>9, "PIPE"=>13, "PROF"=>27,

"QUIT"=>3, "SEGV"=>11, "STOP"=>17, "SYS"=>12,

"TERM"=>15, "TRAP"=>5, "TSTP"=>18, "TTIN"=>21,

"TTOU"=>22, "URG"=>16, "USR1"=>30, "USR2"=>31,

"VTALRM"=>26, "WINCH"=>28, "XCPU"=>24, "XFSZ"=>25}

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=668

SIGNAL 669

S
ig

n
a
l

trap Signal.trap(signal, command)→ obj

Signal.trap(signal) { block } → obj

Specifies the handling of signals. The first parameter is a signal name (a string or symbol1.9

such as SIGALRM, SIGUSR1, and so on) or a signal number. The characters SIG may be

omitted from the signal name. The command or block specifies code to be run when the

signal is raised. If the command is nil, the string IGNORE or SIG_IGN, or the empty string,

the signal will be ignored. If the command is DEFAULT or SIG_DFL, the operating system’s

default handler will be invoked. If the command is EXIT, the script will be terminated by

the signal. Otherwise, the given command or block will be run.

The special signal name EXIT or signal number zero will be invoked just prior to program

termination.

trap returns the previous handler for the given signal.

Signal.trap(0, lambda { |signo| puts "exit pid #{$$} with #{signo}" })

Signal.trap("CLD") { |signo| puts "Child died (#{signo})" }

if fork # parent

do_something # ...

else

puts "In child, PID=#{$$}"

end

produces:

In child, PID=85867

exit pid 85867 with 0

Child died (20)

exit pid 85866 with 0

Note that you must specify a block taking a parameter if you use lambda to create the proc

object.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=669

