
STRING 670

S
tr

in
g

Class
String < Object

A String object holds and manipulates a sequence of bytes, typically representing characters.

String objects may be created using String.new or as literals (see page 328).

Because of aliasing issues, users of strings should be aware of the methods that modify the

contents of a String object. Typically, methods with names ending in ! modify their receiver,

while those without a ! return a new String. However, exceptions exist, such as String#[]=.

In this description, I try to differentiate between the bytes in a string and the characters in

a string. Internally, a string is a sequence of 8-bit bytes. These are represented externally as

small Fixnums. At the same time, these byte sequences can be interpreted as a sequence of

characters. This interpretation is controlled by the encoding of the string. In some encodings

(such as US-ASCII and ISO-8859), each byte corresponds to a single character. In other

encodings (such as UTF-8), a varying number of bytes comprise each character.

As of Ruby 1.9, String no longer mixes in Enumerable.1.9

Mixes in

Comparable:

<, <=, ==, >=, >, between?

Class methods

new String.new( val="" )→ str

Returns a new string object containing a copy of val (which should be a String or implement

to_str). Note that the new string object is created only when one of the strings is modified.

str1 = "wibble"

str2 = String.new(str1)

str1.object_id # => 336070

str2.object_id # => 335970

str1[1] = "o"

str1 # => "wobble"

str2 # => "wibble"

try_convert String.try_convert( obj )→ a_string or nil

1.9 If obj is not already a string, attempts to convert it to one by calling its to_str method.

Returns nil if no conversion could be made.

String.try_convert("cat") # => "cat"

String.try_convert(0xbee) # => nil

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=670


STRING 671

S
tr

in
g

Instance methods

% str % arg→ string

Format—Uses str as a format specification and returns the result of applying it to arg. If

the format specification contains more than one substitution, then arg must be an Array

containing the values to be substituted. See Kernel.sprintf on page 577 for details of the

format string.

puts "%05d" % 123

puts "%5s: %08x" % [ "ID", self.object_id ]

puts "%5<name>s: %08<value>x" % { name: "ID", value: self.object_id }

produces:

00123

ID : 000653ba

ID : 000653ba

* str * int→ string

Copies—Returns a new String containing int copies of the receiver.

"Ho! " * 3 # => "Ho! Ho! Ho! "

+ str + string→ string

Concatenation—Returns a new String containing string concatenated to str. If both strings

contain non-7-bit characters, their encodings must be compatible.

"Hello from " + "RubyLand" # => "Hello from RubyLand"

<< str << fixnum→ str

str << obj→ str

1.9 Append—Concatenates the given object to str. If the object is a Fixnum, it is considered

to be a codepoint in the encoding of str and converted to the appropriate character before

being appended.

a = "hello world"

a.force_encoding("utf8")

a << 33 # => "hello world!"

a << " Says the " # => "hello world! Says the "

a << 8706 # => "hello world! Says the δ"
a << "og" # => "hello world! Says the δog"

<=> str <=> other_string→−1, 0, +1

Comparison—Returns −1 if str is less than, 0 if str is equal to, and +1 if str is greater than

other_string. If the strings are of different lengths and the strings are equal when compared

up to the shortest length, then the longer string is considered greater than the shorter one. In

older versions of Ruby,1.9 setting $= allowed case-insensitive comparisons; you must now use

String#casecmp.

<=> is the basis for the methods <, <=, >, >=, and between?, included from module Compa-

rable. The method String#== does not use Comparable#==.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=671


STRING 672

S
tr

in
g

"abcdef" <=> "abcde" # => 1

"abcdef" <=> "abcdef" # => 0

"abcdef" <=> "abcdefg" # => 1

"abcdef" <=> "ABCDEF" # => 1

== str == obj→ true or false

Equality—If obj is a String, returns true if str has the same encoding, length, and content as

obj; returns false otherwise. If obj is not a String but responds to to_str, returns obj == str;

otherwise, returns false.

"abcdef" == "abcde" # => false

"abcdef" == "abcdef" # => true

=~ str =~ regexp→ int or nil

Match—Equivalent to regexp =~ str. Prior versions of Ruby permitted an arbitrary operand

to =~; this is now deprecated. Returns the position the match starts or returns nil if there is

no match or if regexp is not a regular expression.6

"cat o' 9 tails" =~ /\d/ # => 7

"cat o' 9 tails" =~ 9 # => nil

"cat o' 9 tails" =~ "\d"

produces:

prog.rb:1:in `=~': type mismatch: String given (TypeError)

from /tmp/prog.rb:1:in `<main>'

[ ] str[ int ]→ string or nil

str[ int, int ]→ string or nil

str[ range ]→ string or nil

str[ regexp ]→ string or nil

str[ regexp, int ]→ string or nil

str[ string ]→ string or nil

Element Reference—If passed a single int, returns the character at that position. (Prior to

Ruby 1.9, an integer character code was returned.)1.9 If passed two ints, returns a substring

starting at the offset given by the first, and a length given by the second. If given a range, a

substring containing characters at offsets given by the range is returned. In all three cases,

if an offset is negative, it is counted from the end of str. Returns nil if the initial offset falls

outside the string and the length is not given, the length is negative, or the beginning of the

range is greater than the end.

If regexp is supplied, the matching portion of str is returned. If a numeric parameter follows

the regular expression, that component of the MatchData is returned instead. If a String is

given, that string is returned if it occurs in str. In both cases, nil is returned if there is no

match.

6. Except for a strange corner case. If regexp is a string or can be coerced into a string, a TypeError exception is

raised.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=672


STRING 673

S
tr

in
g

a = "hello there"

a[1] # => "e"

a[1,3] # => "ell"

a[1..3] # => "ell"

a[1...3] # => "el"

a[3,2] # => "er"

a[4..2] # => "her"

a[2..4] # => ""

a[/[aeiou](.)\1/] # => "ell"

a[/[aeiou](.)\1/, 0] # => "ell"

a[/[aeiou](.)\1/, 1] # => "l"

a[/[aeiou](.)\1/, 2] # => nil

a[/(..)e/] # => "the"

a[/(..)e/, 1] # => "th"

a["lo"] # => "lo"

a["bye"] # => nil

[ ]= str[ int ] = string

str[ int, int ] = string

str[ range ] = string

str[ regexp ] = string

str[ regexp, int ] = string

str[ string ] = string

Element Assignment—Replaces some or all of the content of str. The portion of the string

affected is determined using the same criteria as String#[ ]. If the replacement string is not the

same length as the text it is replacing, the string will be adjusted accordingly. If the regular

expression or string is used as the index doesn’t match a position in the string, IndexError is

raised. If the regular expression form is used, the optional second int allows you to specify

which portion of the match to replace (effectively using the MatchData indexing rules). The

forms that take a Fixnum will raise an IndexError if the value is out of range; the Range form

will raise a RangeError, and the Regexp and String forms will silently ignore the assignment.

a = "hello"
a[2] = "u" (a → "heulo")

a[2, 4] = "xyz" (a → "hexyz")

a[4, 2] = "xyz" (a → "hxyzlo")

a[2..4] = "xyz" (a → "hexyz")

a[4..2] = "xyz" (a → "hxyzo")

a[/[aeiou](.)\1(.)/] = "xyz" (a → "hxyz")

a[/[aeiou](.)\1(.)/, 1] = "xyz" (a → "hexyzlo")

a[/[aeiou](.)\1(.)/, 2] = "xyz" (a → "hellxyz")

a["l"] = "xyz" (a → "hexyzlo")

a["ll"] = "xyz" (a → "hexyzo")

a[2, 0] = "xyz" (a → "hexyzllo")

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=673


STRING 674

S
tr

in
g

ascii_only? str.ascii_only?→ true or false

1.9 Returns true if the string contains no characters with a character code greater than 127 (that

is, it contains only 7-bit ASCII characters).

# encoding: utf8

"dog".ascii_only? # => true

"δog".ascii_only? # => false

"\x00 to \x7f".ascii_only? # => true

bytes str.bytes→ enum

str.bytes {| byte | block } → str

1.9 Returns an enumerator for the bytes (integers in the range 0 to 255) in str. With a block,

passes each byte to the block and returns the original string. See also String#chars and

String#codepoints.

# encoding: utf8

"dog".bytes.to_a # => [100, 111, 103]

"δog".bytes.to_a # => [226, 136, 130, 111, 103]

result = []

"δog".bytes.each {|b| result << b } # => "δog"
result # => [226, 136, 130, 111, 103]

bytesize str.bytesize→ int

1.9 Returns the number of bytes (not characters) in str. See also String#length.

# encoding: utf8

"dog".length # => 3

"dog".bytesize # => 3

"δog".length # => 3

"δog".bytesize # => 5

capitalize str.capitalize→ string

Returns a copy of str with the first character converted to uppercase and the remainder to

lowercase.

"hello world".capitalize # => "Hello world"

"HELLO WORLD".capitalize # => "Hello world"

"123ABC".capitalize # => "123abc"

capitalize! str.capitalize!→ str or nil

Modifies str by converting the first character to uppercase and the remainder to lowercase.

Returns nil if no changes are made.

a = "hello world"

a.capitalize! # => "Hello world"

a # => "Hello world"

a.capitalize! # => nil

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=674


STRING 675

S
tr

in
g

casecmp str.casecmp( string )→−1, 0, +1

Case-insensitive version of String#<=>.

"abcdef".casecmp("abcde") # => 1

"abcdef".casecmp("abcdef") # => 0

"aBcDeF".casecmp("abcdef") # => 0

"abcdef".casecmp("abcdefg") # => 1

"abcdef".casecmp("ABCDEF") # => 0

center str.center( int, pad=" " )→ string

If int is greater than the length of str, returns a new String of length int with str centered

between the given padding (defaults to spaces); otherwise, returns str.

"hello".center(4) # => "hello"

"hello".center(20) # => " hello "

"hello".center(4, "_^") # => "hello"

"hello".center(20, "_^") # => "_^_^hello_^_^"

"hello".center(20, "") # => "hello"

chars str.chars→ enum

str.chars {| char | block } → str

1.9 Returns an enumerator for the characters (single character strings) in str. With a block,

passes each character to the block and returns the original string. See also String#bytes.

# encoding: utf8

"dog".chars.to_a # => ["d", "o", "g"]

"δog".chars.to_a # => ["δ", "o", "g"]

result = []

"δog".chars.each {|b| result << b } # => "δog"
result # => ["δ", "o", "g"]

chr str.chr→ string

1.9 Returns the first character of str.

# encoding: utf8

"dog".chr # => "d"

"δog".chr # => "δ"

clear str.clear→ str

1.9 Removes the content (but not the associated encoding) of str.

# encoding: utf8

str = "δog"
str.clear # => ""

str.length # => 0

str.encoding # => #<Encoding:UTF8>

chomp str.chomp( rs=$/ )→ string

Returns a new String with the given record separator removed from the end of str (if

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=675


STRING 676

S
tr

in
g

present). If $/ has not been changed from the default Ruby record separator, then chomp

also removes carriage return characters (that is it will remove \n, \r, and \r\n).

"hello".chomp # => "hello"

"hello\n".chomp # => "hello"

"hello\r\n".chomp # => "hello"

"hello\n\r".chomp # => "hello\n"

"hello\r".chomp # => "hello"

"hello \n there".chomp # => "hello \n there"

"hello".chomp("llo") # => "he"

chomp! str.chomp!( rs=$/ )→ str or nil

Modifies str in place as described for String#chomp, returning stror returning nil if no mod-

ifications were made.

chop str.chop→ string

Returns a new String with the last character removed. If the string ends with \r\n, both char-

acters are removed. Applying chop to an empty string returns an empty string. String#chomp

is often a safer alternative, because it leaves the string unchanged if it doesn’t end in a record

separator.

"string\r\n".chop # => "string"

"string\n\r".chop # => "string\n"

"string\n".chop # => "string"

"string".chop # => "strin"

"x".chop.chop # => ""

chop! str.chop!→ str or nil

Processes str as for String#chop, returning str or returning nil if str is the empty string. See

also String#chomp!.

codepoints str.codepoints→ enum

str.codepoints {| integer | block } → str

1.9 Returns an enumerator for the codepoints (integers representation of the characters) in str.

With a block, passes each integer to the block and returns the original string. See also

String#bytes and String#chars.

# encoding: utf8

"dog".codepoints.to_a # => [100, 111, 103]

"δog".codepoints.to_a # => [8706, 111, 103]

result = []

"δog".codepoints.each {|b| result << b } # => "δog"
result # => [8706, 111, 103]

concat str.concat( int )→ str

str.concat( obj )→ str

Synonym for String#< <.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=676


STRING 677

S
tr

in
g

count str.count( 〈 string 〉+ )→ int

Each string parameter defines a set of characters to count. The intersection of these sets

defines the characters to count in str. Any parameter that starts with a caret (^) is negated.

The sequence c1–c2 means all characters between c1 and c2.

a = "hello world"

a.count "lo" # => 5

a.count "lo", "o" # => 2

a.count "hello", "^l" # => 4

a.count "ejm" # => 4

crypt str.crypt( settings )→ string

Applies a one-way cryptographic hash to str by invoking the standard library function crypt.

The argument is to some extent system dependent. On traditional Unix boxes, it is often a

two-character salt string. On more modern boxes, it may also control things such as DES

encryption parameters. See the man page for crypt(3) for details.

# standard salt

"secret".crypt("sh") # => "shRK3aVg8FsI2"

# On OSX: DES, 2 interactions, 24bit salt

"secret".crypt("_...0abcd") # => "_...0abcdROn65JNDj12"

delete str.delete( 〈 string 〉+ )→ new_string

Returns a copy of str with all characters in the intersection of its arguments deleted. Uses

the same rules for building the set of characters as String#count.

"hello".delete("l","lo") # => "heo"

"hello".delete("lo") # => "he"

"hello".delete("aeiou", "^e") # => "hell"

"hello".delete("ejm") # => "ho"

delete! str.delete!( 〈 string 〉+ )→ str or nil

Performs a delete operation in place, returning str or returning nil if str was not modified.

a = "hello"

a.delete!("l","lo") # => "heo"

a # => "heo"

a.delete!("l") # => nil

downcase str.downcase→ string

Returns a copy of str with all uppercase letters replaced with their lowercase counterparts.

The operation is locale insensitive—only characters A to Z are affected. Multibyte charac-

ters are skipped.

"hEllO".downcase # => "hello"

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=677


STRING 678

S
tr

in
g

downcase! str.downcase!→ str or nil

Replaces uppercase letters in str with their lowercase counterparts. Returns nil if no changes

were made.

dump str.dump→ string

Produces a version of str with all nonprinting characters replaced by \nnn notation and all

special characters escaped.

each_byte str.each_byte→ enum

str.each_byte {| byte | block } → str

1.9 Synonym for String#bytes. The each_byte form is falling out of favor.

each_char str.each_char→ enum

str.each_char {| char | block } → str

1.9 Synonym for String#chars. The each_char form is falling out of favor.

each_codepoint str.each_codepoint→ enum

str.each_codepoint {| integer | block } → str

1.9 Synonym for String#codepoints.

each_line str.each_line( sep=$/ )→ enum

str.each_line( sep=$/ ) {| substr | block } → str

1.9 Synonym for String#lines. The each_line form is falling out of favor.

empty? str.empty?→ true or false

Returns true if str has a length of zero.

"hello".empty? # => false

"".empty? # => true

encode str.encode→ a_string

str.encode( to_encoding 〈 , options 〉 )→ a_string

str.encode( to_encoding, from_encoding, 〈 , options 〉 )→ a_string

1.9 Transcodes str, returning a new string encoded as to_encoding. If no encoding is given,

transcodes using default_internal encoding. The source encoding is either the current encod-

ing of the string or from_encoding. May raise a RuntimeError if characters in the original

string cannot be represented in the target encoding. options defines the behavior for invalid

transcodings and other boundary conditions. It can be a hash or an or-ing of integer values.

I recommend the hash form—see Table 27.15 on page 680 for details. Encodings can be

passed as Encoding objects or as names.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=678


STRING 679

S
tr

in
g

# encoding: utf8

ole_in_utf = "olé"

ole_in_utf.encoding # => #<Encoding:UTF8>

ole_in_utf.dump # => "ol\u{e9}"

ole_in_8859 = ole_in_utf.encode("iso88591")

ole_in_8859.encoding # => #<Encoding:ISO88591>

ole_in_8859.dump # => "ol\xE9"

Using a default internal encoding of ISO-8859-1 and a source file encoding of UTF-8:

#!/usr/local/rubybook/bin/ruby E:ISO88591

# encoding: utf8

utf_string = "olé"

utf_string.encoding # => #<Encoding:UTF8>

iso_string = utf_string.encode

iso_string.encoding # => #<Encoding:ISO88591>

Attempt to transcode a string with characters not available in the destination encoding:

# encoding: utf8

utf = "δog"
utf.encode("iso88591")

produces:

prog.rb:3:in `encode': "δ" from UTF8 to ISO88591

(Encoding::UndefinedConversionError)

from /tmp/prog.rb:3:in `<main>'

You can replace the character in error with something else:

# encoding: utf8

utf = "δog"
utf.encode("iso88591", undef: :replace) # => "?og"

utf.encode("iso88591", undef: :replace, replace: "X" ) # => "Xog"

encode! str.encode!→ str

str.encode!( to_encoding 〈 , options 〉 )→ str

str.encode!( to_encoding, from_encoding, 〈 , options 〉 )→ str

1.9 Transcodes str in place.

encoding str.encoding→ an_encoding

1.9 Returns the encoding of str.

# encoding: utf8

"cat".encoding # => #<Encoding:UTF8>

"δog".encoding # => #<Encoding:UTF8>

end_with? str.end_with?( 〈 suffix 〉+ )→ true or false

1.9 Returns true if str ends with any of the given suffices.

"Apache".end_with?("ache") # => true

"ruby code".end_with?("python", "perl", "code") # => true

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=679


STRING 680

S
tr

in
g

Table 27.15. Options to Encode and Encode!

Option Meaning

:replace => string Specifies the string to use if :invalid or :undef options are

present. If not specified, uFFFD is used for Unicode encod-

ings and ? for others.

:invalid => :replace Replaces invalid characters in the source string with the

replacement string. If :invalid is not specified or nil, raises an

exception.

:undef => :replace Replaces characters that are not available in the destination

encoding with the replacement string. If :undef not specified

or nil, raises an exception.

:universal_newline => true Converts crlf and cr line endings to lf.

:crlf_newline => true Converts lf to crlf.

:cr_newline => true Converts lf to cr.

:xml => :text | :attr After encoding, escape characters that would otherwise have

special meaning in XML PCDATA or attributes. In all cases,

converts & to &amp;, < to &lt;, > to &gt;, and undefined charac-

ters to a hexadecimal entity (&#xhh;). For :attr, also converts

" to &quot;.

eql? str.eql?( obj )→ true or false

Returns true if obj is a String with identical contents to str.

"cat".eql?("cat") # => true

force_encoding str.force_encoding( encoding )→ str

1.9 Sets the encoding associated with str to encoding. Note that this does not change the under-

lying bytes in str—it simply tells Ruby how to interpret those bytes as characters.

# encoding: utf8

δog_in_bytes = [226, 136, 130, 111, 103] # utf8 byte sequence

str = δog_in_bytes.pack("C*")
str.encoding # => #<Encoding:ASCII8BIT>

str.length # => 5

str.force_encoding("utf8")

str.encoding # => #<Encoding:UTF8>

str.length # => 3

str # => "δog"

getbyte str.getbyte( offset )→ int or nil

1.9 Returns the byte at offset (starting from the end of the string if the offset is negative). Returns

nil if the offset lies outside the string.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=680


STRING 681

S
tr

in
g

# encoding: utf8

str = "δog"
str.bytes.to_a # => [226, 136, 130, 111, 103]

str.getbyte(0) # => 226

str.getbyte(1) # => 136

str.getbyte(1) # => 103

str.getbyte(99) # => nil

gsub str.gsub( pattern, replacement )→ string

str.gsub( pattern ) {| match | block } → string str.gsub( pattern )→ enum

1.9 Returns a copy of str with all occurrences of pattern replaced with either replacement or the

value of the block. The pattern will typically be a Regexp; if it is a String, then no regular

expression metacharacters will be interpreted (that is /\d/ will match a digit, but '\d' will

match a backslash followed by a d).

If a string is used as the replacement, special variables from the match (such as $& and $1)

cannot be substituted into it, because substitution into the string occurs before the pattern

match starts. However, the sequences \1, \2, and so on, may be used to interpolate succes-

sive numbered groups in the match, and \k<name> will substitute the corresponding named

captures. These sequences are shown in Table 27.16 on the following page.

In the block form, the current match is passed in as a parameter, and variables such as $1, $2,

$`, $&, and $' will be set appropriately. The value returned by the block will be substituted

for the match on each call.

The result inherits any tainting in the original string or any supplied replacement string.

"hello".gsub(/[aeiou]/, '*') # => "h*ll*"

"hello".gsub(/([aeiou])/, '<\1>') # => "h<e>ll<o>"

"hello".gsub(/./) {|s| s[0].to_s + ' '} # => "h e l l o "

"hello".gsub(/(?<double>l)/, '\k<double>') # => "hello"

If no block or replacement string is given,1.9 an enumerator is returned.

"hello".gsub(/../).to_a # => ["he", "ll"]

If a hash is given as the replacement,1.9 successive matched groups are looked up as keys, and

the corresponding values are substituted into the string.

repl = Hash.new("?")

repl["a"] = "*"

repl["t"] = "T"

"cat".gsub(/(.)/, repl) # => "?*T"

gsub! str.gsub!( pattern, replacement )→ str or nil

str.gsub!( pattern ) {| match | block } → str or nil

Performs the substitutions of String#gsub in place, returning str, or returning nil if no sub-

stitutions were performed.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=681


STRING 682

S
tr

in
g

Table 27.16. Backslash Sequences in Substitution Strings

Sequence Text That Is Substituted

\1, \2, . . . \9 The value matched by the nth grouped subexpression

\& The last match

\` The part of the string before the match

\' The part of the string after the match

\+ The highest-numbered group matched

\k<name> The named capture

hex str.hex→ int

Treats leading characters from str as a string of hexadecimal digits (with an optional sign

and an optional 0x) and returns the corresponding number. Zero is returned on error.

"0x0a".hex # => 10

"1234".hex # => 4660

"0".hex # => 0

"wombat".hex # => 0

include? str.include?( string )→ true or false

1.9 Returns true if str contains the given string.

"hello".include? "lo" # => true

"hello".include? "ol" # => false

"hello".include? ?h # => true

index str.index( string 〈 , offset 〉 )

str.index( regexp 〈 , offset 〉 )→ int or nil

Returns the index of the first occurrence of the given substring or pattern in str. Returns nil

if not found. If the second parameter is present, it specifies the position in the string to begin

the search.

"hello".index('e') # => 1

"hello".index('lo') # => 3

"hello".index('a') # => nil

"hello".index(/[aeiou]/, 3) # => 4

insert str.insert( index, string )→ str

Inserts string before the character at the given index, modifying str. Negative indices count

from the end of the string and insert after the given character. After the insertion, str will

contain string starting at index.

"abcd".insert(0, 'X') # => "Xabcd"

"abcd".insert(3, 'X') # => "abcXd"

"abcd".insert(4, 'X') # => "abcdX"

"abcd".insert(3, 'X') # => "abXcd"

"abcd".insert(1, 'X') # => "abcdX"

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=682


STRING 683

S
tr

in
g

intern str.intern→ symbol

Returns the Symbol corresponding to str, creating the symbol if it did not previously exist.

Can intern any string, not just identifiers. See Symbol#id2name on page 703.

"Koala".intern # => :Koala

sym = "$1.50 for a soda!?!?".intern

sym.to_s # => "$1.50 for a soda!?!?"

length str.length→ int

Returns the number of characters in str. See also String#bytesize.

lines str.lines( sep=$/ )→ enum

str.lines( sep=$/ ) {| substr | block } → str

1.9 Splits str using the supplied parameter as the record separator ($/ by default), passing each

substring in turn to the supplied block. If a zero-length record separator is supplied, the

string is split into paragraphs, each terminated by multiple \n characters. With no block,

returns a enumerator.

print "Example one\n"

"hello\nworld".lines {|s| p s}

print "Example two\n"

"hello\nworld".lines('l') {|s| p s}

print "Example three\n"

"hello\n\n\nworld".lines('') {|s| p s}

produces:

Example one

"hello\n"

"world"

Example two

"hel"

"l"

"o\nworl"

"d"

Example three

"hello\n\n\n"

"world"

ljust str.ljust( width, padding=" " )→ string

If width is greater than the length of str, returns a new String of length width with str left

justified and padded with copies of padding; otherwise, returns a copy of str.

"hello".ljust(4) # => "hello"

"hello".ljust(20) # => "hello "

"hello".ljust(20, "*") # => "hello***************"

"hello".ljust(20, " dolly") # => "hello dolly dolly do"

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=683


STRING 684

S
tr

in
g

lstrip str.lstrip→ string

Returns a copy of str with leading whitespace characters removed. Also see the methods

String#rstrip and String#strip.

" hello ".lstrip # => "hello "

"\000 hello ".lstrip # => "\x00 hello "

"hello".lstrip # => "hello"

lstrip! str.lstrip!→
self or nil

Removes leading whitespace characters from str, returning nil if no change was made. See

also String#rstrip! and String#strip!.

" hello ".lstrip! # => "hello "

"hello".lstrip! # => nil

match str.match( pattern )→ match_data or nil

str.match( pattern ) {| matchdata | block } → obj

1.9 Converts pattern to a Regexp (if it isn’t already one) and then invokes its match method

on str. If a block is given, the block is passed the MatchData object, and the match method

returns the value of the block.

'seed'.match('(.)\1') # => #<MatchData "ee" 1:"e">

'seed'.match('(.)\1')[0] # => "ee"

'seed'.match(/(.)\1/)[0] # => "ee"

'seed'.match('ll') # => nil

'seed'.match('ll') {|md| md[0].upcase } # => nil

'seed'.match('xx') # => nil

next str.next→ string

Synonym for String#succ.

next! str.next!→ str

Synonym for String#succ!.

oct str.oct→ int

Treats leading characters of str as a string of octal digits (with an optional sign) and returns

the corresponding number. Returns 0 if the conversion fails.

"123".oct # => 83

"377".oct # => 255

"bad".oct # => 0

"0377bad".oct # => 255

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=684


STRING 685

S
tr

in
g

ord str.ord→ int

1.9 Returns the integer code point of the first character of str. Note that it isn’t quite the inverse

of Integer#chr, because the latter does not deal with encodings.

# encoding: utf8

"d".ord # => 100

"dog".ord # => 100

"δ".ord # => 8706

partition str.partition( pattern )→ [ before, match after ]

1.9 Searches str for pattern (which may be a string or a regular expression). Returns a three-

element array containing the part of the string before the pattern, the part that matched the

pattern, and the part after the match. If the pattern does not match, the entire string will be

returned as the first element of the array, and the other two entries will be empty strings.

"THX1138".partition("11") # => ["THX", "11", "38"]

"THX1138".partition(/\d\d/) # => ["THX", "11", "38"]

"THX1138".partition("99") # => ["THX1138", "", ""]

replace str.replace( string )→ str

Replaces the contents, encoding, and taintedness of str with the corresponding values in

string.

s = "hello" # => "hello"

s.replace "world" # => "world"

reverse str.reverse→ string

Returns a new string with the characters from str in reverse order.

# Every problem contains its own solution...

"stressed".reverse # => "desserts"

reverse! str.reverse!→ str

Reverses str in place.

rindex str.rindex( string 〈 , int 〉 )→ int or nil

str.rindex( regexp 〈 , int 〉 )→ int or nil

Returns the index of the last occurrence of the given substring, character, or pattern in str.

Returns nil if not found. If the second parameter is present, it specifies the position in the

string to end the search—characters beyond this point will not be considered.

"hello".rindex('e') # => 1

"hello".rindex('l') # => 3

"hello".rindex('a') # => nil

"hello".rindex(/[aeiou]/, 2) # => 1

rjust str.rjust( width, padding=" " )→ string

If width is greater than the length of str, returns a new String of length width with str right

justified and padded with copies of padding; otherwise, returns a copy of str.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=685


STRING 686

S
tr

in
g

"hello".rjust(4) # => "hello"

"hello".rjust(20) # => " hello"

"hello".rjust(20, "") # => "hello"

"hello".rjust(20, "padding") # => "paddingpaddingphello"

rpartition str.rpartition( pattern )→ [ before, match after ]

1.9 Searches str for pattern (which may be a string or a regular expression), starting at the

end of the string. Returns a three-element array containing the part of the string before the

pattern, the part that matched the pattern, and the part after the match. If the pattern does

not match, the entire string will be returned as the last element of the array, and the other

two entries will be empty strings.

"THX1138".rpartition("1") # => ["THX1", "1", "38"]

"THX1138".rpartition(/1\d/) # => ["THX1", "13", "8"]

"THX1138".rpartition("99") # => ["", "", "THX1138"]

rstrip str.rstrip→ string

Returns a copy of str, stripping first trailing NUL characters and then stripping trailing

whitespace characters. See also String#lstrip and String#strip.

" hello ".rstrip # => " hello"

" hello \000 ".rstrip # => " hello"

" hello \000".rstrip # => " hello"

"hello".rstrip # => "hello"

rstrip! str.rstrip!→
self or nil

Removes trailing NUL characters and then removes trailing whitespace characters from str.

Returns nil if no change was made. See also String#lstrip! and #strip!.

" hello ".rstrip! # => " hello"

"hello".rstrip! # => nil

scan str.scan( pattern )→ array

str.scan( pattern ) {| match, . . . | block } → str

Both forms iterate through str, matching the pattern (which may be a Regexp or a String).

For each match, a result is generated and either added to the result array or passed to the

block. If the pattern contains no groups, each individual result consists of the matched string,

$&. If the pattern contains groups, each individual result is itself an array containing one

entry per group. If the pattern is a String, it is interpreted literally (in other words, it is not

taken to be a regular expression pattern).

a = "cruel world"

a.scan(/\w+/) # => ["cruel", "world"]

a.scan(/.../) # => ["cru", "el ", "wor"]

a.scan(/(...)/) # => [["cru"], ["el "], ["wor"]]

a.scan(/(..)(..)/) # => [["cr", "ue"], ["l ", "wo"]]

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=686


STRING 687

S
tr

in
g

And the block form:

a.scan(/\w+/) {|w| print "<<#{w}>> " }

puts

a.scan(/(.)(.)/) {|a,b| print b, a }

puts

produces:

<<cruel>> <<world>>

rceu lowlr

setbyte str.setbyte( offset, byte )→ byte

1.9 Sets the byte at offset (starting from the end of the string if the offset is negative) to byte.

Cannot be used to change the length of the string. Does not change the encoding of the

string.

str = "defog"

# a utf8 delta character

str.setbyte(0, 226) # => 226

str.setbyte(1, 136) # => 136

str.setbyte(2, 130) # => 130

str # => "\xE2\x88\x82og"

str.length # => 5

str.force_encoding("utf8")

str.length # => 3

str # => "δog"

size str.size→ int

Synonym for String#length.

slice str.slice( int )→ string or nil

str.slice( int, int )→ string or nil

str.slice( range )→ string or nil

str.slice( regexp )→ string or nil

str.slice( match_string )→ string or nil

Synonym for String#[ ].

a = "hello there"

a.slice(1) # => "e"

a.slice(1,3) # => "ell"

a.slice(1..3) # => "ell"

a.slice(3,2) # => "er"

a.slice(4..2) # => "her"

a.slice(2..4) # => ""

a.slice(/th[aeiou]/) # => "the"

a.slice("lo") # => "lo"

a.slice("bye") # => nil

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=687


STRING 688

S
tr

in
g

slice! str.slice!( int )→ string or nil

str.slice!( int, int )→ string or nil

str.slice!( range )→ string or nil

str.slice!( regexp )→ string or nil

str.slice!( match_string )→ string or nil

Deletes the specified portion from strand returns the portion deleted. The forms that take

a Fixnum will raise an IndexError if the value is out of range; the Range form will raise a

RangeError, and the Regexp and String forms will silently not change the string.

string = "this is a string"

string.slice!(2) # => "i"

string.slice!(3..6) # => " is "

string.slice!(/s.*t/) # => "sa st"

string.slice!("r") # => "r"

string # => "thing"

split str.split( pattern=$;, 〈 limit 〉 )→ array

Divides str into substrings based on a delimiter, returning an array of these substrings.

If pattern is a String, then its contents are used as the delimiter when splitting str. If pattern

is a single space, str is split on whitespace, with leading whitespace and runs of contiguous

whitespace characters ignored.

If pattern is a Regexp, str is divided where the pattern matches. Whenever the pattern

matches a zero-length string, str is split into individual characters. If pattern includes groups,

these groups will be included in the returned values.

If pattern is omitted, the value of $; is used. If $; is nil (which is the default), str is split on

whitespace as if “ ” were specified.

If the limit parameter is omitted, trailing empty fields are suppressed. If limit is a positive

number, at most that number of fields will be returned (if limit is 1, the entire string is

returned as the only entry in an array). If negative, there is no limit to the number of fields

returned, and trailing null fields are not suppressed.

" now's the time".split # => ["now's", "the", "time"]

" now's the time".split(' ') # => ["now's", "the", "time"]

" now's the time".split(/ /) # => ["", "now's", "", "", "the",

"time"]

"a@1bb@2ccc".split(/@\d/) # => ["a", "bb", "ccc"]

"a@1bb@2ccc".split(/@(\d)/) # => ["a", "1", "bb", "2", "ccc"]

"1, 2.34,56, 7".split(/,\s*/) # => ["1", "2.34", "56", "7"]

"hello".split(//) # => ["h", "e", "l", "l", "o"]

"hello".split(//, 3) # => ["h", "e", "llo"]

"hi mom".split(/\s*/) # => ["h", "i", "m", "o", "m"]

"".split # => []

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=688


STRING 689

S
tr

in
g

"mellow yellow".split("ello") # => ["m", "w y", "w"]

"1,2,,3,4,,".split(',') # => ["1", "2", "", "3", "4"]

"1,2,,3,4,,".split(',', 4) # => ["1", "2", "", "3,4,,"]

"1,2,,3,4,,".split(',', 4) # => ["1", "2", "", "3", "4", "", ""]

squeeze str.squeeze( 〈 string 〉∗ )→ squeezed_string

Builds a set of characters from the string parameter(s) using the procedure described for

String#count on page 677. Returns a new string where runs of the same character that occur

in this set are replaced by a single character. If no arguments are given, all runs of identical

characters are replaced by a single character.

"yellow moon".squeeze # => "yelow mon"

" now is the".squeeze(" ") # => " now is the"

"putters putt balls".squeeze("mz") # => "puters put balls"

squeeze! str.squeeze!( 〈 string 〉∗ )→ str or nil

Squeezes str in place, returning str. Returns nil if no changes were made.

start_with? str.start_with?( 〈 suffix 〉+ )→ true or false

1.9 Returns true if str starts with any of the given prefixes.

"Apache".start_with?("Apa") # => true

"ruby code".start_with?("python", "perl", "ruby") # => true

strip str.strip→ string

Returns a copy of str with leading whitespace and trailing NUL and whitespace characters

removed.

" hello ".strip # => "hello"

"\tgoodbye\r\n".strip # => "goodbye"

"goodbye \000".strip # => "goodbye"

"goodbye \000 ".strip # => "goodbye"

strip! str.strip!→ str or nil

Removes leading whitespace and trailing NUL and whitespace characters from str. Returns

nil if str was not altered.

sub str.sub( pattern, replacement )→ string

str.sub( pattern ) {| match | block } → string

Returns a copy of str with the first occurrence of pattern replaced with either replacement

or the value of the block. See the description of String#gsub on page 681 for a description

of the parameters.

"hello".sub(/[aeiou]/, '*') # => "h*llo"

"hello".sub(/([aeiou])/, '<\1>') # => "h<e>llo"

"hello".sub(/./) {|s| s[0].to_s + ' '} # => "h ello"

"hello".sub(/(?<double>l)/, '\k<double>') # => "hello"

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=689


STRING 690

S
tr

in
g

sub! str.sub!( pattern, replacement )→ str or nil

str.sub!( pattern ) {| match | block } → str or nil

Performs the substitutions of String#sub in place, returning str. Returns nil if no substitutions

were performed.

succ str.succ→ string

Returns the successor to str. The successor is calculated by incrementing characters starting

from the rightmost alphanumeric (or the rightmost character if there are no alphanumer-

ics) in the string. Incrementing a digit always results in another digit, and incrementing a

letter results in another letter of the same case. Incrementing nonalphanumerics uses the

underlying character set’s collating sequence.

If the increment generates a “carry,” the character to the left of it is incremented. This

process repeats until there is no carry, adding a character if necessary. An1.9 exception is

when the carry is generated by a sequence of digits in a string containing digits, nonalpha

characters, and more digits, in which case the carry applies to the digits. This allows for

incrementing (for example) numbers with decimal places.

"abcd".succ # => "abce"

"THX1138".succ # => "THX1139"

"<<koala>>".succ # => "<<koalb>>"

"1999zzz".succ # => "2000aaa"

"ZZZ9999".succ # => "AAAA0000"

"***".succ # => "**+"

"1.9".succ # => "2.0"

"1//9".succ # => "2//0"

"1/9/9/9".succ # => "2/0/0/0"

"1x9".succ # => "1y0"

succ! str.succ!→ str

Equivalent to String#succ but modifies the receiver in place.

sum str.sum( n=16 )→ int

Returns a basic n-bit checksum of the characters in str, where n is the optional parameter,

defaulting to 16. The result is simply the sum of the binary value of each character in

str modulo 2n − 1. This is not a particularly good checksum—see the digest libraries on

page 745 for better alternatives.

"now is the time".sum # => 1408

"now is the time".sum(8) # => 128

swapcase str.swapcase→ string

Returns a copy of str with uppercase alphabetic characters converted to lowercase and low-

ercase characters converted to uppercase. The mapping depends on the string encoding, but

not all encodings produce expected results.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=690


STRING 691

S
tr

in
g

# encoding: utf8

"Hello".swapcase # => "hELLO"

"cYbEr_PuNk11".swapcase # => "CyBeR_pUnK11"

"δOg".swapcase # => "δoG"

swapcase! str.swapcase!→ str or nil

Equivalent to String#swapcase but modifies str in place, returning str. Returns nil if no

changes were made.

to_c str.to_c→ float

Returns the result of interpreting leading characters in str as a complex number. Extraneous

characters past the end of a valid number are ignored. If there is not a valid number at the

start of str, Complex(0,0) is returned. The method never raises an exception.

"123".to_c # => 123+0i

"4+5/6i".to_c # => 4+5/6i

"thx1138".to_c # => 0+0i

to_f str.to_f→ complex

Returns the result of interpreting leading characters in str as a floating-point number. Extra-

neous characters past the end of a valid number are ignored. If there is not a valid number

at the start of str, 0.0 is returned. The method never raises an exception (use Kernel.Float to

validate numbers).

"123.45e1".to_f # => 1234.5

"45.67 degrees".to_f # => 45.67

"thx1138".to_f # => 0.0

to_i str.to_i( base=10 )→ int

Returns the result of interpreting leading characters in str as an integer base base (2 to 36).

Given a base of zero, to_i looks for leading 0, 0b, 0o, 0d, or 0x and sets the base accord-

ingly. Leading spaces are ignored, and leading plus or minus signs are honored. Extraneous

characters past the end of a valid number are ignored. If there is not a valid number at the

start of str, 0 is returned. The method never raises an exception.

"12345".to_i # => 12345

"99 red balloons".to_i # => 99

"0a".to_i # => 0

"0a".to_i(16) # => 10

"0x10".to_i # => 0

"0x10".to_i(0) # => 16

"0x10".to_i(0) # => 16

"hello".to_i # => 0

"hello".to_i(30) # => 14167554

"1100101".to_i(2) # => 101

"1100101".to_i(8) # => 294977

"1100101".to_i(10) # => 1100101

"1100101".to_i(16) # => 17826049

"1100101".to_i(24) # => 199066177

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=691


STRING 692

S
tr

in
g

to_r str.to_r→ float

1.9 Returns the result of interpreting leading characters in str as a rational number. Extraneous

characters past the end of a valid number are ignored. If there is not a valid number at the

start of str, Rational(0,1) is returned. The method never raises an exception.

"123".to_r # => 123/1

"5/6".to_r # => 5/6

"25/100".to_r # => 1/4

"thx1138".to_r # => (0/1)

to_s str.to_s→ str

Returns the receiver.

to_str str.to_str→ str

Synonym for String#to_s. to_str is used by methods such as String#concat to convert their

arguments to a string. Unlike to_s, which is supported by almost all classes, to_str is nor-

mally implemented only by those classes that act like strings. Of the built-in classes, only

Exception and String implement to_str.

to_sym str.to_s→ symbol

Returns the symbol for str. This can create symbols that cannot be represented using the

:xxx notation. A synonym for String#intern.

s = 'cat'.to_sym # => :cat

s == :cat # => true

'cat and dog'.to_sym # => :"cat and dog"

s == :'cat and dog' # => false

tr str.tr( from_string, to_string )→ string

Returns a copy of str with the characters in from_string replaced by the corresponding char-

acters in to_string. If to_string is shorter than from_string, it is padded with its last character.

Both strings may use the c1–c2 notation to denote ranges of characters, and from_string may

start with a ^, which denotes all characters except those listed.

"hello".tr('aeiou', '*') # => "h*ll*"

"hello".tr('^aeiou', '*') # => "*e**o"

"hello".tr('el', 'ip') # => "hippo"

"hello".tr('ay', 'bz') # => "ifmmp"

tr! str.tr!( from_string, to_string )→ str or nil

Translates str in place, using the same rules as String#tr. Returns str or returns nil if no

changes were made.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=692


STRING 693

S
tr

in
g

tr_s str.tr_s( from_string, to_string )→ string

Processes a copy of str as described under String#tr and then removes duplicate characters

in regions that were affected by the translation.

"hello".tr_s('l', 'r') # => "hero"

"hello".tr_s('el', '*') # => "h*o"

"hello".tr_s('el', 'hx') # => "hhxo"

tr_s! str.tr_s!( from_string, to_string )→ str or nil

Performs String#tr_s processing on str in place, returning str. Returns nil if no changes were

made.

unpack str.unpack( format )→ array

Decodes str (which may contain binary data) according to the format string, returning an

array of the extracted values. The format string consists of a sequence of single-character

directives, summarized in Table 27.17 on the next page. Each directive may be followed by

a number, indicating the number of times to repeat this directive. An asterisk (*) will use up

all remaining elements. The directives sSiIlL may each be followed by an underscore ( _ ) or

bang (!)1.9 to use the underlying platform’s native size for the specified type; otherwise, it uses

a platform-independent consistent size. Spaces are ignored in the format string. Comments

starting with # to the next newline or end of string are also ignored. The encoding of the

string is ignored;1.9 unpack treats the string as a sequence of bytes. See also Array#pack on

page 457.

"abc \0\0abc \0\0".unpack('A6Z6') # => ["abc", "abc "]

"abc \0\0".unpack('a3a3') # => ["abc", " \x00\x00"]

"aa".unpack('b8B8') # => ["10000110", "01100001"]

"aaa".unpack('h2H2c') # => ["16", "61", 97]

"\xfe\xff\xfe\xff".unpack('sS') # => [2, 65534]

"now=20is".unpack('M*') # => ["now is"]

"whole".unpack('xax2aX2aX1aX2a') # => ["h", "e", "l", "l", "o"]

upcase str.upcase→ string

Returns a copy of str with all lowercase letters replaced with their uppercase counter-

parts. The mapping depends on the string encoding, but not all encodings produce expected

results.

# encoding: utf8

"hEllO".upcase # => "HELLO"

"δog".upcase # => "δOG"

upcase! str.upcase!→ str or nil

Upcases the contents of str, returning nil if no changes were made.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=693


STRING 694

S
tr

in
g

Table 27.17. Directives for String#unpack

Format Function Returns

A Sequence of bytes with trailing NULs and ASCII spaces removed.1.9 String

a Sequence of bytes.1.9 String

B Extracts bits from each byte (MSB first). String

b Extracts bits from each byte (LSB first). String

C Extracts a byte as an unsigned integer.1.9 Fixnum

c Extracts a byte as an integer.1.9 Fixnum

d,D Treat sizeof(double) bytes as a native double. Float

E Treats sizeof(double) bytes as a double in little-endian byte order. Float

e Treats sizeof(float) bytes as a float in little-endian byte order. Float

f,F Treats sizeof(float) bytes as a native float. Float

G Treats sizeof(double) bytes as a double in network byte order. Float

g Treats sizeof(float) bytes as a float in network byte order. Float

H Extracts hex nibbles from each byte (most significant first). String

h Extracts hex nibbles from each byte (least significant first). String

I Treats sizeof(int)1 successive bytes as an unsigned native integer. Integer

i Treats sizeof(int)1 successive bytes as a signed native integer. Integer

L Treats four1 successive bytes as an unsigned native long integer. Integer

l Treats four1 successive characters as a signed native long integer. Integer

M Extracts a quoted-printable string. String

m Extracts a Base64-encoded string. By default, accepts \n and \r. "m0" rejects

these.

String

N Treats four bytes as an unsigned long in network byte order. Fixnum

n Treats two bytes as an unsigned short in network byte order. Fixnum

P Treats sizeof(char *) bytes as a pointer and returns len bytes from the refer-

enced location.

String

p Treats sizeof(char *) bytes as a pointer to a null-terminated string. String

Q Treats eight bytes as an unsigned quad word (64 bits). Integer

q Treats eight bytes as a signed quad word (64 bits). Integer

S Treats two1 bytes characters as an unsigned short in native byte order. Fixnum

s Treats two1 successive bytes as a signed short in native byte order. Fixnum

U Extracts UTF-8 characters as unsigned integers. Integer

u Extracts a UU-encoded string. String

V Treats four bytes as an unsigned long in little-endian byte order. Fixnum

v Treats two bytes as an unsigned short in little-endian byte order. Fixnum

w BER-compressed integer (see Array#pack for more information). Integer

X Skips backward one byte. —

x Skips forward one byte. —

Z String with trailing NULs removed. String

@ Skips to the byte offset given by the length argument. —

1 May be modified by appending _ or ! to the directive.1.9

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=694


STRING 695

S
tr

in
g

upto str.upto( string ) {| s | block } → str or enumerator

Iterates through successive values, starting at str and ending at string inclusive, passing each

value in turn to the block. The String#succ method is used to generate each value. Returns1.9

an Enumerator object if no block is given.

"a8".upto("b6") {|s| print s, ' ' }

for s in "a8".."b6"

print s, ' '

end

produces:

a8 a9 b0 b1 b2 b3 b4 b5 b6

a8 a9 b0 b1 b2 b3 b4 b5 b6

valid_encoding? str.valid_encoding?→ true or false

1.9 Returns true if str contains a valid byte sequence in its current encoding.

# encoding: binary

str = "\xE2"

str.force_encoding("utf8")

str.valid_encoding? # => false

str = "\xE2\x88\x82"

str.force_encoding("utf8")

str.valid_encoding? # => true

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=695

