
STRUCT 696

S
tr

u
c
t

Class
Struct < Object

Subclasses: Struct::Tms

A Struct is a convenient way to bundle a number of attributes together, using accessor meth-

ods, without having to write an explicit class.

The Struct class is a generator of specific classes, each one of which is defined to hold a set

of variables and their accessors. In these examples, we’ll call the generated class Customer,

and we’ll show an example instance of that class as joe.

Also see OpenStruct on page 787.

In the descriptions that follow, the parameter symbol refers to a symbol, which is either a

quoted string or a Symbol (such as :name).

Mixes in

Enumerable:

all?, any?, collect, count, cycle, detect, drop, drop_while, each_cons,

each_slice, each_with_index, entries, find, find_all, find_index, first, grep,

group_by, include?, inject, map, max, max_by, member?, min, min_by, minmax,

minmax_by, none?, one?, partition, reduce, reject, select, sort, sort_by,

take, take_while, to_a, zip

Class methods

new Struct.new(〈 string 〉 〈 , symbol 〉+)→ Customer

Struct.new(〈 string 〉 〈 , symbol 〉+) { block }→ Customer

Creates a new class, named by string, containing accessor methods for the given symbols.

If the name string is omitted, an anonymous structure class will be created. Otherwise, the

name of this struct will appear as a constant in class Struct, so it must be unique for all

Structs in the system and should start with a capital letter. Assigning a structure class to a

constant effectively gives the class the name of the constant.

Struct.new returns a new Class object, which can then be used to create specific instances

of the new structure. The remaining methods listed next (class and instance) are defined for

this generated class. See the description that follows for an example.

Create a structure with a name in Struct

Struct.new("Customer", :name, :address) # => Struct::Customer

Struct::Customer.new("Dave", "123 Main") # => #<struct

Struct::Customer

name="Dave",

address="123 Main">

Create a structure named by its constant

Customer = Struct.new(:name, :address) # => Customer

Customer.new("Dave", "123 Main") # => #<struct Customer

name="Dave", address="123

Main">

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=696

STRUCT 697

S
tr

u
c
t

A block passed to the constructor is evaluated in the context of the new struct’s class and

hence allows you conveniently to add instance methods to the new struct.

Customer = Struct.new(:name, :address) do

def to_s

"#{self.name} lives at #{self.address}"

end

end

Customer.new("Dave", "123 Main").to_s # => "Dave lives at 123 Main"

new Customer.new(〈 obj 〉+)→ joe

Creates a new instance of a structure (the class created by Struct.new). The number of actual

parameters must be less than or equal to the number of attributes defined for this class; unset

parameters default to nil. Passing too many parameters will raise an ArgumentError.

Customer = Struct.new(:name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)

joe.name # => "Joe Smith"

joe.zip # => 12345

[] Customer[〈 obj 〉+]→ joe

Synonym for new (for the generated structure).

Customer = Struct.new(:name, :address, :zip)

joe = Customer["Joe Smith", "123 Maple, Anytown NC", 12345]

joe.name # => "Joe Smith"

joe.zip # => 12345

members Customer.members→ array

Returns an array of symbols1.9 representing the names of the instance variables.

Customer = Struct.new("Customer", :name, :address, :zip)

Customer.members # => [:name, :address, :zip]

Instance methods

== joe == other_struct→ true or false

Equality—Returns true if other_struct is equal to this one: they must be of the same class as

generated by Struct.new, and the values of all instance variables must be equal (according

to Object#==).

Customer = Struct.new(:name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)

joejr = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)

jane = Customer.new("Jane Doe", "456 Elm, Anytown NC", 12345)

joe == joejr # => true

joe == jane # => false

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=697

STRUCT 698

S
tr

u
c
t

[] joe[symbol]→ obj

joe[integer]→ obj

Attribute Reference—Returns the value of the instance variable named by symbol or

indexed (0..length − 1) by int. Raises NameError if the named variable does not exist or

raises IndexError if the index is out of range.

Customer = Struct.new(:name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)

joe["name"] # => "Joe Smith"

joe[:name] # => "Joe Smith"

joe[0] # => "Joe Smith"

[]= joe[symbol] = obj→ obj

joe[int] = obj→ obj

Attribute Assignment—Assigns to the instance variable named by symbol or int the value

obj and returns it. Raises a NameError if the named variable does not exist or raises an

IndexError if the index is out of range.

Customer = Struct.new(:name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)

joe["name"] = "Luke"

joe[:zip] = "90210"

joe.name # => "Luke"

joe.zip # => "90210"

each joe.each {| obj | block } → joe

Calls block once for each instance variable, passing the value as a parameter.

Customer = Struct.new(:name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)

joe.each {|x| puts(x) }

produces:

Joe Smith

123 Maple, Anytown NC

12345

each_pair joe.each_pair {| symbol, obj | block } → joe

Calls block once for each instance variable, passing the name (as a symbol) and the value

as parameters.

Customer = Struct.new(:name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)

joe.each_pair {|name, value| puts("#{name} => #{value}") }

produces:

name => Joe Smith

address => 123 Maple, Anytown NC

zip => 12345

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=698

STRUCT 699

S
tr

u
c
t

length joe.length→ int

Returns the number of attributes.

Customer = Struct.new(:name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)

joe.length # => 3

members joe.members→ array

Returns an array of strings representing the names of the instance variables.

Customer = Struct.new(:name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)

joe.members # => [:name, :address, :zip]

size joe.size→ int

Synonym for Struct#length.

to_a joe.to_a→ array

Returns the values for this instance as an array.

Customer = Struct.new(:name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)

joe.to_a[1] # => "123 Maple, Anytown NC"

values joe.values→ array

Synonym for to_a.

values_at joe.values_at(〈 selector 〉∗)→ array

Returns an array containing the elements in joe corresponding to the given indices. The

selectors may be integer indices or ranges.

Lots = Struct.new(:a, :b, :c, :d, :e, :f)

l = Lots.new(11, 22, 33, 44, 55, 66)

l.values_at(1, 3, 5) # => [22, 44, 66]

l.values_at(0, 2, 4) # => [11, 33, 55]

l.values_at(­1, ­3, ­5) # => [66, 44, 22]

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=699

