
UNBOUNDMETHOD 724

U
n
b
o
u
n
d
M

e
th

o
d

Class
UnboundMethod < Object

Ruby supports two forms of objectified methods. Class Method is used to represent methods

that are associated with a particular object: these method objects are bound to that object.

Bound method objects for an object can be created using Object#method.

Ruby also supports unbound methods, which are method objects that are not associated with

a particular object. These can be created either by calling unbind on a bound method object

or by calling Module#instance_method.

Unbound methods can be called only after they are bound to an object. That object must be

a kind_of? the method’s original class.

class Square

def area

@side * @side

end

def initialize(side)

@side = side

end

end

area_unbound = Square.instance_method(:area)

s = Square.new(12)

area = area_unbound.bind(s)

area.call # => 144

Unbound methods are a reference to the method at the time it was objectified: subsequent

changes to the underlying class will not affect the unbound method.

class Test

def test

:original

end

end

um = Test.instance_method(:test)

class Test

def test

:modified

end

end

t = Test.new

t.test # => :modified

um.bind(t).call # => :original

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=724

UNBOUNDMETHOD 725

U
n
b
o
u
n
d
M

e
th

o
d

Instance methods

arity umeth.arity→ fixnum

See Method#arity on page 591.

bind umeth.bind(obj)→ method

Bind umeth to obj. If Klass was the class from which umeth was originally obtained,

obj.kind_of?(Klass) must be true.

class A

def test

puts "In test, class = #{self.class}"

end

end

class B < A

end

class C < B

end

um = B.instance_method(:test)

bm = um.bind(C.new)

bm.call

bm = um.bind(B.new)

bm.call

bm = um.bind(A.new)

bm.call

produces:

In test, class = C

In test, class = B

prog.rb:16:in `bind': bind argument must be an instance of B (TypeError)

from /tmp/prog.rb:16:in `<main>'

name umeth.name→ string

1.9 Returns the name of the method umeth.

um = String.instance_method(:upcase)

um.name # => :upcase

owner umeth.owner→ module

1.9 Returns the class or module in which umeth is defined.

um = String.instance_method(:upcase)

um.owner # => String

source_location umeth.source_location→ [filename, lineno] or nil

1.9 Returns the source filename and line number where umeth was defined or nil if self was not

defined in Ruby source. See Method#source_location for an example.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=725

