
THREAD 705

T
h
re

a
d

Class
Thread < Object

Thread encapsulates the behavior of a thread of execution, including the main thread of the

Ruby script. See the tutorial in Chapter 12, beginning on page 184.

In the descriptions that follow, the parameter symbol refers to a symbol, which is either a

quoted string or a Symbol (such as :name).

Class methods

abort_on_exception Thread.abort_on_exception → true or false

Returns the status of the global “abort on exception” condition. The default is false. When

set to true or if the global $DEBUG flag is true (perhaps because the command-line option

-d was specified), all threads will abort (the process will exit(0)) if an exception is raised in

any thread. See also Thread.abort_on_exception=.

abort_on_exception= Thread.abort_on_exception= bool→ true or false

When set to true, all threads will abort if an exception is raised. Returns the new state.

Thread.abort_on_exception = true

t1 = Thread.new do

puts "In new thread"

raise "Exception from thread"

end

sleep(1)

puts "not reached"

produces:

In new thread

prog.rb:4:in `block in <main>': Exception from thread (RuntimeError)

current Thread.current→ thread

Returns the currently executing thread.

Thread.current # => #<Thread:0x0ac684 run>

exclusive Thread.exclusive { block }→ obj

1.9 Executes the block and returns whatever the block returns. Internally uses a Mutex so that

only one thread can be executing code under control of Thread.exclusive at a time.

exit Thread.exit

Terminates the currently running thread and schedules another thread to be run. If this thread

is already marked to be killed, exit returns the Thread. If this is the main thread, or the last

thread, exits the process.

fork Thread.fork { block }→ thread

Synonym for Thread.start.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=705

THREAD 706

T
h
re

a
d

kill Thread.kill(thread)

Causes the given thread to exit (see Thread.exit).

count = 0

a = Thread.new { loop { count += 1 } }

sleep(0.1) # => 0

Thread.kill(a) # => #<Thread:0x0a3764 aborting>

count # => 967979

give it time to die...

sleep 0.01

a.alive? # => false

list Thread.list→ array

Returns an array of Thread objects for all threads that are either runnable or stopped.

Thread.new { sleep(200) }

Thread.new { 1000000.times {|i| i*i } }

Thread.new { Thread.stop }

Thread.list.each {|thr| p thr }

produces:

#<Thread:0x0ac684 run>

#<Thread:0x0a3b88 sleep>

#<Thread:0x0a3a70 run>

#<Thread:0x0a39a8 sleep>

main Thread.main→ thread

Returns the main thread for the process.

Thread.main # => #<Thread:0x0ac684 run>

new Thread.new(〈 arg 〉∗) {| args | block } → thread

Creates and runs a new thread to execute the instructions given in block. Any arguments

passed to Thread.new are passed into the block.

x = Thread.new { sleep 0.1; print "x"; print "y"; print "z" }

a = Thread.new { print "a"; print "b"; sleep 0.2; print "c" }

x.join; a.join # wait for threads to finish

produces:

abxyzc

pass Thread.pass

Invokes the thread scheduler to pass execution to another thread.

a = Thread.new { print "a"; Thread.pass; print "b" }

b = Thread.new { print "x"; Thread.pass; print "y" }

a.join; b.join

produces:

axby

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=706

THREAD 707

T
h
re

a
d

start Thread.start(〈 args 〉∗) {| args | block } → thread

Basically the same as Thread.new. However, if class Thread is subclassed, then calling start

in that subclass will not invoke the subclass’s initialize method.

stop Thread.stop

Stops execution of the current thread, putting it into a “sleep” state, and schedules execution

of another thread. Resets the “critical” condition to false.

a = Thread.new { print "a"; Thread.stop; print "c" }

Thread.pass

print "b"

a.run

a.join

produces:

a

b

c

Instance methods

[] thr[symbol]→ obj or nil

Attribute Reference—Returns the value of a thread-local variable, using either a symbol or

a string name. If the specified variable does not exist, returns nil.

a = Thread.new { Thread.current["name"] = "A"; Thread.stop }

b = Thread.new { Thread.current[:name] = "B"; Thread.stop }

c = Thread.new { Thread.current["name"] = "C"; Thread.stop }

Thread.list.each {|x| puts "#{x.inspect}: #{x[:name]}" }

produces:

#<Thread:0x0ac684 run>:

#<Thread:0x0a2ecc run>:

#<Thread:0x0a2e7c run>:

#<Thread:0x0a2cb0 run>:

[]= thr[symbol] = obj→ obj

Attribute Assignment—Sets or creates the value of a thread-local variable, using either a

symbol or a string. See also Thread#[].

abort_on_exception thr.abort_on_exception→ true or false

Returns the status of the thread-local “abort on exception” condition for thr. The default is

false. See also Thread.abort_on_exception=.

abort_on_exception= thr.abort_on_exception= true or false→ true or false

When set to true, causes all threads (including the main program) to abort if an exception is

raised in thr. The process will effectively exit(0).

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=707

THREAD 708

T
h
re

a
d

alive? thr.alive?→ true or false

Returns true if thr is running or sleeping.

thr = Thread.new { }

thr.join # => #<Thread:0x0a49ac dead>

Thread.current.alive? # => true

thr.alive? # => false

exit thr.exit→ thr or nil

Terminates thr and schedules another thread to be run. If this thread is already marked to be

killed, exit returns the Thread. If this is the main thread, or the last thread, exits the process.

group thr.group→ thread_group

1.9 Returns the ThreadGroup owning thr, or nil.

thread = Thread.new { sleep 99 }

Thread.current.group.list # => [#<Thread:0x0ac684 run>,

#<Thread:0x0a3764 run>]

new_group = ThreadGroup.new

thread.group.list # => [#<Thread:0x0ac684 run>,

#<Thread:0x0a3764 run>]

new_group.add(thread)

thread.group.list # => [#<Thread:0x0a3764 run>]

Thread.current.group.list # => [#<Thread:0x0ac684 run>]

join thr.join→ thr

thr.join(limit)→ thr

1.9 The calling thread will suspend execution and run thr. Does not return until thr exits or

until limit seconds have passed. If the time limit expires, nil will be returned; otherwise, thr

is returned.

Any threads not joined will be killed when the main program exits. If thr had previously

raised an exception and the abort_on_exception and $DEBUG flags are not set (so the excep-

tion has not yet been processed), it will be processed at this time.

a = Thread.new { print "a"; sleep(10); print "b"; print "c" }

x = Thread.new { print "x"; Thread.pass; print "y"; print "z" }

x.join # Let x thread finish, a will be killed on exit.

produces:

axyz

The following example illustrates the limit parameter.

y = Thread.new { loop { sleep 0.1; print "tick...\n" }}

y.join(0.25)

puts "Gave up waiting..."

produces:

tick...

tick...

Gave up waiting...

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=708

THREAD 709

T
h
re

a
d

keys thr.keys→ array

1.9 Returns an array of the names of the thread-local variables (as symbols).

thr = Thread.new do

Thread.current[:cat] = 'meow'

Thread.current["dog"] = 'woof'

end

thr.join # => #<Thread:0x0a44e8 dead>

thr.keys # => [:cat, :dog]

key? thr.key?(symbol)→ true or false

Returns true if the given string (or symbol) exists as a thread-local variable.

me = Thread.current

me[:oliver] = "a"

me.key?(:oliver) # => true

me.key?(:stanley) # => false

kill thr.kill

Synonym for Thread#exit.

priority thr.priority→ int

Returns the priority of thr. The default is zero; higher-priority threads will run before lower-

priority threads.

Thread.current.priority # => 0

priority= thr.priority= int→ thr

Sets the priority of thr to integer. Higher-priority threads will run before lower-priority

threads. If you find yourself messing with thread priorities to get things to work, you’re

doing something wrong.

count_high = count_low = 0

Thread.new do

Thread.current.priority = 1

loop { count_high += 1 }

end

Thread.new do

Thread.current.priority = 1

loop { count_low += 1 }

end

sleep 1

count_high # => 7504330

count_low # => 1861069

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=709

THREAD 710

T
h
re

a
d

raise thr.raise

thr.raise(message)

thr.raise(exception 〈 , message 〈 , array 〉 〉)

Raises1.9 an exception (see Kernel.raise on page 575 for details) from thr. The caller does not

have to be thr.

Thread.abort_on_exception = true

a = Thread.new { sleep(200) }

a.raise("Gotcha")

a.join

produces:

prog.rb:2:in `sleep': Gotcha (RuntimeError)

from /tmp/prog.rb:2:in `block in <main>'

run thr.run→ thr

Wakes up thr, making it eligible for scheduling. If not in a critical section, then invokes the

scheduler.

a = Thread.new { puts "a"; Thread.stop; puts "c" }

Thread.pass

puts "Got here"

a.run

a.join

produces:

a

b

c

safe_level thr.safe_level→ int

Returns the safe level in effect for thr. Setting thread-local safe levels can help when imple-

menting sandboxes that run insecure code.

thr = Thread.new { $SAFE = 3; sleep }

Thread.current.safe_level # => 0

thr.safe_level # => 0

status thr.status→ string, false or nil

Returns the status of thr: sleep if thr is sleeping or waiting on I/O, run if thr is executing,

aborting if thr is aborting, false if thr terminated normally, and nil if thr terminated with an

exception.

a = Thread.new { raise("die now") }

b = Thread.new { Thread.stop }

c = Thread.new { Thread.exit }

a.status # => nil

b.status # => "sleep"

c.status # => false

Thread.current.status # => "run"

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=710

THREAD 711

T
h
re

a
d

stop? thr.stop?→ true or false

Returns true if thr is dead or sleeping.

a = Thread.new { Thread.stop }

b = Thread.current

Thread.pass

a.stop? # => false

b.stop? # => false

terminate thr.terminate

Synonym for Thread#exit.

value thr.value→ obj

Waits for thr to complete (via Thread#join) and returns its value.

a = Thread.new { 2 + 2 }

a.value # => 4

wakeup thr.wakeup→ thr

Marks thr as eligible for scheduling (it may still remain blocked on I/O, however). Does not

invoke the scheduler (see Thread#run).

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=711

