
Chapter 28

Standard Library

The Ruby interpreter comes with a large number of classes, modules, and methods built

in—they are available as part of the running program. When you need a facility that isn’t

part of the built-in repertoire, you’ll often find it in a library that you can require into your

program. Sometimes you’ll need to download one of these libraries (perhaps as a Ruby

gem).

However, Ruby also ships as standard with a large number of libraries. Some of these are

written in pure Ruby and will be available on all Ruby platforms. Others are Ruby exten-

sions, and some of these will be present only if your system supports the resources that they

need. All can be included into your Ruby program using require. And, unlike libraries you

may find on the Internet, you can pretty much guarantee that all Ruby users will have these

libraries already installed on their machines.

Ruby 1.9 has more than 100 standard libraries included in the distribution. For each of these

libraries, this section shows a one- or a two-page summary. For each library, we give some

introductory notes and typically give an example or two of use. You won’t find detailed

method descriptions here; for that, consult the library’s own documentation.

It’s all very well suggesting that you “consult the library’s own documentation,” but where

can you find it? The answer is that it depends. Some libraries have already been docu-

mented using RDoc (see Chapter 19). That means you can use the ri command to get their

documentation. For example, from a command line, you may be able to see the following

documentation on the escapeHTML method in the CGI standard library member:

% ri CGI.escapeHTML

 CGI::escapeHTML

CGI::escapeHTML(string)

Escape special characters in HTML, namely &¨<>

CGI::escapeHTML('Usage: foo "bar" <baz>')

=> "Usage: foo "bar" <baz>"

If there’s no RDoc documentation available, the next place to look is the library itself.

If you have a source distribution of Ruby, these are in the ext/ and lib/ subdirectories.

If instead you have a binary-only installation, you can still find the source of pure-Ruby

Report erratum726

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=726

LIBRARY CHANGES IN RUBY 1.9 727

library modules (normally in the lib/ruby/1.9/ directory under your Ruby installation).

Often, library source directories contain documentation that the author has not yet converted

to RDoc format.

If you still can’t find documentation, turn to Google. Many of the Ruby standard libraries

are also hosted as external projects. The authors develop them stand-alone and then peri-

odically integrate the code into the standard Ruby distribution. For example, if you want

detailed information on the API for the YAML library, googling yaml ruby may lead you

to http://yaml4r.sourceforge.net. After admiring why the lucky stiff’s artwork, a click

will take you to his 40+ page reference manual.

The next port of call is the rubytalkmailing list. Ask a (polite) question there, and chances

are that you’ll get a knowledgeable response within hours. See page 894 for pointers on how

to subscribe.

And if you still can’t find documentation, you can always follow Obi Wan’s advice and do

what we did when documenting Ruby—use the source. You’d be surprised at how easy it is

to read the actual source of Ruby libraries and work out the details of usage.

Library Changes in Ruby 1.91.9

These are the library changes in Ruby 1.9:

• Much of the Complex and Rational libraries are now built in to the interpreter. However,

requiring the external libraries adds some functionally. In the case of Rational, this

functionality is minimal.

• The CMath library has been added.

• The Enumerator library is now built in.

• The Fiber library has been added (it adds coroutine support to fibers).

• ftools have been removed (and replaced by fileutils).

• The Generator library has been removed (use fibers).

• Notes on using irb from inside applications have been added.

• jcode has been removed in favor of built-in encoding support.

• The json library is added.

• The matrix library no longer requires that you include mathn.

• The mutex library is now built in.

• parsedate has been removed. The Date class handles most of its functionality.

• readbytes has been removed. IO now supports the method directly.

• A description of Ripper has been added.

• A description of SecureRandom has been added.

Report erratum

http://yaml4r.sourceforge.net
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=727

LIBRARY CHANGES IN RUBY 1.9 728

• I’ve omitted the shell library, because it seems more like a curiosity than something

folks would use (and it’s broken under 1.9).

• The soap library has been removed.

• I’ve omitted the sync library. It is broken under 1.9, and the monitor library seems to

be cleaner.

• Win32API is now deprecated in favor of using the DL library.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=728

ABBREV 729

A
b
b
re

v

Library
Abbrev Generate Sets of Unique Abbreviations

Given a set of strings, calculates the set of unambiguous abbreviations for those strings and

returns a hash where the keys are all the possible abbreviations and the values are the full

strings. Thus, given input of “car” and “cone,” the keys pointing to “car” would be “ca” and

“car,” and those pointing to “cone” would be “co,” “con,” and “cone.”

An optional pattern or a string may be specified—only those input strings matching the

pattern, or beginning with the string, are considered for inclusion in the output hash.

Including the Abbrev library also adds an abbrev method to class Array.

• Shows the abbreviation set of some words:

Download samples/slabbrev_1.rb

require 'abbrev'

Abbrev::abbrev(['ruby', 'rules']) # => {"rub"=>"ruby",

"rule"=>"rules",

"rul"=>"rules",

"ruby"=>"ruby",

"rules"=>"rules"}

%w{ car cone }.abbrev # => {"ca"=>"car",

"con"=>"cone",

"co"=>"cone", "car"=>"car",

"cone"=>"cone"}

%w{ car cone }.abbrev("ca") # => {"ca"=>"car", "car"=>"car"}

• A trivial command loop using abbreviations:

Download samples/slabbrev_2.rb

require 'abbrev'

COMMANDS = %w{ sample send start status stop }.abbrev

while line = gets

line = line.chomp

case COMMANDS[line]

when "sample": # ...

when "send": # ...

...

else

STDERR.puts "Unknown command: #{line}"

end

end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slabbrev_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slabbrev_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=729

BASE64 730

B
a
s
e
6
4

Library
Base64 Base64 Conversion Functions

Performs encoding and decoding of binary data using a Base64 representation. This allows

you to represent any binary data in purely printable characters. The encoding is specified in

RFC 2045 (http://www.faqs.org/rfcs/rfc2045.html) and RFC 4648 (http://www.faqs.org/rfcs/rfc4648.h

• Encodes and decodes strings. Note the newlines inserted into the Base64 string.

Download samples/slbase64_1.rb

require 'base64'

str = "Now is the time for all good coders\nto learn Ruby"

converted = Base64.encode64(str)

puts converted

puts Base64.decode64(converted)

produces:

Tm93IGlzIHRoZSB0aW1lIGZvciBhbGwgZ29vZCBjb2RlcnMKdG8gbGVhcm4g

UnVieQ==

Now is the time for all good coders

to learn Ruby

• Now uses RFC 4648 variants:

Download samples/slbase64_2.rb

require 'base64'

str = "Now is the time for all good coders\nto learn Ruby"

converted = Base64.strict_encode64(str)

puts converted

puts Base64.strict_decode64(converted)

produces:

Tm93IGlzIHRoZSB0aW1lIGZvciBhbGwgZ29vZCBjb2RlcnMKdG8gbGVhcm4gUnVieQ==

Now is the time for all good coders

to learn Ruby

Report erratum

http://www.faqs.org/rfcs/rfc2045.html
http://www.faqs.org/rfcs/rfc4648.html
http://media.pragprog.com/titles/ruby3/code/samples/slbase64_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slbase64_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=730

BENCHMARK 731

B
e
n
c
h
m

a
rk

Library
Benchmark Time Code Execution

Allows code execution to be timed and the results tabulated. The Benchmark module is

easier to use if you include it in your top-level environment.

See also: Profile (page 792)

• Compares the costs of four kinds of method dispatch:

Download samples/slbenchmark_1.rb

require 'benchmark'

include Benchmark

string = "Stormy Weather"

m = string.method(:length)

bm(6) do |x|

x.report("direct") { 100_000.times { string.length } }

x.report("call") { 100_000.times { m.call } }

x.report("send") { 100_000.times { string.send(:length) } }

x.report("eval") { 100_000.times { eval "string.length" } }

end

produces:

user system total real

direct 0.010000 0.000000 0.010000 (0.011034)

call 0.020000 0.000000 0.020000 (0.023135)

send 0.020000 0.000000 0.020000 (0.016482)

eval 0.790000 0.000000 0.790000 (0.800693)

• Which is better: reading all of a dictionary and splitting it or splitting it line by line?

Use bmbm to run a rehearsal before doing the timing:

Download samples/slbenchmark_2.rb

require 'benchmark'

include Benchmark

bmbm(6) do |x|

x.report("all") do

str = File.read("/usr/share/dict/words")

words = str.scan(/[\w']+/)

end

x.report("lines") do

words = []

File.foreach("/usr/share/dict/words") do |line|

words << line.chomp

end

end

end

produces:

Rehearsal

all 0.200000 0.010000 0.210000 (0.220893)

lines 0.250000 0.010000 0.260000 (0.259611)

 total: 0.470000sec

user system total real

all 0.220000 0.010000 0.230000 (0.233112)

lines 0.220000 0.020000 0.240000 (0.239560)

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slbenchmark_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slbenchmark_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=731

BIGDECIMAL 732

B
ig

D
e
c
im

a
l

Library
BigDecimal Large-Precision Decimal Numbers

Ruby’s standard Bignum class supports integers with large numbers of digits. The BigDec-

imal class supports decimal numbers with large numbers of decimal places. The standard

library supports all the normal arithmetic operations. BigDecimal also comes with some

extension libraries.

bigdecimal/ludcmp

Performs an LU decomposition of a matrix.

bigdecimal/math

Provides the transcendental functions sqrt, sin, cos, atan, exp, and log, along with

functions for computing PI and E. All functions take an arbitrary precision argument.

bigdecimal/jacobian

Constructs the Jacobian (a matrix enumerating the partial derivatives) of a given func-

tion. Not dependent on BigDecimal.

bigdecimal/newton

Solves the roots of nonlinear function using Newton’s method. Not dependent on

BigDecimal.

bigdecimal/nlsolve

Wraps the bigdecimal/newton library for equations of BigDecimals.

You can find English-language documentation in the Ruby source distribution in the file

ext/bigdecimal/bigdecimal_en.html.

Download samples/slbigdecimal_1.rb

require 'bigdecimal'

require 'bigdecimal/math'

include BigMath

pi = BigMath::PI(20) # 20 is the number of decimal digits

radius = BigDecimal("2.14156987652974674392")

area = pi * radius**2

area.to_s # => "0.14408354044685604417672003380667956168

8599846410445032583215824758780405545861

780909930190528E2"

The same with regular floats

radius = 2.14156987652974674392

Math::PI * radius**2 # => 14.4083540446856

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slbigdecimal_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=732

CGI 733

C
G

I

Library
CGI CGI Programming Support

The CGI class provides support for programs used as Common Gateway Interface (CGI)

scripts in a web server. CGI objects are initialized with data from the environment and from

the HTTP request, and they provide convenient accessors to form data and cookies. They

can also manage sessions using a variety of storage mechanisms. Class CGI also provides

basic facilities for HTML generation and class methods to escape and unescape requests

and HTML.

See also: CGI::Session (page 735)

• Escapes and unescapes special characters in URLs and HTML. Numeric entities below

256 will be encoded based on the encoding of the input string. Other numeric entities

will be left unchanged.1.9

Download samples/slcgi_1.rb

require 'cgi'

CGI.escape('c:\My Files') # => c%3A%5CMy+Files

CGI.unescape('c%3a%5cMy+Files') # => c:\My Files

CGI::escapeHTML('"a"<b & c') # => "a"<b & c

CGI.unescapeHTML('"a"<=>b') # => "a"<=>b

CGI.unescapeHTML('AA') # => AA

str = 'πr²'

str.force_encoding("utf8")

CGI.unescapeHTML(str) # => πr2

• Accesses information from the incoming request:

Download samples/slcgi_3.rb

require 'cgi'

c = CGI.new

c.auth_type # => "basic"

c.user_agent # => "Mozscape Explorari V5.6"

• Accesses form fields from an incoming request. Assume that the following script is

installed as test.cgi and the user linked to it using http://mydomain.com/test.

cgi?fred=10&barney=cat:

Download samples/slcgi_4.rb

require 'cgi'

c = CGI.new

c['fred'] # => "10"

c.keys # => ["fred", "barney"]

c.params # => {"fred"=>["10"], "barney"=>["cat"]}

• If a form contains multiple fields with the same name, the corresponding values will be

returned to the script as an array. The [] accessor returns just the first of these—index

the result of the params method to get them all.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slcgi_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slcgi_3.rb
http://media.pragprog.com/titles/ruby3/code/samples/slcgi_4.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=733

CGI 734

C
G

I

In this example, assume the form has three fields called “name”:

Download samples/slcgi_5.rb

require 'cgi'

c = CGI.new

c['name'] # => "fred"

c.params['name'] # => ["fred", "wilma", "barney"]

c.keys # => ["name"]

c.params # => {"name"=>["fred", "wilma", "barney"]}

• Sends a response to the browser. (Not many folks use this form of HTML generation.

Consider one of the templating libraries—see page 308.)

Download samples/slcgi_6.rb

require 'cgi'

cgi = CGI.new("html4Tr")

cgi.header("type" => "text/html", "expires" => Time.now + 30)

cgi.out do

cgi.html do

cgi.head{ cgi.title{"Hello World!"} } +

cgi.body do

cgi.pre do

CGI::escapeHTML(

"params: " + cgi.params.inspect + "\n" +

"cookies: " + cgi.cookies.inspect + "\n")

end

end

end

end

• Stores a cookie in the client browser:

Download samples/slcgi_7.rb

require 'cgi'

cgi = CGI.new("html4")

cookie = CGI::Cookie.new('name' => 'mycookie',

'value' => 'chocolate chip',

'expires' => Time.now + 3600)

cgi.out('cookie' => cookie) do

cgi.head + cgi.body { "Cookie stored" }

end

• Retrieves a previously stored cookie:

Download samples/slcgi_8.rb

require 'cgi'

cgi = CGI.new("html4")

cookie = cgi.cookies['mycookie']

cgi.out('cookie' => cookie) do

cgi.head + cgi.body { "Flavor: " + cookie[0] }

end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slcgi_5.rb
http://media.pragprog.com/titles/ruby3/code/samples/slcgi_6.rb
http://media.pragprog.com/titles/ruby3/code/samples/slcgi_7.rb
http://media.pragprog.com/titles/ruby3/code/samples/slcgi_8.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=734

CGI::SESSION 735

C
G

I:
:S

e
s
s
io

nLibrary
CGI::Session CGI Sessions

A CGI::Session maintains a persistent state for web users in a CGI environment. Sessions

may be memory resident or may be stored on disk. See the discussion on page 313 for

details.

See also: CGI (page 733)

Download samples/slcgisession_1.rb

require 'cgi'

require 'cgi/session'

cgi = CGI.new("html3")

sess = CGI::Session.new(cgi,

"session_key" => "rubyweb",

"prefix" => "websession.")

if sess['lastaccess']

msg = "<p>You were last here #{sess['lastaccess']}.</p>"

else

msg = "<p>Looks like you haven't been here for a while</p>"

end

count = (sess["accesscount"] || 0).to_i

count += 1

msg << "<p>Number of visits: #{count}</p>"

sess["accesscount"] = count

sess["lastaccess"] = Time.now.to_s

sess.close

cgi.out {

cgi.html {

cgi.body {

msg

}

}

}

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slcgisession_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=735

CMATH 736

C
M

a
th

Library
CMath Complex Transcendental Functions

As of Ruby 1.91.9 , Complex class is built in to the interpreter. There is no need to require

the complex library to create and manipulate complex numbers. However, if you want the

transcendental functions defined by the Math to work with complex numbers, you must also

require the cmath library. The functions affected are as follows: acosh, acos, asinh, asin,

atan2, atanh, atan, cosh, cos, exp, log10, log, sinh, sin, sqrt, tanh, and tan.

The Complex library makes these complex functions the default (so, if you require ’complex’,

you can use Math::sin and not CMath::sin).

Download samples/slcmath_1.rb

require 'cmath'

point = Complex(2, 3)

CMath::sin(point) # => (9.154499146911434.16890695996656i)

CMath::cos(point) # => (4.189625690968819.10922789375534i)

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slcmath_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=736

COMPLEX 737

C
o
m

p
le

x

Library
Complex Complex Numbers

Loads the cmath library,1.9 which defines the transcendental functions for complex numbers.

It then arranges things so that these complex-aware functions are the ones invoked when

you use Math::. The net effect is that, after requiring complex, you can use functions such as

Math::sin on any numeric value, including complex numbers.

Using transcendental numbers with complex arguments will, by default, cause an error:

Download samples/slcomplex_1.rb

point = Complex(2, 3)

Math::sin(point)

produces:

prog.rb:2:in `to_f': can't convert 2+3i into Float (RangeError)

from /tmp/prog.rb:2:in `sin'

from /tmp/prog.rb:2:in `<main>'

However. . .

Download samples/slcomplex_2.rb

require 'complex'

point = Complex(2, 3)

Math::sin(point) # => (9.154499146911434.16890695996656i)

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slcomplex_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slcomplex_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=737

CONTINUATION 738

C
o
n
ti
n
u
a
ti
o
n

Library
Continuation Continuations

Continuation objects are generated by the Kernel#callcc method, which becomes available

only when the continuation library is loaded. They hold a return address and execution con-

text, allowing a nonlocal return to the end of the callcc block from anywhere within a pro-

gram. Continuations are somewhat analogous to a structured version of C’s setjmp/longjmp

(although they contain more state, so you may consider them closer to threads). This (some-

what contrived) example allows the inner loop to abandon processing early.

• Does a nonlocal exit when a condition is met:

Download samples/slcontinuation_1.rb

require 'continuation'

callcc do |cont|

for i in 0..4

print "\n#{i}: "

for j in i*5...(i+1)*5

cont.call() if j == 7

printf "%3d", j

end

end

end

print "\n"

produces:

0: 0 1 2 3 4

1: 5 6

• The call stack for methods is preserved in continuations:

Download samples/slcontinuation_2.rb

require 'continuation'

def strange

callcc {|continuation| return continuation}

print "Back in method, "

end

print "Before method. "

continuation = strange()

print "After method. "

continuation.call if continuation

produces:

Before method. After method. Back in method, After method.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slcontinuation_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slcontinuation_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=738

CSV 739

C
S

V

Library
CSV Comma-Separated Values

Comma-separated data files are often used to transfer tabular information (and are a lingua

franca for importing and exporting spreadsheet and database information). As of Ruby 1.91.9 ,

the old library has been replaced by James Edward Gray II’s FasterCSV version. It has a

few incompatibilities with the original. In particular, CSV.open now works like File.open,

not File.foreach, and options are passed as a hash and not positional parameters.

Ruby’s CSV library deals with arrays (corresponding to the rows in the CSV file) and strings

(corresponding to the elements in a row). If an element in a row is missing, it will be repre-

sented as a nil in Ruby.

The files used in the following examples are as follows:

csvfile:
12,eggs,2.89,

2,"shirt, blue",21.45,special

1,"""Hello Kitty"" bag",13.99

csvfile_hdr:
Count,Description,Price

12,eggs,2.89,

2,"shirt, blue",21.45,special

1,"""Hello Kitty"" bag",13.99

• Reads a file containing CSV data and process line by line:

Download samples/slcsv_1.rb

require 'csv'

CSV.foreach("csvfile") do |row|

qty = row[0].to_i

price = row[2].to_f

printf "%20s: $%5.2f %s\n", row[1], qty*price, row[3] || " "

end

produces:

eggs: $34.68

shirt, blue: $42.90 special

"Hello Kitty" bag: $13.99

• Processes a CSV file that contains a header line. Automatically converts fields that look

like numbers.

Download samples/slcsv_2.rb

require 'csv'

total_cost = 0

CSV.foreach("csvfile_hdr", headers: true, converters: :numeric) do |data|

total_cost += data["Count"] * data["Price"]

end

puts "Total cost is #{total_cost}"

produces:

Total cost is 91.57

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slcsv_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slcsv_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=739

CSV 740

C
S

V

• Writes CSV data to an existing open stream (STDOUT in this case). Uses | as the

column separator.

Download samples/slcsv_3.rb

require 'csv'

CSV(STDOUT, col_sep: "|") do |csv|

csv << [1, "line 1", 27]

csv << [2, nil, 123]

csv << [3, "|bar|", 32.5]

end

produces:

1|line 1|27

2||123

3|"|bar|"|32.5

• You can access a CSV file as a two-dimensional table:

Download samples/slcsv_4.rb

require 'csv'

table = CSV.read("csvfile_hdr",

headers: true,

header_converters: :symbol)

puts "Row count = #{table.count}"

puts "First row = #{table[0].fields}"

puts "Count of eggs = #{table[0][:count]}"

table << [99, "red balloons", 1.23]

table[:in_stock] = [10, 5, 10, 10]

puts "\nAfter adding a row and a column, the new table is:"

puts table

produces:

Row count = 3

First row = ["12", "eggs", "2.89", nil]

Count of eggs = 12

After adding a row and a column, the new table is:

count,description,price,,in_stock

12,eggs,2.89,,10

2,"shirt, blue",21.45,special,5

1,"""Hello Kitty"" bag",13.99,10

99,red balloons,1.23,,10

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slcsv_3.rb
http://media.pragprog.com/titles/ruby3/code/samples/slcsv_4.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=740

CURSES 741

C
u
rs

e
s

Library
Curses CRT Screen Handling

The Curses library is a fairly thin wrapper around the C curses or ncurses libraries, allow-Only if: curses
or ncurses
installed in

target
environment

ing applications a device-independent way of drawing on consoles and other terminal-like

devices. As a nod toward object-orientation, curses windows and mouse events are rep-

resented as Ruby objects. Otherwise, the standard curses calls and constants are simply

defined in the Curses module.

Download samples/slcurses_1.rb

Draw the paddle of a simple game of 'pong'. It moves

in response to the up and down keys

require 'curses'

include Curses

class Paddle

HEIGHT = 4

PADDLE = " \n" + "|\n"*HEIGHT + " "

def initialize

@top = (Curses::lines HEIGHT)/2

draw

end

def up

@top = 1 if @top > 1

end

def down

@top += 1 if (@top + HEIGHT + 1) < lines

end

def draw

setpos(@top1, 0)

addstr(PADDLE)

refresh

end

end

init_screen

begin

crmode

noecho

stdscr.keypad(true)

paddle = Paddle.new

loop do

case ch = getch

when "Q".ord, "q".ord then break

when Key::UP then paddle.up

when Key::DOWN then paddle.down

else beep

end

paddle.draw

end

ensure

close_screen

end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slcurses_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=741

DATE/DATETIME 742

D
a
te

/D
a
te

T
im

e

Library
Date/DateTime Date and Time Manipulation

The date library implements classes Date and DateTime, which provide a comprehensive

set of facilities for storing, manipulating, and converting dates with or without time com-

ponents. The classes can represent and manipulate civil, ordinal, commercial, Julian, and

standard dates, starting January 1, 4713 BCE. The DateTime class extends Date with hours,

minutes, seconds, and fractional seconds, and it provides some support for time zones.

The classes also provide support for parsing and formatting date and datetime strings. The

classes have a rich interface—consult the ri documentation for details. The introductory

notes in the file lib/date.rb are also well worth reading.

• Experiment with various representations:

Download samples/sldate_1.rb

require 'date'

d = Date.new(2000, 3, 31)

[d.year, d.yday, d.wday] # => [2000, 91, 5]

[d.month, d.mday] # => [3, 31]

[d.cwyear, d.cweek, d.cwday] # => [2000, 13, 5]

[d.jd, d.mjd] # => [2451635, 51634]

d1 = Date.commercial(2000, 13, 7)

d1.to_s # => "20000402"

[d1.cwday, d1.wday] # => [7, 0]

• Essential information about Christmas:

Download samples/sldate_2.rb

require 'date'

now = DateTime.now

year = now.year

year += 1 if now.month == 12 && now.day > 25

xmas = DateTime.new(year, 12, 25)

diff = xmas now

puts "It's #{diff.to_i} days to Christmas"

puts "Christmas #{year} falls on a #{xmas.strftime('%A')}"

produces:

It's 255 days to Christmas

Christmas 2009 falls on a Friday

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/sldate_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/sldate_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=742

DBM 743

D
B

M

Library
DBM Interface to DBM Databases

DBM files implement simple, hashlike persistent stores. Many DBM implementations exist:Only if: a DBM
library is

installed in
target

environment

the Ruby library can be configured to use one of the DBM libraries db, dbm (ndbm), gdbm,

and qdbm. The interface to DBM files is similar to class Hash, except that DBM keys

and values will be strings. This can cause confusion, because the conversion to a string is

performed silently when the data is written. The DBM library is a wrapper around the lower-

level access method. For true low-level access, see also the GDBM and SDBM libraries.

See also: gdbm (page 758), sdbm (page 806)

• Creates a simple DBM file and then reopens it read-only and reads some data. Note the

conversion of a date object to its string form.

Download samples/sldbm_1.rb

require 'dbm'

require 'date'

DBM.open("data.dbm") do |dbm|

dbm['name'] = "Walter Wombat"

dbm['dob'] = Date.new(1997, 12,25)

end

DBM.open("data.dbm", nil, DBM::READER) do |dbm|

p dbm.keys

p dbm['dob']

p dbm['dob'].class

end

produces:

["name", "dob"]

"19971225"

String

• Reads from the system’s aliases file. Note the trailing null bytes on all strings.

Download samples/sldbm_2.rb

require 'dbm'

DBM.open("/etc/aliases", nil) do |dbm|

p dbm.keys

p dbm["postfix\000"]

end

produces:

["postmaster:\x00", "daemon:\x00", "ftpbugs:\x00", "operator:\x00",

"abuse:\x00", "decode:\x00", "mailerdaemon:\x00", "bin:\x00",

"named:\x00", "nobody:\x00", "uucp:\x00", "www:\x00", "postfix:\x00",

"manager:\x00", "dumper:\x00"]

nil

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/sldbm_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/sldbm_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=743

DELEGATOR 744

D
e
le

g
a
to

r

Library
Delegator Delegate Calls to Other Object

Object delegation is a way of composing objects—extending an object with the capabilities

of another—at runtime. The Ruby Delegator class implements a simple but powerful dele-

gation scheme, where requests are automatically forwarded from a master class to delegates

or their ancestors and where the delegate can be changed at runtime with a single method

call.

See also: Forwardable (page 757)

• For simple cases where the class of the delegate is fixed, make the master class a

subclass of DelegateClass, passing the name of the class to be delegated as a parameter.

In the master class’s initialize method, pass the object to be delegated to the superclass.

Download samples/sldelegate_1.rb

require 'delegate'

class Words < DelegateClass(Array)

def initialize(list = "/usr/share/dict/words")

words = File.read(list).split

super(words)

end

end

words = Words.new

words[9999] # => "anticritique"

words.size # => 234936

words.grep(/matz/) # => ["matzo", "matzoon", "matzos", "matzoth"]

• Use SimpleDelegator to delegate to a particular object (which can be changed):

Download samples/sldelegate_2.rb

require 'delegate'

words = File.read("/usr/share/dict/words").split

names = File.read("/usr/share/dict/propernames").split

stats = SimpleDelegator.new(words)

stats.size # => 234936

stats[226] # => "abidingly"

stats.__setobj__(names)

stats.size # => 1323

stats[226] # => "Dave"

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/sldelegate_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/sldelegate_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=744

DIGEST 745

D
ig

e
s
t

Library
Digest MD5, RIPEMD-160 SHA1, and SHA2 Digests

The Digest module is the home for a number of classes that implement message digest

algorithms: MD5, RIPEMD-160, SHA1, and SHA2 (256, 384, and 512 bit). The interface

to all these classes is identical.

• You can create a binary or hex digest for a given string by calling the class method

digest or hexdigest.

• You can also create an object (optionally passing in an initial string) and determine the

object’s hash by calling the digest or hexdigest instance methods. In this case, you can

then append to the string using the update method and then recover an updated hash

value.

• Calculates some MD5 and SHA1 hashes:

Download samples/sldigest_1.rb

require 'digest/md5'

require 'digest/sha1'

for hash_class in [Digest::MD5, Digest::SHA1]

puts "Using #{hash_class.name}"

Calculate directly

puts hash_class.hexdigest("hello world")

Or by accumulating

digest = hash_class.new

digest << "hello"

digest << " "

digest << "world"

puts digest.hexdigest

puts

end

produces:

Using Digest::MD5

5eb63bbbe01eeed093cb22bb8f5acdc3

5eb63bbbe01eeed093cb22bb8f5acdc3

Using Digest::SHA1

2aae6c35c94fcfb415dbe95f408b9ce91ee846ed

2aae6c35c94fcfb415dbe95f408b9ce91ee846ed

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/sldigest_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=745

DL 746

D
L

Library
DL Access Dynamically Loaded Libraries (.dll and .so)

The DL module interfaces to the underlying operating system’s dynamic loading capabili-Only if:
Windows, or

system
supports dl

library

ties. On Windows boxes, it can be used to interface with functions in DLLs. Under Unix it

can load shared libraries. Because Ruby does not have typed method parameters or return

values, you must define the types expected by the methods you call by specifying their

signatures. This can be done using a C-like syntax (if you use the high-level methods in

dl/import) or using explicit type specifiers in the lower-level DL module. Good documenta-

tion is provided in the source tree’s ext/dl/doc/ directory.

• Here’s a trivial C program that we’ll build as a shared library:

Download samples/sldl_1.rb

#include <stdio.h>

int print_msg(text, number) {

return printf("Text: %s (%d)\n", text, number);

}

• Generates a proxy to access the print_msg method in the shared library. The way this

book is built, the shared library is in the subdirectory code/dl; this directory must be

added to the directories searched when looking for dynamic objects.

Download samples/sldl_2.rb

ENV['DYLD_LIBRARY_PATH'] = ":code/dl" # Mac OS X

require 'dl/func'

lib = DL.dlopen("code/dl/lib.so")

cfunc = DL::CFunc.new(lib['print_msg'], DL::TYPE_INT, 'print_msg')

print_msg = DL::Function.new(cfunc, [DL::TYPE_VOIDP, DL::TYPE_INT])

msg_size = print_msg.call("Answer", 42)

puts "Just wrote #{msg_size} bytes"

produces:

Just wrote 18 bytes

Text: Answer (42)

• We can also wrap the method in a module:

Download samples/sldl_3.rb

ENV['DYLD_LIBRARY_PATH'] = ":code/dl" # Mac OS X

require 'dl/import'

module Message

extend DL::Importer

dlload "lib.so"

extern "int print_msg(char *, int)"

end

msg_size = Message.print_msg("Answer", 42)

puts "Just wrote #{msg_size} bytes"

produces:

Just wrote 18 bytes

Text: Answer (42)

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/sldl_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/sldl_2.rb
http://media.pragprog.com/titles/ruby3/code/samples/sldl_3.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=746

DRUBY 747

D
R

u
b
y

Library
dRuby Distributed Ruby Objects (drb)

dRuby allows Ruby objects to be distributed across a network connection. Although ex-

pressed in terms of clients and servers, once the initial connection is established, the proto-

col is effectively symmetrical: either side can invoke methods in objects on the other side.

Normally, objects passed and returned by remote calls are passed by value; including the

DRbUndumped module in an object forces it to be passed by reference (useful when imple-

menting callbacks).

See also: Rinda (page 801), XMLRPC (page 830)

• This server program is observable—it notifies all registered listeners of changes to a

count value:

Download samples/sldrb_1.rb

require 'drb'

require 'drb/observer'

class Counter

include DRb::DRbObservable

def run

5.times do |count|

changed

notify_observers(count)

end

end

end

counter = Counter.new

DRb.start_service('druby://localhost:9001', counter)

DRb.thread.join

• This client program interacts with the server, registering a listener object to receive

callbacks before invoking the server’s run method:

Download samples/sldrb_2.rb

require 'drb'

class Listener

include DRbUndumped

def update(value)

puts value

end

end

DRb.start_service

counter = DRbObject.new(nil, "druby://localhost:9001")

listener = Listener.new

counter.add_observer(listener)

counter.run

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/sldrb_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/sldrb_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=747

ENGLISH 748

E
n
g
lis

h

Library
English English Names for Global Symbols

Includes the English library file in a Ruby script, and you can reference the global vari-

ables such as $_ using less-cryptic names, listed in the following table.English. It is now

predefined in the Ruby interpreter.

$* $ARGV $_ $LAST_READ_LINE

$? $CHILD_STATUS $" $LOADED_FEATURES

$< $DEFAULT_INPUT $& $MATCH

$> $DEFAULT_OUTPUT $. $NR

$! $ERROR_INFO $, $OFS

$@ $ERROR_POSITION $\ $ORS

$; $FIELD_SEPARATOR $, $OUTPUT_FIELD_SEPARATOR

$; $FS $\ $OUTPUT_RECORD_SEPARATOR

$= $IGNORECASE $$ $PID

$. $INPUT_LINE_NUMBER $' $POSTMATCH

$/ $INPUT_RECORD_SEPARATOR $` $PREMATCH

$~ $LAST_MATCH_INFO $$ $PROCESS_ID

$+ $LAST_PAREN_MATCH $/ $RS

Download samples/slenglish_1.rb

require 'English'

$OUTPUT_FIELD_SEPARATOR = ' '

"waterbuffalo" =~ /buff/

print $., $INPUT_LINE_NUMBER, "\n"

print $', $POSTMATCH, "\n"

print $$, $PID

produces:

0 0

 alo alo

 86006 86006

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slenglish_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=748

ERB 749

E
rb

Library
erb Lightweight Templating for HTML

ERb is a lightweight templating system, allowing you to intermix Ruby code and plain text.

This is sometimes a convenient way to create HTML documents but also is usable in other

plain-text situations. For other templating solutions, see 308.

ERB breaks its input text into chunks of regular text and program fragments. It then builds

a Ruby program that, when run, outputs the result text and executes the program fragments.

Program fragments are enclosed between <% and %> markers. The exact interpretation of

these fragments depends on the character following the opening <%, as shown in Table 28.1

on the following page.

Download samples/slerb_1.rb

require 'erb'

input = %{<% high.downto(low) do |n| # set high, low externally %>

<%= n %> green bottles, hanging on the wall

<%= n %> green bottles, hanging on the wall

And if one green bottle should accidentally fall

There'd be <%= n1 %> green bottles, hanging on the wall

<% end %>}

high,low = 10, 8

erb = ERB.new(input)

erb.run(binding)

produces:

10 green bottles, hanging on the wall

10 green bottles, hanging on the wall

And if one green bottle should accidentally fall

There'd be 9 green bottles, hanging on the wall

. . .

An optional second parameter to ERB.new sets the safe level for evaluating expressions. If

nil, expressions are evaluated in the current thread; otherwise, a new thread is created, and

its $SAFE level is set to the parameter value.

The optional third parameter to ERB.new allows some control of the interpretation of the

input and of the way whitespace is added to the output. If the third parameter is a string

and that string contains a percent sign, then ERB treats lines starting with a percent sign

specially. Lines starting with a single percent sign are treated as if they were enclosed in

<%. . . %>. Lines starting with a double percent sign are copied to the output with a single

leading percent sign.

str = %{\

% 2.times do |i|

This is line <%= i %>

%end

%% done}

ERB.new(str, 0, '%').run

⇒
produces:

This is line 0

This is line 1

% done

If the third parameter contains the string < >, then a newline will not be written if an input

line starts with an ERB directive and ends with %>. If the trim parameter contains >, then a

newline will not be written if an input line ends %>.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slerb_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=749

ERB 750

E
rb

Table 28.1. Directives for ERB

Sequence Action

<% ruby code %> Inserts the given Ruby code at this point in the generated pro-

gram. If it outputs anything, include this output in the result.

<%= ruby expression %> Evaluate expression and insert its value in the output of the gen-

erated program.

<%# . . . %> Comment (ignored).

<%% and %%> Replaced in the output by <% and%> respectively.

Download samples/slerb_4.rb

str1 = %{\

* <%= "cat" %>

<%= "dog" %>

}

ERB.new(str1, 0, ">").run

ERB.new(str1, 0, "<>").run

produces:

* catdog* cat

dog

The erb library also defines the helper module ERB::Util that contains two methods:

html_escape (aliased as h) and url_encode (aliased as u). These are equivalent to the CGI

methods escapeHTML and escape, respectively (except escape encodes spaces as plus

signs, and url_encode uses %20).

Download samples/slerb_5.rb

include ERB::Util

str1 = %{\

h(a) = <%= h(a) %>

u(a) = <%= u(a) %>

}

a = "< a & b >"

ERB.new(str1).run(binding)

produces:

h(a) = < a & b >

u(a) = %3C%20a%20%26%20b%20%3E

You may find the command-line utility erb is supplied with your Ruby distribution. This

allows you to run erb substitutions on an input file; see erb --help for details.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slerb_4.rb
http://media.pragprog.com/titles/ruby3/code/samples/slerb_5.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=750

ETC 751

E
tc

Library
Etc Access User and Group Information in /etc/passwd

The Etc module provides a number of methods for querying the passwd and group facilitiesOnly if: Unix or
Cygwin

on Unix systems.

• Finds out information about the currently logged-in user:

Download samples/sletc_1.rb

require 'etc'

name = Etc.getlogin

info = Etc.getpwnam(name)

info.name # => "dave"

info.uid # => 501

info.dir # => "/Users/dave"

info.shell # => "/bin/bash"

group = Etc.getgrgid(info.gid)

group.name # => "dave"

• Returns the names of users on the system used to create this book:

Download samples/sletc_2.rb

require 'etc'

users = []

Etc.passwd {|passwd| users << passwd.name }

users[1,5].join(", ") # => "_appowner, _appserver, _ard,

_atsserver, _calendar"

• Returns the IDs of groups on the system used to create this book:

Download samples/sletc_3.rb

require 'etc'

ids = []

Etc.group {|entry| ids << entry.gid }

ids[1,5].join(", ") # => "87, 81, 79, 67, 97"

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/sletc_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/sletc_2.rb
http://media.pragprog.com/titles/ruby3/code/samples/sletc_3.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=751

EXPECT 752

E
x
p
e
c
t

Library
expect Expect Method for IO Objects

The expect library adds the method expect to all IO objects. This allows you to write code

that waits for a particular string or pattern to be available from the I/O stream. The expect

method is particularly useful with pty objects (see page 795) and with network connec-

tions to remote servers, where it can be used to coordinate the use of external interactive

processes.

If the global variable $expect_verbose is true, the expect method writes all characters read

from the I/O stream to STDOUT.

See also: pty (page 795)

• Connects to the local FTP server, logs in, and prints out the name of the user’s directory.

(Note that it would be a lot easier to do this using the net/ftp library.)

Download samples/slexpect_1.rb

This code might be specific to the particular

ftp daemon.

require 'expect'

require 'socket'

$expect_verbose = true

socket = TCPSocket.new('localhost', 'ftp')

socket.expect("ready")

socket.puts("user testuser")

socket.expect("Password required for testuser")

socket.puts("pass secret")

socket.expect("logged in.\r\n")

socket.puts("pwd")

puts(socket.gets)

socket.puts "quit"

produces:

220 localhost FTP server (tnftpd 20061217) ready.

331 Password required for testuser.

230 User testuser logged in.

257 "/Users/testuser" is the current directory.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slexpect_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=752

FCNTL 753

F
c
n
tl

Library
Fcntl Symbolic Names for IO#fcntl Commands

The Fcntl module provides symbolic names for each of the host system’s available fcntl

constants (defined in fcntl.h). That is, if the host system has a constant named F_GETLK

defined in fcntl.h, then the Fcntl module will have a corresponding constant Fcntl::F_GETLK

with the same value as the header file’s #define.

• Different operating system will have different Fcntl constants available. The value asso-

ciated with a constant of a given name may also differ across platforms. Here are the

values on my Mac OS X system:

Download samples/slfcntl_1.rb

require 'fcntl'

Fcntl.constants.sort.each do |name|

printf "%10s: 0x%06x\n", name, Fcntl.const_get(name)

end

produces:

FD_CLOEXEC: 0x000001

F_DUPFD: 0x000000

F_GETFD: 0x000001

F_GETFL: 0x000003

F_GETLK: 0x000007

F_RDLCK: 0x000001

F_SETFD: 0x000002

F_SETFL: 0x000004

F_SETLK: 0x000008

F_SETLKW: 0x000009

F_UNLCK: 0x000002

F_WRLCK: 0x000003

O_ACCMODE: 0x000003

O_APPEND: 0x000008

O_CREAT: 0x000200

O_EXCL: 0x000800

O_NDELAY: 0x000004

O_NOCTTY: 0x020000

O_NONBLOCK: 0x000004

O_RDONLY: 0x000000

O_RDWR: 0x000002

O_TRUNC: 0x000400

O_WRONLY: 0x000001

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slfcntl_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=753

FIBER 754

F
ib

e
r

Library
Fiber Coroutines Using Fibers

The Fiber class that is built into Ruby provides a generator-lke capability—fibers may be

created and resumed from some controlling program. If you want to extend the Fiber class

to provide full, symmetrical coroutines, you need first to require the fiber library. This adds

two instance methods, transfer and alive? to Fiber objects, and the singleton method current

to the Fiber class.

• It is difficult to come up with a meaningful, concise example of symmetric coroutines

that can’t more easily be coded with asymetric (plain old) fibers. So, here’s an artificial

example....

Download samples/slfiber_1.rb

require 'fiber'

take items two at a time off a queue, calling the producer

if not enough are available

consumer = Fiber.new do |producer, queue|

5.times do

while queue.size < 2

queue = producer.transfer(consumer, queue)

end

puts "Consume #{queue.shift} and #{queue.shift}"

end

end

add items three at a time to the queue

producer = Fiber.new do |consumer, queue|

value = 1

loop do

puts "Producing more stuff"

3.times { queue << value; value += 1}

puts "Queue size is #{queue.size}"

consumer.transfer queue

end

end

consumer.transfer(producer, [])

produces:

Producing more stuff

Queue size is 3

Consume 1 and 2

Producing more stuff

Queue size is 4

Consume 3 and 4

Consume 5 and 6

Producing more stuff

Queue size is 3

Consume 7 and 8

Producing more stuff

Queue size is 4

Consume 9 and 10

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slfiber_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=754

FILEUTILS 755

F
ile

U
ti
ls

Library
FileUtils File and Directory Manipulation

FileUtils is a collection of methods for manipulating files and directories. Although generally

applicable, the model is particularly useful when writing installation scripts.

Many methods take a src and a dest parameter. If dest is a directory, src may be a single

filename or an array of filenames. For example, the following copies the files a, b, and c to

/tmp:

cp(%w{ a b c }, "/tmp")

Most functions take a set of options. These may be zero or more of the following:

Option Meaning

:verbose Traces execution of each function (by default to STDERR, although this can be

overridden by setting the class variable @fileutils_output).

:noop Does not perform the action of the function (useful for testing scripts).

:force Overrides some default conservative behavior of the method (for example, over-

writing an existing file).

:preserve Attempts to preserve atime, mtime, and mode information from src in dest.

(Setuid and setgid flags are always cleared.)

For maximum portability, use forward slashes to separate the directory components of file-

names, even on Windows.

FileUtils contains three submodules that duplicate the top-level methods but with different

default options: module FileUtils::Verbose sets the verbose option, module FileUtils::NoWrite

sets noop, and FileUtils::DryRun1.9 sets verbose and noop.

See also: un (page 825)

Download samples/slfileutils_2.rb

require 'fileutils'

include FileUtils::Verbose

cd("/tmp") do

cp("/etc/passwd", "tmp_passwd")

chmod(0666, "tmp_passwd")

cp_r("/usr/include/net/", "headers")

rm("tmp_passwd") # Tidy up

rm_rf("headers")

end

produces:

cd /tmp

cp /etc/passwd tmp_passwd

chmod 666 tmp_passwd

cp r /usr/include/net/ headers

rm tmp_passwd

rm rf headers

cd

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slfileutils_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=755

FIND 756

F
in

d

Library
Find Traverse Directory Trees

The Find module supports the top-down traversal of a set of file paths, given as arguments

to the find method. If an argument is a file, its name is passed to the block associated with

the call. If it’s a directory, then its name and the name of all its files and subdirectories will

be passed in. If1.9 no block is associated with the call, an Enumerator is returned.

Within the block, the method prune may be called, which skips the current file or directory,

restarting the loop with the next directory. If the current file is a directory, that directory will

not be recursively entered. In the following example, we don’t list the contents of the local

Subversion cache directories:

Download samples/slfind_1.rb

require 'find'

Find.find("/etc/passwd", "code/cdjukebox") do |f|

type = case

when File.file?(f) then "File: "

when File.directory?(f) then "Dir: "

else "?"

end

puts "#{type} #{f}"

Find.prune if f =~ /.svn/

end

produces:

File: /etc/passwd

Dir: code/cdjukebox

File: code/cdjukebox/Makefile

File: code/cdjukebox/libcdjukebox.a

File: code/cdjukebox/cdjukebox.o

File: code/cdjukebox/cdjukebox.h

File: code/cdjukebox/cdjukebox.c

Dir: code/cdjukebox/.svn

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slfind_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=756

FORWARDABLE 757

F
o
rw

a
rd

a
b
le

Library
Forwardable Object Delegation

Forwardable provides a mechanism to allow classes to delegate named method calls to other

objects.

See also: Delegator (page 744)

• This simple symbol table uses a hash, exposing a subset of the hash’s methods:

Download samples/slforwardable_1.rb

require 'forwardable'

class SymbolTable

extend Forwardable

def_delegator(:@hash, :[], :lookup)

def_delegator(:@hash, :[]=, :add)

def_delegators(:@hash, :size, :has_key?)

def initialize

@hash = Hash.new

end

end

st = SymbolTable.new

st.add('cat', 'feline animal') # => "feline animal"

st.add('dog', 'canine animal') # => "canine animal"

st.add('cow', 'bovine animal') # => "bovine animal"

st.has_key?('cow') # => true

st.lookup('dog') # => "canine animal"

• Forwards can also be defined for individual objects by extending them with the Single-

Forwardable module. It’s hard to think of a good reason to use this feature, so here’s a

silly one:

Download samples/slforwardable_2.rb

require 'forwardable'

TRICKS = ["roll over", "play dead"]

dog = "rover"

dog.extend SingleForwardable

dog.def_delegator(:TRICKS, :each, :can)

dog.can do |trick|

puts trick

end

produces:

roll over

play dead

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slforwardable_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slforwardable_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=757

GDBM 758

G
D

B
M

Library
GDBM Interface to GDBM Database

Interfaces to the gdbm database library.1 Although the DBM library provides generic accessOnly if: gdbm
library available

to gdbm databases, it doesn’t expose some features of the full gdbm interface. The GDBM

library gives you access to underlying gdbm features such as the cache size, synchronization

mode, reorganization, and locking. Only one process may have a GDBM database open for

writing (unless locking is disabled).

See also: DBM (page 743), SDBM (page 806)

• Stores some values into a database and then reads them back. The second parameter

to the open method specifies the file mode, and the next parameter uses two flags that

(1) create the database if it doesn’t exist, and (2) force all writes to be synced to disk.

Create on open is the default Ruby gdbm behavior.

Download samples/slgdbm_1.rb

require 'gdbm'

GDBM.open("data.dbm", 0644, GDBM::WRCREAT | GDBM::SYNC) do |dbm|

dbm['name'] = "Walter Wombat"

dbm['dob'] = "19691225"

dbm['uses'] = "Ruby"

end

GDBM.open("data.dbm") do |dbm|

p dbm.keys

p dbm['dob']

dbm.delete('dob')

p dbm.keys

end

produces:

["uses", "dob", "name"]

"19691225"

["uses", "name"]

• Opens a database read-only. Note that the attempt to delete a key fails.

Download samples/slgdbm_2.rb

require 'gdbm'

GDBM.open("data.dbm", 0, GDBM::READER) do |dbm|

p dbm.keys

dbm.delete('name')

end

produces:

["uses", "name"]

prog.rb:4:in `delete': Reader can't delete (GDBMError)

from /tmp/prog.rb:5:in `block in <main>'

from /tmp/prog.rb:3:in `open'

1. http://www.gnu.org/software/gdbm/gdbm.html

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slgdbm_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slgdbm_2.rb
http://www.gnu.org/software/gdbm/gdbm.html
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=758

GETOPTLONG 759

G
e
to

p
tL

o
n
g

Library
GetoptLong Parse Command-Line Options

Class GetoptLong supports GNU-style command-line option parsing. Options may be a

minus sign (–) followed by a single character or may be two minus signs (- -) followed by

a name (a long option). Long options may be abbreviated to their shortest unambiguous

lengths.

A single internal option may have multiple external representations. For example, the option

to control verbose output could be any of -v, --verbose, or --details. Some options may also

take an associated value.

Each internal option is passed to GetoptLong as an array, containing strings representing

the option’s external forms and a flag. The flag specifies how GetoptLong is to associate

an argument with the option (NO_ARGUMENT, REQUIRED_ARGUMENT, or

OPTIONAL_ARGUMENT).

If the environment variable POSIXLY_CORRECT is set, all options must precede non-

options on the command line. Otherwise, the default behavior of GetoptLong is to reor-

ganize the command line to put the options at the front. This behavior may be changed by

setting GetoptLong#ordering= to one of the constants PERMUTE, REQUIRE_ORDER, or

RETURN_IN_ORDER. POSIXLY_CORRECT may not be overridden.

See also: OptionParser (page 785)

Download samples/slgetoptlong_1.rb

Call using "ruby example.rb size 10k v q a.txt b.doc"

require 'getoptlong'

specify the options we accept and initialize

the option parser

opts = GetoptLong.new(

["size", "s", GetoptLong::REQUIRED_ARGUMENT],

["verbose", "v", GetoptLong::NO_ARGUMENT],

["query", "q", GetoptLong::NO_ARGUMENT],

["check", "valid", "c", GetoptLong::NO_ARGUMENT]

)

process the parsed options

opts.each do |opt, arg|

puts "Option: #{opt}, arg #{arg.inspect}"

end

puts "Remaining args: #{ARGV.join(', ')}"

produces:

Option: size, arg "10k"

Option: verbose, arg ""

Option: query, arg ""

Remaining args: a.txt, b.doc

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slgetoptlong_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=759

GSERVER 760

G
S

e
rv

e
r

Library
GServer Generic TCP Server

Simple framework for writing TCP servers. Subclasses the GServer class, sets the port (and

potentially other parameters) in the constructor, and then implements a serve method to

handle incoming requests.

GServer manages a thread pool for incoming connections, so your serve method may be

running in multiple threads in parallel.

You can run multiple GServer copies on different ports in the same application.

• When a connection is made on port 2000, responds with the current time as a string.

Terminates after handling three requests.

Download samples/slgserver_1.rb

require 'gserver'

class TimeServer < GServer

def initialize

super(2000)

@count = 3

end

def serve(client)

client.puts Time.now

@count = 1

stop if @count.zero?

end

end

server = TimeServer.new

server.audit = true # enable logging

server.start

server.join

• You can test this server by reading from localhost on port 2000. We use curl to do

this—you could also use telnet:

% curl s localhost:2000

produces:

20090413 13:27:00 0500

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slgserver_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=760

ICONV 761

I
c
o
n
v

Library
Iconv Character Encoding Conversion

The Iconv class is an interface to the Open Group’s iconv library, which supports the trans-

lation of strings between character encodings. For a list of the supported encodings on yourOnly if: libiconv
installed

platform, see the iconv_open man pages for your system.

An Iconv object encapsulates a conversion descriptor, which in turn contains the information

needed to convert from one encoding to another. The converter can be used multiple times,

until closed.

The conversion method iconv can be called multiple times to convert input strings. At the

end, it should be called with a nil argument to flush out any remaining output.

The new string transcoding functions in Ruby 1.9 make the basic Iconv functions redundant.

However, Iconv has capabilities (such as transliteration) that are not part of the built-in Ruby

functionality.

• Converts from ISO-8859-1 to UTF-16:

require 'iconv'

conv = Iconv.new("UTF16", "ISO88591")

result = conv.iconv("hello")

result << conv.iconv(nil)

result.dump # => "\xFE\xFF\x00h\x00e\x00l\x00l\x00o"

• Does the same conversion using a class method. Note that we use Iconv.conv, which

returns a single string, as opposed to Iconv.iconv, which returns an array of strings.

require 'iconv'

result = Iconv.conv("UTF16", "ISO88591", "hello")

result.dump # => "\xFE\xFF\x00h\x00e\x00l\x00l\x00o"

• Converts olé from UTF-8 to ISO-8859-1:

require 'iconv'

result = Iconv.conv("ISO88591", "UTF8", "ol\303\251")

result.dump # => "ol\xE9"

• Converts olé from UTF-8 to ASCII. This throws an exception, because ASCII doesn’t

have an é character.

require 'iconv'

result = Iconv.conv("ASCII", "UTF8", "ol\303\251")

produces:

prog.rb:2:in `conv': "\xC3\xA9" (Iconv::IllegalSequence)

from /tmp/prog.rb:2:in `<main>'

• This time, converts to ASCII with transliteration, which shows approximations of miss-

ing characters:

require 'iconv'

result = Iconv.iconv("ASCII//TRANSLIT", "UTF8", "ol\303\251")

result[0].dump # => "ol'e"

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=761

IO/WAIT 762

I
O

/W
a
it

Library
IO/Wait Check for Pending Data to Be Read

Including the library io/wait adds the methods IO#nread, IO#ready?, and IO#wait to the stan-Only if:
FIONREAD

feature in
ioctl(2)

dard IO class. These allow an IO object opened on a stream (not a file) to be queried to see

whether data is available to be read without reading it and to wait for a given number of

bytes to become available.

• Sets up a pipe between two processes and writes 10 bytes at a time into it. Periodically

sees how much data is available.

Download samples/sliowait_1.rb

require 'io/wait'

reader, writer = IO.pipe

if (pid = fork)

writer.close

8.times do

sleep 0.03

len = reader.ready?

if len

puts "#{len} bytes available: #{reader.sysread(len)}"

else

puts "No data available"

end

end

Process.waitpid(pid)

else

reader.close

5.times do |n|

sleep 0.04

writer.write n.to_s * 10

end

writer.close

end

produces:

No data available

10 bytes available: 0000000000

10 bytes available: 1111111111

No data available

10 bytes available: 2222222222

10 bytes available: 3333333333

10 bytes available: 4444444444

No data available

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/sliowait_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=762

IPADDR 763

I
P
A

d
d
r

Library
IPAddr Represent and Manipulate IP Addresses

Class IPAddr holds and manipulates Internet Protocol (IP) addresses. Each address contains

three parts: an address, a mask, and an address family. The family will typically be AF_INET

for IPv4 and IPv6 addresses. The class contains methods for extracting parts of an address,

checking for IPv4 compatible addresses (and IPv4-mapped IPv6 addresses), testing whether

an address falls within a subnet and many other functions. It is also interesting in that it

contains as data its own unit tests.

require 'ipaddr'

v4 = IPAddr.new('192.168.23.0/24')

v4 # => #<IPAddr: IPv4:192.168.23.0/ 255.255.255.0>

v4.mask(16) # => #<IPAddr: IPv4:192.168.0.0/ 255.255.0.0>

v4.reverse # => "0.23.168.192.inaddr.arpa"

v6 = IPAddr.new('3ffe:505:2::1')

v6 # => #<IPAddr:

IPv6:3ffe:0505:0002:0000:0000:0000:0000:0001/

ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff>

v6.mask(48) # => #<IPAddr:

IPv6:3ffe:0505:0002:0000:0000:0000:0000:0000/

ffff:ffff:ffff:0000:0000:0000:0000:0000>

the value for 'family' is OS dependent. This

value is for OS X

v6.family # => 30

other = IPAddr.new("192.168.23.56")

v4.include?(other) # => true

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=763

IRB 764

I
rb

Library
irb Interactive Ruby

The irb library is most commonly associated with the console command irb. However, you

can also start an irb session from within your running application. A common technique is

to trap a signal and start irb in the handler.

The following program sets up a signal handler that runs irb when the user hits ^C. The user

can change the value of the instance variable @value. When they exit from irb, the original

program continues to run with that new value.

Download samples/slirb_1.rb

require 'irb'

trap "INT" do

IRB.start

end

count = 0

loop do

count += 1

puts count

puts "Value = #{@value}" if defined? @value

sleep 1

end

Here’s a simple session using it:

$ ruby code/run_irb.rb

1

2

3

^C4

irb(main):001:0> @value = "wibble"

=> "wibble"

irb(main):002:0> exit

5

Value = wibble

6

Value = wibble

...

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slirb_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=764

JSON 765

J
s
o
n

Library
json Generate and Parse JSON Format1.9

JSON is a language-independent data interchange format based on key/value pairs (hashes

in Ruby) and sequences of values (arrays in Ruby).2 JSON is frequently used to exchange

data between JavaScript running in browsers and server-based applications. JSON is not a

general-purpose object marshaling format. Although you can add to_json methods to your

own classes, you will lose interoperability. See also: yaml (page 831)

• Serializes a data structure into a string and write that to a file:

Download samples/sljson_1.rb

require 'json'

data = { name: 'dave', address: ['tx', 'usa'], age: 17 }

serialized = data.to_json

serialized # => {"name":"dave","address":["tx","usa"],"age":17}

File.open("data", "w") {|f| f.puts serialized}

• Reads the serialized data from the file and reconstitute it:

Download samples/sljson_2.rb

require 'json'

serialized = File.read("data")

data = JSON.parse(serialized)

data # => {"name"=>"dave", "address"=>["tx", "usa"], "age"=>17}

• The methods j and jj convert their argument to JSON and write the result to STDOUT

(jj prettyprints). This can be useful in irb.

Download samples/sljson_3.rb

require 'json'

data = { name: 'dave', address: ['tx', 'usa'], age: 17 }

puts "Regular"

j data

puts "Pretty"

jj data

produces:

Regular

{"name":"dave","address":["tx","usa"],"age":17}

Pretty

{

"name": "dave",

"address": [

"tx",

"usa"

],

"age": 17

}

2. http://www.ietf.org/rfc/rfc4627.txt

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/sljson_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/sljson_2.rb
http://media.pragprog.com/titles/ruby3/code/samples/sljson_3.rb
http://www.ietf.org/rfc/rfc4627.txt
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=765

LOGGER 766

L
o
g
g
e
r

Library
Logger Application Logging

Writes log messages to a file or stream. Supports automatic time- or size-based rolling of log

files. Messages can be assigned severities, and only those messages at or above the logger’s

current reporting level will be logged.

• During development, you may want to see all messages:

require 'logger'

log = Logger.new(STDOUT)

log.level = Logger::DEBUG

log.datetime_format = "%H:%M:%S"

log.info("Application starting")

3.times do |i|

log.debug("Executing loop, i = #{i}")

temperature = some_calculation(i) # defined externally

if temperature > 50

log.warn("Possible overheat. i = #{i}")

end

end

log.info("Application terminating")

produces:

I, [13:27:00#86139] INFO : Application starting

D, [13:27:00#86139] DEBUG : Executing loop, i = 0

D, [13:27:00#86139] DEBUG : Executing loop, i = 1

D, [13:27:00#86139] DEBUG : Executing loop, i = 2

W, [13:27:00#86139] WARN : Possible overheat. i = 2

I, [13:27:00#86139] INFO : Application terminating

• In deployment, you can turn off anything below INFO:

require 'logger'

log = Logger.new(STDOUT)

log.level = Logger::INFO

log.datetime_format = "%H:%M:%S"

as above...

produces:

I, [13:27:00#86141] INFO : Application starting

W, [13:27:00#86141] WARN : Possible overheat. i = 2

I, [13:27:00#86141] INFO : Application terminating

• Logs to a file, which is rotated when it gets to about 10KB. Keeps up to five old files.

require 'logger'

log = Logger.new("application.log", 5, 10*1024)

log.info("Application starting")

...

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=766

MATHN 767

M
a
th

n

Library
mathn Unified Numbers

The mathn library attempts to bring some unity to numbers under Ruby, making classes

Bignum, Complex, Fixnum, Integer, and Rational work and play better together. It automati-

cally includes the libraries complex, rational, matrix, and prime.

• Types will tend to convert between themselves in a more natural way (so, for example,

Complex::I squared will evaluate to −1, rather than Complex[-1,0]).

• Division will tend to produce more accurate results. The conventional division operator

(/) is redefined to use quo, which doesn’t round (quo is documented on page 661).

• Related to the previous point, rational numbers will be used in preference to floats

when possible. Dividing one by two results in the rational number 1
2 , rather than 0.5

(or 0, the result of normal integer division).

See also: Matrix (page 769), Rational (page 796), Complex (page 737), Prime (page 791)

• Without mathn:

Download samples/slmathn_1.rb

require 'matrix'

36/16 # => 2

Math.sqrt(36/16) # => 1.4142135623731

Complex::I * Complex::I # => (1+0i)

(36/16)**2 # => 1/4

(36.0/16.0)**2 # => 0.197530864197531

(36/16)**2 # => 1/9

(36/16)**(1/2) # => 1

(36/16)**(1/2) # => 1

(36/16)**(1/2) # => 1/2

(36/16)**(1/2) # => 1/3

Matrix.diagonal(6,7,8)/3 # =>

(

2 0 0
0 2 0
0 0 2

)

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slmathn_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=767

MATHN 768

M
a
th

n

• With mathn:

Download samples/slmathn_2.rb

require 'mathn'

36/16 # => 9/4

Math.sqrt(36/16) # => 3/2

Complex::I * Complex::I # => 1

(36/16)**2 # => 16/81

(36.0/16.0)**2 # => 0.197530864197531

(36/16)**2 # => 16/81

(36/16)**(1/2) # => 3/2

(36/16)**(1/2) # => (9.18485099360515e17+1.5i)

(36/16)**(1/2) # => 2/3

(36/16)**(1/2) # => (4.08215599715784e170.666666666666667i)

Matrix.diagonal(6,7,8)/3 # =>

(

2 0 0
0 7/3 0
0 0 8/3

)

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slmathn_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=768

MATRIX 769

M
a
tr

ix

Library
Matrix Matrix and Vector Manipulation

The matrix library defines classes Matrix and Vector, representing rectangular matrices and

vectors. As well as the normal arithmetic operations, they provide methods for matrix-

specific functions (such as rank, inverse, and determinants) and a number of constructor

methods (for creating special-case matrices—zero, identity, diagonal, singular, and vector).

As of Ruby 1.91.9 , matrices use quo internally for division, so rational numbers may be

returned as a result of integer division. In prior versions of Ruby, you’d need to include

the mathn library to achieve this.

Download samples/slmatrix_1.rb

require 'matrix'

m1 = Matrix[[2, 1], [1, 1]] # =>

(

2 1
−1 1

)

m1[0,1] # => 1

m1.inv # =>

(

1/3 −1/3
1/3 2/3

)

m1 * m1.inv # =>

(

1/1 0/1
0/1 1/1

)

m1.determinant # => 3/1

m1.singular? # => false

v1 = Vector[3, 4] # => Vector[3, 4]

v1.covector # =>
(

3 4
)

m1 * v1 # => Vector[10, 1]

m2 = Matrix[[1,2,3], [4,5,6], [7,8,9]] # =>

(

1 2 3
4 5 6
7 8 9

)

m2.minor(1, 2, 1, 2) # =>

(

5 6
8 9

)

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slmatrix_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=769

MINITEST 770

M
in

iT
e
s
t

Library
MiniTest Unit Testing Framework

New in Ruby 1.91.9 , MiniTest is now the standard unit testing framework supplied with Ruby.

The MiniTest library contains classes for unit tests, mock objects, and a (trivial) subset of

RSpec-style testing syntax.

The unit testing framework is similar to the original Test::Unit framework. However, if you

want functionality that is the same as Test::Unit, use the Test::Unit wrappers for MiniTest—

simply require "test/unit" as normal.

Chapter 13 on page 198 contains a tutorial on unit testing with Ruby.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=770

MONITOR 771

M
o
n
it
o
r

Library
Monitor Monitor-Based Synchronization

Monitors are a mutual-exclusion mechanism. They allow separate threads to define shared

resources that will be accessed exclusively, and they provide a mechanism for a thread to

wait for resources to become available in a controlled way.

The monitor library actually defines three separate ways of using monitors: as a parent class,

as a mixin, and as a extension to a particular object. In this section, we document the module

form of Monitor. The class form is effectively identical. In both the class form and when

including MonitorMixin in an existing class, it is essential to invoke super in the class’s

initialize method.

See also: Thread (page 705)

(The following example would be better written using fibers.)

Download samples/slmonitor_1.rb

require 'monitor'

require 'mathn'

numbers = []

numbers.extend(MonitorMixin)

number_added = numbers.new_cond

Reporter thread

consumer = Thread.new do

5.times do

numbers.synchronize do

number_added.wait_while { numbers.empty? }

puts numbers.shift

end

end

end

Prime number generator thread

generator = Thread.new do

p = Prime.new

5.times do

numbers.synchronize do

numbers << p.succ

number_added.signal

end

end

end

generator.join

consumer.join

produces:

Prime::new is obsolete. use Prime::instance or class methods of Prime.

2

3

5

7

11

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slmonitor_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=771

MUTEX_M 772

M
u
te

x
_
m

Library
Mutex_m Mutex Mix-In

mutex_m is a variant of class Mutex (documented on page 612) that allows mutex facilities

to be mixed into any object.

The Mutex_m module defines methods that correspond to those in Mutex but with the prefix

mu_ (so that lock is defined as mu_lock and so on). These are then aliased to the original

Mutex names.

See also: Mutex (page 612), Thread (page 705)

Download samples/slmutexm_1.rb

require 'mutex_m'

class Counter

include Mutex_m

attr_reader :count

def initialize

@count = 0

super

end

def tick

lock

@count += 1

unlock

end

end

c = Counter.new

t1 = Thread.new { 100_000.times { c.tick } }

t2 = Thread.new { 100_000.times { c.tick } }

t1.join

t2.join

c.count # => 200000

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slmutexm_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=772

NET::FTP 773

N
e
t:

:F
T

P

Library
Net::FTP FTP Client

The net/ftp library implements a File Transfer Protocol (FTP) client. As well as data transfer

commands (getbinaryfile, gettextfile, list, putbinaryfile, and puttextfile), the library supports

the full complement of server commands (acct, chdir, delete, mdtm, mkdir, nlst, rename,

rmdir, pwd, size, status, and system). Anonymous and password-authenticated sessions are

supported. Connections may be active or passive.

See also: open-uri (page 782)

Download samples/slnetftp_1.rb

require 'net/ftp'

ftp = Net::FTP.new('ftp.rubylang.org')

ftp.login

ftp.chdir('pub/ruby/doc')

puts ftp.list('*txt')

ftp.getbinaryfile('MD5SUM.txt', 'md5sum.txt', 1024)

ftp.close

puts File.read('md5sum.txt')

produces:

rwrr 1 1027 100 3060 Jan 21 11:21 MD5SUM.txt

rwrr 1 1027 100 3436 Jan 21 11:22 SHA1SUM.txt

d529768c828c930c49b3766d13dc1f2c rubyman1.4.6jp.tar.gz

8eed63fec14a719df26247fb8384db5e rubyman1.4.6.tar.gz

623b5d889c1f15b8a50fe0b3b8ba4b0f rubymanja1.6.620011225rd.tar.gz

5f37ef2d67ab1932881cd713989af6bf rubymanjahtml20050214.tar.bz2

. . .

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slnetftp_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=773

NET::HTTP 774

N
e
t:

:H
T

T
P

Library
Net::HTTP HTTP Client

The net/http library provides a simple client to fetch headers and web page contents using

the HTTP protocol.

The get post, and head methods return a response object, with the content of the response

accessible through the response’s body method.

See also: OpenSSL (page 784), open-uri (page 782), URI (page 826)

• Opens a connection and fetch a page, displaying the response code and message, header

information, and some of the body:

require 'net/http'

Net::HTTP.start('www.pragprog.com') do |http|

response = http.get('/categories/new')

puts "Code = #{response.code}"

puts "Message = #{response.message}"

response.each {|key, val| printf "%14s = %40.40s\n", key, val }

p response.body[0, 55]

end

produces:

Code = 200

Message = OK

server = nginx/0.6.34

date = Mon, 13 Apr 2009 18:27:01 GMT

contenttype = text/html; charset=UTF8

transferencoding = chunked

connection = keepalive

setcookie = _pragmatic_session_id=af478c8333e8e2966b

status = 200 OK

xruntime = 84ms

etag = "1506b34159b8e2c85ee772c25704ff60"

xappinfo = master@9402370c1ccb75092090e9b7d014853ad

cachecontrol = private, maxage=0, mustrevalidate

"<!DOCTYPE html PUBLIC \"//W3C//DTD XHTML 1.1//EN\"\n \"ht"

• Fetches a single page, displaying the response code and message, header information,

and some of the body:

require 'net/http'

response = Net::HTTP.get_response('www.pragprog.com',

'/categories/new')

puts "Code = #{response.code}"

puts "Message = #{response.message}"

response.each {|key, val| printf "%14s = %40.40s\n", key, val }

p response.body[0, 55]

produces:

Code = 200

Message = OK

server = nginx/0.6.34

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=774

NET::HTTP 775

N
e
t:

:H
T

T
P

date = Mon, 13 Apr 2009 18:27:02 GMT

contenttype = text/html; charset=UTF8

connection = keepalive

setcookie = _pragmatic_session_id=e987d6f51627348841

status = 200 OK

xruntime = 77ms

etag = "1506b34159b8e2c85ee772c25704ff60"

xappinfo = master@9402370c1ccb75092090e9b7d014853ad

cachecontrol = private, maxage=0, mustrevalidate

contentlength = 22986

"<!DOCTYPE html PUBLIC \"//W3C//DTD XHTML 1.1//EN\"\n \"ht"

• Follows redirections (the open-uri library does this automatically). This code comes

from the RDoc documentation.

require 'net/http'

require 'uri'

def fetch(uri_str, limit=10)

fail 'http redirect too deep' if limit.zero?

puts "Trying: #{uri_str}"

response = Net::HTTP.get_response(URI.parse(uri_str))

case response

when Net::HTTPSuccess then response

when Net::HTTPRedirection then fetch(response['location'], limit1)

else response.error!

end

end

response = fetch('http://www.rubylang.org')

p response.body[0, 50]

produces:

Trying: http://www.rubylang.org

Trying: http://www.rubylang.org/en/

"<!DOCTYPE html PUBLIC \"//W3C//DTD XHTML 1.1//EN\"\n"

• Searches our site for things about Ruby and lists the authors. (This would be tidier

using Hpricot,3 but this doesn’t run on Ruby 1.9 as I write this.)

require 'net/http'

response = Net::HTTP.post_form(URI.parse('http://pragprog.com/search'),

"q" => "ruby")

puts response.body.scan(%r{<p class="byline">by (.*?)</p>})[0,3]

produces:

Dave Thomas, with Chad Fowler and Andy Hunt

Bruce Tate

Lyle Johnson

3. http://code.whytheluckystiff.net/hpricot/

Report erratum

http://code.whytheluckystiff.net/hpricot/
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=775

NET::IMAP 776

N
e
t:

:I
M

A
P

Library
Net::IMAP Access an IMAP Mail Server

The Internet Mail Access Protocol (IMAP) is used to allow mail clients to access mail

servers. It supports plain-text login and the IMAP login and CRAM-MD5 authentication

mechanisms. Once connected, the library supports threading, so multiple interactions with

the server may take place at the same time.

The examples that follow are taken with minor modifications from the RDoc documentation

in the library source file.

The TMail gem provides an interface for creating and parsing e-mail messages.

See also: Net::POP (page 777)

• Lists senders and subjects of messages to “dave” in the inbox:

Download samples/slnetimap_1.rb

require 'net/imap'

imap = Net::IMAP.new('my.mailserver.com')

imap.authenticate('LOGIN', 'dave', 'secret')

imap.examine('INBOX')

puts "Message count: #{ imap.responses["EXISTS"]}"

imap.search(["TO", "dave"]).each do |message_id|

envelope = imap.fetch(message_id, "ENVELOPE")[0].attr["ENVELOPE"]

puts "#{envelope.from[0].name}: \t#{envelope.subject}"

end

• Moves all messages with a date in April 2008 from the folder Mail/sentmail to

Mail/sentapr08:

Download samples/slnetimap_2.rb

require 'net/imap'

imap = Net::IMAP.new('my.mailserver.com')

imap.authenticate('LOGIN', 'dave', 'secret')

imap.select('Mail/sentmail')

if not imap.list('Mail/', 'sentapr08')

imap.create('Mail/sentapr08')

end

imap.search(["BEFORE", "01May2008",

"SINCE", "1Apr2008"]).each do |message_id|

imap.copy(message_id, "Mail/sentapr08")

imap.store(message_id, "+FLAGS", [:Deleted])

end

imap.expunge

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slnetimap_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slnetimap_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=776

NET::POP 777

N
e
t:

:P
O

P

Library
Net::POP Access a POP Mail Server

The net/pop library provides a simple client to fetch and delete mail on a Post Office Proto-

col (POP) server.

The class Net::POP3 is used to access a POP server, returning a list of Net::POPMail objects,

one per message stored on the server. These POPMail objects are then used to fetch and/or

delete individual messages. The TMail gem provides an interface for creating and parsing

e-mail messages.

The library also provides class APOP, an alternative to the POP3 class that performs authen-

tication.

Download samples/slnetpop_1.rb

require 'net/pop'

pop = Net::POP3.new('server.rubystuff.com')

pop.start('joe', 'secret') do |server|

msg = server.mails[0]

Print the 'From:' header line

from = msg.header.split("\r\n").grep(/^From: /)[0]

puts from

puts

puts "Full message:"

text = msg.pop

puts text

end

Download samples/slnetpop_2.rb

produces:

From: dave@facet.rubystuff.com (Dave Thomas)

Full message:

ReturnPath: <dave@facet.rubystuff.com>

Received: from facet.rubystuff.com (facet.rubystuff.com [10.96.0.122])

by pragprog.com (8.11.6/8.11.6) with ESMTP id i2PJMW701809

for <joe@carat.rubystuff.com>; Thu, 25 Mar 2008 13:22:32 0600

Received: by facet.rubystuff.com (Postfix, from userid 502)

id 4AF228B1BD; Thu, 25 Mar 2008 13:22:36 0600 (CST)

To: joe@carat.rubystuff.com

Subject: Try out the new features!

MessageId: <20080325192236.4AF228B1BD@facet.rubystuff.com>

Date: Thu, 25 Mar 2008 13:22:36 0600 (CST)

From: dave@facet.rubystuff.com (Dave Thomas)

Status: RO

Ruby 1.9 has even more new features, both in

the core language and in the supplied libraries.

Try it out!

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slnetpop_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slnetpop_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=777

NET::SMTP 778

N
e
t:

:S
M

T
P

Library
Net::SMTP Simple SMTP Client

The net/smtp library provides a simple client to send electronic mail using the Simple Mail

Transfer Protocol (SMTP). It does not assist in the creation of the message payload—it

simply delivers messages once an RFC822 message has been constructed. The TMail gem

provides an interface for creating and parsing e-mail messages.

• Sends an e-mail from a string:

Download samples/slnetsmtp_1.rb

require 'net/smtp'

msg = "Subject: Test\n\nNow is the time\n"

Net::SMTP.start('pragprog.com') do |smtp|

smtp.send_message(msg, 'dave@pragprog.com', ['dave'])

end

• Sends an e-mail using an SMTP object and an adapter:

Download samples/slnetsmtp_2.rb

require 'net/smtp'

Net::SMTP::start('pragprog.com', 25, "pragprog.com") do |smtp|

smtp.open_message_stream('dave@pragprog.com', # from

['dave'] # to

) do |stream|

stream.puts "Subject: Test1"

stream.puts

stream.puts "And so is this"

end

end

• Sends an e-mail to a server requiring CRAM-MD5 authentication:

Download samples/slnetsmtp_3.rb

require 'net/smtp'

msg = "Subject: Test\n\nNow is the time\n"

Net::SMTP.start('pragprog.com', 25, 'pragprog.com',

'user', 'password', :cram_md5) do |smtp|

smtp.send_message(msg, 'dave@pragprog.com', ['dave'])

end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slnetsmtp_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slnetsmtp_2.rb
http://media.pragprog.com/titles/ruby3/code/samples/slnetsmtp_3.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=778

NET::TELNET 779

N
e
t:

:T
e
ln

e
t

Library
Net::Telnet Telnet Client

The net/telnet library provides a complete implementation of a telnet client and includes

features that make it a convenient mechanism for interacting with nontelnet services.

Class Net::Telnet delegates to class Socket. As a result, the methods of Socket and its parent,

class IO, are available through Net::Telnet objects.

• Connects to a localhost, runs the date command, and disconnects:

Download samples/slnettelnet_1.rb

require 'net/telnet'

tn = Net::Telnet.new({})

tn.login "guest", "secret"

tn.cmd "date" # => "Mon Apr 13 13:27:04 CDT 2009\n"

tn.close

• The methods new, cmd, login, and waitfor take an optional block. If present, the block

is passed output from the server as it is received by the routine. This can be used to

provide real-time output, rather than waiting (for example) for a login to complete

before displaying the server’s response.

Download samples/slnettelnet_2.rb

require 'net/telnet'

tn = Net::Telnet.new({}) {|str| print str }

tn.login("guest", "secret") {|str| print str }

tn.cmd("date") {|str| print str }

tn.close

produces:

Connected to localhost.

Darwin/BSD (dave2.home) (ttys012)

login: guest

Password:Last login: Thu Mar 5 13:23:25 from 0.0.0.0

$ date

Mon Apr 13 13:27:04 CDT 2009

$

• Gets the time from an NTP server:

Download samples/slnettelnet_3.rb

require 'net/telnet'

tn = Net::Telnet.new('Host' => 'time.nonexistent.org',

'Port' => 'time',

'Timeout' => 60,

'Telnetmode' => false)

atomic_time = tn.recv(4).unpack('N')[0]

puts "Atomic time: " + Time.at(atomic_time 2208988800).to_s

puts "Local time: " + Time.now.to_s

produces:

Atomic time: 20090413 13:27:04 0500

Local time: 20090413 13:27:07 0500

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slnettelnet_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slnettelnet_2.rb
http://media.pragprog.com/titles/ruby3/code/samples/slnettelnet_3.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=779

NKF 780

N
K

F

Library
NKF Interface to Network Kanji Filter

The NKF module is a wrapper around Itaru Ichikawa’s Network Kanji Filter (NKF) library

(version 1.7). It provides functions to guess at the encoding of JIS, EUC, and SJIS streams

and to convert from one encoding to another. Even though Ruby 1.91.9 now supports these

encodings natively, this library is still useful for guessing encodings.

• As of Ruby 1.91.9 , NFK uses the built-in encoding objects:

Download samples/slnkf_1.rb

require 'nkf'

NKF::AUTO # => nil

NKF::JIS # => #<Encoding:ISO2022JP (dummy)>

NKF::EUC # => #<Encoding:EUCJP>

NKF::SJIS # => #<Encoding:Shift_JIS>

• Guesses at the encoding of a string. (Thanks to Nobu Nakada for the examples on this

page.)

Download samples/slnkf_2.rb

require 'nkf'

p NKF.guess("Yukihiro Matsumoto")

p NKF.guess("\eB^DbHf$$R$m\e(B")

p NKF.guess("\244\336\244\304\244\342\244\310\244\346\244\255\244\322\244\355")

p NKF.guess("\202\334\202\302\202\340\202\306\202\344\202\253\202\320\202\353")

produces:

#<Encoding:USASCII>

#<Encoding:ISO2022JP (dummy)>

#<Encoding:EUCJP>

#<Encoding:Shift_JIS>

• The NKF.nfk method takes two parameters. The first is a set of options, passed on to

the NKF library. The second is the string to translate. The following examples assume

that your console is set up to accommodate Japanese characters. The text at the end of

the three ruby commands is Yukihiro Matsumoto.

$ ruby e ’p *ARGV’

"\244\336\244\304\244\342\244\310\244\346\244\255\244\322\244\355"

$ ruby rnkf e ’p NKF.nkf(*ARGV)’ Es

"\202\334\202\302\202\340\202\306\202\344\202\253\202\320\202\353"

$ ruby rnkf e ’p NKF.nkf(*ARGV)’ Ej

"\eB^DbHf$$R$m\e(B"

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slnkf_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slnkf_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=780

OBSERVABLE 781

O
b
s
e
rv

a
b
le

Library
Observable The Observer Pattern

The Observer pattern, also known as Publish/Subscribe, provides a simple mechanism for

one object (the source) to inform a set of interested third-party objects when its state changes

(see Design Patterns [GHJV95]). In the Ruby implementation, the notifying class mixes in

the module Observable, which provides the methods for managing the associated observer

objects. The observers must implement the update method to receive notifications.

Download samples/slobserver_1.rb

require 'observer'

class CheckWaterTemperature # Periodically check the water

include Observable

def run

last_temp = nil

loop do

temp = Temperature.fetch # external class...

puts "Current temperature: #{temp}"

if temp != last_temp

changed # notify observers

notify_observers(Time.now, temp)

last_temp = temp

end

end

end

end

class Warner

def initialize(&limit)

@limit = limit

end

def update(time, temp) # callback for observer

if @limit.call(temp)

puts " #{time.to_s}: Temperature outside range: #{temp}"

end

end

end

checker = CheckWaterTemperature.new

checker.add_observer(Warner.new {|t| t < 80})

checker.add_observer(Warner.new {|t| t > 120})

checker.run

produces:

Current temperature: 83

Current temperature: 75

 20090413 13:27:05 0500: Temperature outside range: 75

Current temperature: 90

Current temperature: 134

 20090413 13:27:05 0500: Temperature outside range: 134

Current temperature: 134

Current temperature: 112

Current temperature: 79

 20090413 13:27:05 0500: Temperature outside range: 79

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slobserver_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=781

OPEN-URI 782

O
p
e
n
-u

ri

Library
open-uri Treat FTP and HTTP Resources as Files

The open-uri library extends Kernel#open, allowing it to accept URIs for FTP and HTTP as

well as local filenames. Once opened, these resources can be treated as if they were local

files, accessed using conventional IO methods. The URI passed to open is either a string

containing an HTTP or FTP URL or a URI object (described on page 826). When opening

an HTTP resource, the method automatically handles redirection and proxies. When using

an FTP resource, the method logs in as an anonymous user.

The IO object returned by open in these cases is extended to support methods that return

metainformation from the request: content_type, charset, content_encoding, last_modified,

status, base_uri, meta.

See also: URI (page 826)

Download samples/slopen-uri_1.rb

require 'openuri'

require 'pp'

open('http://rubylang.org') do |f|

puts "URI: #{f.base_uri}"

puts "Contenttype: #{f.content_type}, charset: #{f.charset}"

puts "Encoding: #{f.content_encoding}"

puts "Last modified: #{f.last_modified}"

puts "Status: #{f.status.inspect}"

pp f.meta

puts ""

3.times {|i| puts "#{i}: #{f.gets}" }

end

produces:

URI: http://www.rubylang.org/en/

Contenttype: text/html, charset: utf8

Encoding: []

Last modified:

Status: ["200", "OK"]

{"date"=>"Mon, 13 Apr 2009 18:27:07 GMT",

"server"=>

"Apache/2.2.3 (Debian) DAV/2 SVN/1.4.2 mod_ruby/1.2.6 Ruby/1.8.5(20060825)

mod_ssl/2.2.3 OpenSSL/0.9.8c",

"transferencoding"=>"chunked",

"contenttype"=>"text/html;charset=utf8"}

0: <!DOCTYPE html PUBLIC "//W3C//DTD XHTML 1.1//EN"

1: "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

2: <html xmlns="http://www.w3.org/1999/xhtml">

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slopen-uri_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=782

OPEN3 783

O
p
e
n
3

Library
Open3 Run Subprocess and Connect to All Streams

Runs a command in a subprocess. Data written to stdin can be read by the subprocess, and

data written to standard output and standard error in the subprocess will be available on the

stdout and stderr streams. The subprocess is actually run as a grandchild, and as a result,

Process#waitall cannot be used to wait for its termination (hence the sleep in the following

example). Note also that you probably cannot assume that the application’s output and error

streams will not be buffered, so output may not arrive when you expect it to.

Download samples/slopen3_1.rb

require 'open3'

Open3.popen3('bc') do | stdin, stdout, stderr |

Thread.new { loop { puts "STDOUT stream: #{stdout.gets}" } }

Thread.new { loop { puts "STDERR stream: #{stderr.gets}" } }

stdin.puts "3 * 4"

stdin.puts "1 / 0"

stdin.puts "2 ^ 5"

sleep 0.1

end

produces:

STDOUT stream: 12

STDOUT stream: 32

STDERR stream: Runtime error (func=(main), adr=3): Divide by zero

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slopen3_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=783

OPENSSL 784

O
p
e
n
S

S
L

Library
OpenSSL SSL Library

The Ruby OpenSSL extension wraps the freely available OpenSSL library. It provides theOnly if:
OpenSSL

library available Secure Sockets Layer and Transport Layer Security (SSL and TLS) protocols, allowing

for secure communications over networks. The library provides functions for certificate

creation and management, message signing, and encryption/decryption. It also provides

wrappers to simplify access to https servers, along with secure FTP. The interface to the

library is large (roughly 330 methods), but the average Ruby user will probably use only a

small subset of the library’s capabilities.

See also: Net::FTP (page 773), Net::HTTP (page 774), Socket (page 811)

• Accesses a secure website using HTTPS. Note that SSL is used to tunnel to the site,

but the requested page also requires standard HTTP basic authorization.

Download samples/slopenssl_1.rb

require 'net/https'

USER = "xxx"

PW = "yyy"

site = Net::HTTP.new("www.securestuff.com", 443)

site.use_ssl = true

response = site.get2("/cgibin/cokerecipe.cgi",

'Authorization' => 'Basic ' +

["#{USER}:#{PW}"].pack('m').strip)

• Creates a socket that uses SSL. This isn’t a good example of accessing a website.

However, it illustrates how a socket can be encrypted.

Download samples/slopenssl_2.rb

require 'socket'

require 'openssl'

socket = TCPSocket.new("www.securestuff.com", 443)

ssl_context = OpenSSL::SSL::SSLContext.new()

unless ssl_context.verify_mode

warn "warning: peer certificate won't be verified this session."

ssl_context.verify_mode = OpenSSL::SSL::VERIFY_NONE

end

sslsocket = OpenSSL::SSL::SSLSocket.new(socket, ssl_context)

sslsocket.sync_close = true

sslsocket.connect

sslsocket.puts("GET /secretinfo.shtml")

while line = sslsocket.gets

p line

end

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slopenssl_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slopenssl_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=784

OPTIONPARSER 785

O
p
ti
o
n
P

a
rs

e
r

Library
OptionParser Option Parsing

OptionParser is a flexible and extensible way to parse command-line arguments. It has a

particularly rich abstraction of the concept of an option.

• An option can have multiple short names (options preceded by a single hyphen) and

multiple long names (options preceded by two hyphens). Thus, an option that displays

help may be available as -h, -?, --help, and --about. Users may abbreviate long option

names to the shortest nonambiguous prefix.

• An option may be specified as having no argument, an optional argument, or a required

argument. Arguments can be validated against patterns or lists of valid values.

• Arguments may be returned as objects of any type (not just strings). The argument type

system is extensible (we add Date handling in the example).

• Arguments can have one or more lines of descriptive text, used when generating usage

information.

Options are specified using the on and def methods. These methods take a variable number

of arguments that cumulatively build a definition of each option. The arguments accepted

by these methods are listed in Table 28.2 on the next page.

See also: GetoptLong (page 759)

Download samples/sloptparse_2.rb

require 'optparse'

require 'date'

Add Dates as a new option type

OptionParser.accept(Date, /(\d+)(\d+)(\d+)/) do |d, mon, day, year|

Date.new(year.to_i, mon.to_i, day.to_i)

end

opts = OptionParser.new

opts.on("x") {|val| puts "x seen" }

opts.on("s", "size VAL", Integer) {|val| puts "s #{val}" }

opts.on("a", "at DATE", Date) {|val| puts "a #{val}" }

my_argv = ["size", "1234", "x", "a", "12252008", "fred", "wilma"]

rest = opts.parse(*my_argv)

puts "Remainder = #{rest.join(', ')}"

puts opts.to_s

produces:

s 1234

x seen

a 20081225

Remainder = fred, wilma

Usage: myprog [options]

x

s, size VAL

a, at DATE

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/sloptparse_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=785

OPTIONPARSER 786

O
p
ti
o
n
P

a
rs

e
r

Table 28.2. Option Definition Arguments

"-x" "-xARG" "-x=ARG" "-x[OPT]" "-x[=OPT]" "-x PLACE"

Option has short name x. First form has no argument, next two have mandatory argu-

ment, next two have optional argument, last specifies argument follows option. The

short names may also be specified as a range (such as "-[a-c]").

"--switch" "--switch=ARG" "--switch=[OPT]" "--switch PLACE"

Option has long name switch. First form has no argument, next has a mandatory argu-

ment, the next has an optional argument, and the last specifies the argument follows

the switch.

"--no-switch"

Defines a option whose default value is false.

"=ARG" "=[OPT]"

Argument for this option is mandatory or optional. For example, the following code

says there’s an option known by the aliases -x, -y, and -z that takes a mandatory argu-

ment, shown in the usage as N:
opt.on("x", "y", "z", "=N")

"description"

Any string that doesn’t start – or = is used as a description for this option in the sum-

mary. Multiple descriptions may be given; they’ll be shown on additional lines.

/pattern/

Any argument must match the given pattern.

array

Argument must be one of the values from array.

proc or method

Argument type conversion is performed by the given proc or method (rather than using

the block associated with the on or def method call).

ClassName

Argument must match that defined for ClassName, which may be predefined or added

using OptionParser.accept. Built-in argument classes are
Object: Any string. No conversion. This is the default.

String: Any nonempty string. No conversion.

Integer: Ruby/C-like integer with optional sign (0ddd is octal, 0bddd binary, 0xddd hexadeci-

mal). Converts to Integer.

Float: Float number format. Converts to Float.

Numeric: Generic numeric format. Converts to Integer for integers, Float for floats.

Array: Argument must be of list of strings separated by a comma.

OptionParser::DecimalInteger: Decimal integer. Converted to Integer.

OptionParser::OctalInteger: Ruby/C-like octal/hexadecimal/binary integer.

OptionParser::DecimalNumeric: Decimal integer/float number. Integers converted to Integer,

floats to Float.

TrueClass, FalseClass: Boolean switch.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=786

OPENSTRUCT 787

O
p
e
n
S

tr
u
c
t

Library
OpenStruct Open (dynamic) Structure

An open structure is an object whose attributes are created dynamically when first assigned.

In other words, if obj is an instance of an OpenStruct, then the statement obj.abc=1 will

create the attribute abc in obj and then assign the value 1 to it.

Download samples/slostruct_1.rb

require 'ostruct'

os = OpenStruct.new("f1" => "one", :f2 => "two")

os.f3 = "cat"

os.f4 = 99

os.f1 # => "one"

os.f2 # => "two"

os.f3 # => "cat"

os.f4 # => 99

Because OpenStruct uses method_missing and because it is a subclass of Object, you can’t

name field with the same names as Object’s instance methods. In the following example,

the access to ice.freeze is a call to Object#freeze:

Download samples/slostruct_2.rb

require 'ostruct'

ice = OpenStruct.new

ice.freeze = "yes"

ice.freeze # => #<OpenStruct freeze="yes">

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slostruct_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slostruct_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=787

PATHNAME 788

P
a
th

n
a
m

e

Library
Pathname Representation of File Paths

A Pathname represents the absolute or relative name of a file. It has two distinct uses.

First, it allows manipulation of the parts of a file path (extracting components, building

new paths, and so on). Second (and somewhat confusingly), it acts as a façade for some

methods in classes Dir, File, and module FileTest, forwarding on calls for the file named by

the Pathname object.

See also: File (page 506)

• Path name manipulation:

Download samples/slpathname_1.rb

require 'pathname'

p1 = Pathname.new("/usr/bin")

p2 = Pathname.new("ruby")

p3 = p1 + p2

p4 = p2 + p1

p3.parent # => #<Pathname:/usr/bin>

p3.parent.parent # => #<Pathname:/usr>

p1.absolute? # => true

p2.absolute? # => false

p3.split # => [#<Pathname:/usr/bin>, #<Pathname:ruby>]

p5 = Pathname.new("testdir")

puts p5.realpath

puts p5.children

produces:

/Users/dave/BS2/titles/RUBY3/Book/testdir

testdir/config.h

testdir/main.rb

• Path name as proxy for file and directory status requests:

Download samples/slpathname_3.rb

require 'pathname'

p1 = Pathname.new("/usr/bin/ruby")

p1.file? # => true

p1.directory? # => false

p1.executable? # => true

p1.size # => 38304

p2 = Pathname.new("testfile") # => #<Pathname:testfile>

p2.read # => "This is line one\nThis is line

two\nThis is line three\nAnd so

on...\n"

p2.readlines # => ["This is line one\n", "This is

line two\n", "This is line

three\n", "And so on...\n"]

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slpathname_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slpathname_3.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=788

PP 789

P
P

Library
PP Pretty-print Objects

PP uses the PrettyPrint library to format the results of inspecting Ruby objects. As well as

the methods in the class, it defines a global function, pp, which works like the existing p

method but formats its output.

PP has a default layout for all Ruby objects. However, you can override the way it handles a

class by defining the method pretty_print, which takes a PP object as a parameter. It should

use that PP object’s methods text, breakable, nest, group, and pp to format its output (see

PrettyPrint for details).

See also: JSON (page 765), PrettyPrint (page 790), YAML (page 831)

• Compares “p” and “pp”:

Download samples/slpp_1.rb

require 'pp'

Customer = Struct.new(:name, :sex, :dob, :country)

cust = Customer.new("Walter Wall", "Male", "12/25/1960", "Niue")

puts "Regular print"

p cust

puts "\nPretty print"

pp cust

produces:

Regular print

#<struct Customer name="Walter Wall", sex="Male", dob="12/25/1960",

country="Niue">

Pretty print

#<struct Customer

name="Walter Wall",

sex="Male",

dob="12/25/1960",

country="Niue">

• You can tell PP not to display an object if it has already displayed it:

Download samples/slpp_2.rb

require 'pp'

a = "string"

b = [a]

c = [b, b]

PP.sharing_detection = false

pp c

PP.sharing_detection = true

pp c

produces:

[["string"], ["string"]]

[["string"], [...]]

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slpp_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slpp_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=789

PRETTYPRINT 790

P
re

tt
y
P

ri
n
t

Library
PrettyPrint General Pretty Printer

PrettyPrint implements a pretty printer for structured text. It handles details of wrapping,

grouping, and indentation. The PP library uses PrettyPrint to generate more legible dumps

of Ruby objects.

See also: PP (page 789)

• The following program prints a chart of Ruby’s classes, showing subclasses as a brack-

eted list following the parent. To save some space, we show just the classes in the

Numeric branch of the tree.

Download samples/slprettyprint_1.rb

require 'prettyprint'

@children = Hash.new { |h,k| h[k] = Array.new }

ObjectSpace.each_object(Class) do |cls|

@children[cls.superclass] << cls if cls <= Numeric

end

def print_children_of(printer, cls)

printer.text(cls.name)

kids = @children[cls].sort_by(&:name)

unless kids.empty?

printer.group(0, " [", "]") do

printer.nest(3) do

printer.breakable

kids.each_with_index do |k, i|

printer.breakable unless i.zero?

print_children_of(printer, k)

end

end

printer.breakable

end

end

end

printer = PrettyPrint.new($stdout, 30)

print_children_of(printer, Object)

printer.flush

produces:

Object [

Numeric [

Complex

Float

Integer [

Bignum

Fixnum

]

Rational

]

]

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slprettyprint_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=790

PRIME 791

P
ri

m
e

Library
prime Prime Numbers

Provides facilities for generating prime numbers, as well as factoring numbers. Note that

the Prime class is a singleton.

See also: mathn (page 767)

• The prime library extends the number classes to include new functionality and adds a

new class Prime:

require 'prime'

60 = 2**2 * 3 * 5

60.prime? # => false

60.prime_division # => [[2, 2], [3, 1], [5, 1]]

• You can also use it to generate sequences of primes:

require 'prime'

Prime.each {|p| puts p; break if p > 20 }

produces:

2

3

5

7

11

13

17

19

23

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=791

PROFILE 792

P
ro

fi
le

Library
Profile Profile Execution of a Ruby Program

The profile library is a trivial wrapper around the Profiler module, making it easy to profile

the execution of an entire program. Profiling can be enabled from the command line using

the -rprofile option or from within a source program by requiring the profile module.

Unlike Ruby 1.8, Ruby 1.91.9 does not profile primitive methods such as Fixnum#== and

iFixnum#+. This helps boost Ruby’s performance.

See also: Benchmark (page 731), Profiler__ (page 793)

Download samples/slprofile_1.rb

require 'profile'

def ackerman(m, n)

if m == 0 then n+1

elsif n == 0 and m > 0 then ackerman(m1, 1)

else ackerman(m1, ackerman(m, n1))

end

end

ackerman(3, 3)

produces:

% cumulative self self total

time seconds seconds calls ms/call ms/call name

100.00 0.04 0.04 2432 0.02 0.41 Object#ackerman

0.00 0.04 0.00 1 0.00 0.00 Kernel.puts

0.00 0.04 0.00 1 0.00 0.00 IO#puts

0.00 0.04 0.00 1 0.00 0.00 Module#method_added

0.00 0.04 0.00 2 0.00 0.00 IO#write

0.00 0.04 0.00 1 0.00 40.00 #toplevel

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slprofile_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=792

PROFILER_ _ 793

P
ro

fi
le

r_
_

Library
Profiler_ _ Control Execution Profiling

The Profiler_ _ module can be used to collect a summary of the number of calls to, and the

time spent in, methods in a Ruby program. The output is sorted by the total time spent in

each method. The profile library is a convenience wrapper that profiles an entire program.

See also: Benchmark (page 731), profile (page 792)

Download samples/slprofiler_1.rb

require 'profiler'

Omit definition of connection and fetching methods

def calc_discount(qty, price)

case qty

when 0..10 then 0.0

when 11..99 then price * 0.05

else price * 0.1

end

end

def calc_sales_totals(rows)

total_qty = total_price = total_disc = 0

rows.each do |row|

total_qty += row.qty

total_price += row.price

total_disc += calc_discount(row.qty, row.price)

end

end

connect_to_database

rows = read_sales_data

Profiler__::start_profile

calc_sales_totals(rows)

Profiler__::stop_profile

Profiler__::print_profile(STDOUT)

produces:

% cumulative self self total

time seconds seconds calls ms/call ms/call name

50.00 0.04 0.04 648 0.06 0.06 Range#include?

25.00 0.06 0.02 324 0.06 0.22 Object#calc_discount

12.50 0.07 0.01 648 0.02 0.08 Range#===

12.50 0.08 0.01 1 10.00 80.00 Array#each

0.00 0.08 0.00 648 0.00 0.00 S#qty

0.00 0.08 0.00 648 0.00 0.00 Float#<=>

0.00 0.08 0.00 648 0.00 0.00 Fixnum#<=>

0.00 0.08 0.00 648 0.00 0.00 S#price

0.00 0.08 0.00 3 0.00 0.00 Fixnum#+

0.00 0.08 0.00 1 0.00 80.00 Object#calc_sales_totals

0.00 0.08 0.00 1 0.00 80.00 #toplevel

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slprofiler_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=793

PSTORE 794

P
S

to
re

Library
PStore Persistent Object Storage

The PStore class provides transactional, file-based, persistent storage of Ruby objects. Each

PStore can store several object hierarchies. Each hierarchy has a root, identified by a key

(often a string). At the start of a PStore transaction, these hierarchies are read from a disk

file and made available to the Ruby program. At the end of the transaction, the hierarchies

are written back to the file. Any changes made to objects in these hierarchies are therefore

saved on disk, to be read at the start of the next transaction that uses that file.

In normal use, a PStore object is created and then is used one or more times to control a

transaction. Within the body of the transaction, any object hierarchies that had previously

been saved are made available, and any changes to object hierarchies, and any new hierar-

chies, are written back to the file at the end.

• The following example stores two hierarchies in a PStore. The first, identified by the

key "names", is an array of strings. The second, identified by "tree", is a simple binary

tree.

Download samples/slpstore_1.rb

require 'pstore'

require 'pp'

class T

def initialize(val, left=nil, right=nil)

@val, @left, @right = val, left, right

end

def to_a

[@val, @left.to_a, @right.to_a]

end

end

store = PStore.new("/tmp/store")

store.transaction do

store['names'] = ['Douglas', 'Barenberg', 'Meyer']

store['tree'] = T.new('top',

T.new('A', T.new('B')),

T.new('C', T.new('D', nil, T.new('E'))))

end

now read it back in

store.transaction do

puts "Roots: #{store.roots.join(', ')}"

puts store['names'].join(', ')

pp store['tree'].to_a

end

produces:

Roots: names, tree

Douglas, Barenberg, Meyer

["top",

["A", ["B", [], []], []],

["C", ["D", [], ["E", [], []]], []]]

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slpstore_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=794

PTY 795

P
T

Y

Library
PTY Pseudo-Terminal Interface: Interact with External Processes

Many Unix platforms support a pseudo-terminal—a device pair where one end emulatesOnly if: Unix
with pty support

a process running on a conventional terminal, and the other end can read and write that

terminal as if it were a user looking at a screen and typing on a keyboard.

The PTY library provides the method spawn, which starts the given command (by default

a shell), connecting it to one end of a pseudo-terminal. It then returns the reader and writer

streams connected to that terminal, allowing your process to interact with the running pro-

cess.

Working with pseudo-terminals can be tricky. See IO#expect on page 752 for a convenience

method that makes life easier. You might also want to track down Ara T. Howard’s Session

module for an even simpler approach to driving subprocesses.4

See also: expect (page 752)

• Runs irb in a subshell and asks it to convert the string “cat” to uppercase:

Download samples/slpty_1.rb

require 'pty'

require 'expect'

$expect_verbose = true

PTY.spawn("/usr/local/rubybook/bin/ruby /usr/local/rubybook/bin/irb") do |reader,

writer, pid|

reader.expect(/irb.*:0> /)

writer.puts "'cat'.upcase"

reader.expect("=> ")

answer = reader.gets

puts "Answer = #{answer}"

end

produces:

irb(main):001:0> 'cat'.upcase

=> Answer = "CAT"

4. Currently found at http://www.codeforpeople.com/lib/ruby/session/.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slpty_1.rb
http://www.codeforpeople.com/lib/ruby/session/
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=795

RATIONAL 796

R
a
ti
o
n
a
l

Library
Rational Rational Numbers

The Rational class is now built in to Ruby.1.9 The vestigial Rational library simply defines a

few aliases for backward compatibility. For the classes Fixnum and Bignum, the following

aliases are defined:

Floating-point division

quof is an alias for fdiv.

Rational division

rdiv is an alias for quo.

Exponentiation

power! and rpower are aliases for **.

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=796

READLINE 797

R
e
a
d
lin

e

Library
Readline Interface to GNU Readline Library

The Readline module allows programs to prompt for and receive lines of user input. TheOnly if: GNU
readline present

module allows lines to be edited during entry, and command history allows previous com-

mands to be recalled and edited. The history can be searched, allowing the user to (for

example) recall a previous command containing the text ruby. Command completion allows

context-sensitive shortcuts: tokens can be expanded in the command line under control of

the invoking application. In typical GNU fashion, the underlying readline library supports

more options than any user could need and emulates both vi and emacs key bindings.

• This meaningless program implements a trivial interpreter that can increment and

decrement a value. It uses the Abbrev module (described on page 729) to expand abbre-

viated commands when the Tab key is pressed.

Download samples/slreadline_1.rb

require 'readline'

include Readline

require 'abbrev'

COMMANDS = %w{ exit inc dec }

ABBREV = COMMANDS.abbrev

Readline.completion_proc = proc do |string|

ABBREV[string]

end

value = 0

loop do

cmd = readline("wibble [#{value}]: ", true)

break if cmd.nil?

case cmd.strip

when "exit"

break

when "inc"

value += 1

when "dec"

value = 1

else

puts "Invalid command #{cmd}"

end

end

% ruby code/readline.rb

wibble [0]: inc

wibble [1]: <uparrow> => inc

wibble [2]: d<tab> => dec

wibble [1]: ^r i => inc

wibble [2]: exit

%

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slreadline_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=797

RESOLV 798

R
e
s
o
lv

Library
Resolv DNS Client Library

The resolv library is a pure-Ruby implementation of a DNS client—it can be used to convert

domain names into corresponding IP addresses. It also supports reverse lookups and the

resolution of names in the local hosts file.

The resolv library exists to overcome a problem with the interaction of the standard oper-

ating system DNS lookup and the Ruby threading mechanism. On most operating systems,

name resolution is synchronous: you issue the call to look up a name, and the call returns

when an address has been fetched. Because this lookup often involves network traffic and

because DNS servers can be slow, this call may take a (relatively) long time. During this

time, the thread that issued the call is effectively suspended. Because Ruby does not use

operating system threads, this means that the interpreter is effectively suspended while a

DNS request is being executed from any running Ruby thread. This is sometimes unaccept-

able. Enter the resolv library. Because it is written in Ruby, it automatically participates in

Ruby threading, and hence other Ruby threads can run while a DNS lookup is in progress

in one thread.

Loading the additional library resolv-replace insinuates the resolv library into Ruby’s socket

library (see page 811).

• Uses the standard socket library to look up a name. A counter running in a separate

thread is suspended while this takes place.

Download samples/slresolve_1.rb

require 'socket'

count = 0

thread = Thread.new { Thread.pass; loop { count += 1; } }

IPSocket.getaddress("www.rubylang.org") # => "221.186.184.68"

count # => 0

• Repeats the experiment but uses the resolv library to allow Ruby’s threading to work

in parallel:

Download samples/slresolve_2.rb

require 'socket'

require 'resolvreplace'

count = 0

thread = Thread.new { Thread.pass; loop { count += 1; } }

IPSocket.getaddress("www.rubylang.org") # => "221.186.184.68"

count # => 1334853

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slresolve_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slresolve_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=798

REXML 799

R
E

X
M

L

Library
REXML XML Processing Library

REXML is a pure-Ruby XML processing library, including DTD-compliant document pars-

ing, XPath querying, and document generation. It supports both tree-based and stream-

based document processing. Because it is written in Ruby, it is available on all platforms

supporting Ruby. REXML has a full and complex interface—this section contains a few

small examples.

• Assume the file demo.xml contains this:

<classes language="ruby">

<class name="Numeric">

Numeric represents all numbers.

<class name="Float">

Floating point numbers have a fraction and a mantissa.

</class>

<class name="Integer">

Integers contain exact integral values.

<class name="Fixnum">

Fixnums are stored as machine ints.

</class>

<class name="Bignum">

Bignums store arbitratysized integers.

</class>

</class>

</class>

</classes>

• Reads and processes the XML:

Download samples/slrexml_2.rb

require 'rexml/document'

xml = REXML::Document.new(File.open("demo.xml"))

puts "Root element: #{xml.root.name}"

puts "\nThe names of all classes"

xml.elements.each("//class") {|c| puts c.attributes["name"] }

puts "\nThe description of Fixnum"

p xml.elements["//class[@name='Fixnum']"].text

produces:

Root element: classes

The names of all classes

Numeric

Float

Integer

Fixnum

Bignum

The description of Fixnum

"\n Fixnums are stored as machine ints.\n "

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slrexml_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=799

REXML 800

R
E

X
M

L

• Reads in a document, adds and deletes elements, and manipulates attributes before

writing it back out:

Download samples/slrexml_3.rb

require 'rexml/document'

include REXML

xml = Document.new(File.open("demo.xml"))

cls = Element.new("class")

cls.attributes["name"] = "Rational"

cls.text = "Represents complex numbers"

Remove Integer's children, and add our new node as

the one after Integer

int = xml.elements["//class[@name='Integer']"]

int.delete_at(1)

int.delete_at(2)

int.next_sibling = cls

Change all the 'name' attributes to class_name

xml.elements.each("//class") do |c|

c.attributes['class_name'] = c.attributes['name']

c.attributes.delete('name')

end

and write it out with a XML declaration at the front

xml << XMLDecl.new

xml.write(STDOUT, 0)

produces:

<?xml version='1.0'?>

<classes language='ruby'>

<class class_name='Numeric'>

Numeric represents all numbers.

<class class_name='Float'>

Floating point numbers have a fraction and a mantissa.

</class>

<class class_name='Integer'>

Integers contain exact integral values.

</class>

<class class_name='Rational'>

Represents complex numbers

</class>

</class>

</classes>

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slrexml_3.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=800

RINDA 801

R
in

d
a

Library
Rinda Tuplespace Implementation

Tuplespaces are a distributed blackboard system. Processes may add tuples to the black-

board, and other processes may remove tuples from the blackboard that match a certain

pattern. Originally presented by David Gelernter, tuplespaces offer an interesting scheme

for distributed cooperation among heterogeneous processes.

Rinda, the Ruby implementation of tuplespaces, offers some interesting additions to the

concept. In particular, the Rinda implementation uses the === operator to match tuples. This

means that tuples may be matched using regular expressions, the classes of their elements,

and the element values.

See also: DRb (page 747)

• The blackboard is a DRb server that offers a shared tuplespace:

Download samples/slrinda_1.rb

require 'rinda/tuplespace'

MY_URI = "druby://127.0.0.1:12131"

DRb.start_service(MY_URI, Rinda::TupleSpace.new)

DRb.thread.join

• The arithmetic agent accepts messages containing an arithmetic operator and two num-

bers. It stores the result back on the blackboard.

Download samples/slrinda_2.rb

require 'rinda/rinda'

MY_URI = "druby://127.0.0.1:12131"

DRb.start_service

ts = Rinda::TupleSpaceProxy.new(DRbObject.new(nil, MY_URI))

loop do

op, v1, v2 = ts.take([%r{^[+/*]$}, Numeric, Numeric])

ts.write(["result", v1.send(op, v2)])

end

• The client places tuples on the blackboard and reads back the result of each:

Download samples/slrinda_3.rb

require 'rinda/rinda'

MY_URI = "druby://127.0.0.1:12131"

DRb.start_service

ts = Rinda::TupleSpaceProxy.new(DRbObject.new(nil, MY_URI))

queries = [["+", 1, 2], ["*", 3, 4], ["/", 8, 2]]

queries.each do |q|

ts.write(q)

ans = ts.take(["result", nil])

puts "#{q[1]} #{q[0]} #{q[2]} = #{ans[1]}"

end

produces:

1 + 2 = 3

3 * 4 = 12

8 / 2 = 4

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slrinda_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slrinda_2.rb
http://media.pragprog.com/titles/ruby3/code/samples/slrinda_3.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=801

RIPPER 802

R
ip

p
e
r

Library
Ripper Parse Ruby Source

The ripper library gives you access to Ruby’s parser. It can tokenize input, return lexical

tokens, and return a nested S-expression. It also supports event-based parsing.

• Tokenize a line of Ruby code:

Download samples/slripper_1.rb

require "ripper"

content = "a=1;b=2;puts a+b"

Ripper.tokenize(content) # => ["a", "=", "1", ";", "b", "=", "2",

";", "puts", " ", "a", "+", "b"]

• Does a lexical analysis, returning token types, values, line and column numbers:

Download samples/slripper_2.rb

require "ripper"

require "pp"

content = "a=1;b=2;puts a+b"

pp Ripper.lex(content)[0,5]

produces:

[[[1, 0], :on_ident, "a"],

[[1, 1], :on_op, "="],

[[1, 2], :on_int, "1"],

[[1, 3], :on_semicolon, ";"],

[[1, 4], :on_ident, "b"]]

• Returns the sexp representing a chunk of code:

Download samples/slripper_3.rb

require "ripper"

require "pp"

content = "a=1;b=2;puts a+b"

pp Ripper.sexp(content)

produces:

[:program,

[[:assign, [:var_field, [:@ident, "a", [1, 0]]], [:@int, "1", [1, 2]]],

[:assign, [:var_field, [:@ident, "b", [1, 4]]], [:@int, "2", [1, 6]]],

[:command,

[:@ident, "puts", [1, 8]],

[:args_add_block,

[[:binary,

[:var_ref, [:@ident, "a", [1, 13]]],

:+,

[:var_ref, [:@ident, "b", [1, 15]]]]],

false]]]]

• As a (silly) example of event-based lexical analysis, here’s a program that finds class

definitions and their associated comment blocks. For each, it outputs the class name

and the comment. It might be considered the zeroth iteration of an RDoc-like program.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slripper_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slripper_2.rb
http://media.pragprog.com/titles/ruby3/code/samples/slripper_3.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=802

RIPPER 803

R
ip

p
e
r

The parameter to parse is an accumulator—it is passed between event handlers and can

be used to construct the result.

Download samples/slripper_4.rb

require 'ripper'

This class handles parser events, extracting

comments and attaching them to class definitions

class BabyRDoc < Ripper::Filter

def initialize(*)

super

reset_state

end

def on_default(event, token, output)

reset_state

output

end

def on_sp(token, output) output end

alias on_nil on_sp

def on_comment(comment, output)

@comment << comment.sub(/^\s*#\s*/, " ")

output

end

def on_kw(name, output)

@expecting_class_name = (name == 'class')

output

end

def on_const(name, output)

if @expecting_class_name

output << "#{name}:\n"

output << @comment

end

reset_state

output

end

private

def reset_state

@comment = ""

@expecting_class_name = false

end

end

BabyRDoc.new(File.read(__FILE__)).parse(STDOUT)

produces:

BabyRDoc:

This class handles parser events, extracting

comments and attaching them to class definitions

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slripper_4.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=803

RSS 804

R
S

S

Library
RSS RSS Feed Generation and Parsing

Rich (or RDF) Site Summary, Really Simple Syndication—take your pick. RSS is the pro-

tocol of choice for disseminating news on the Internet. The Ruby RSS library supports

creating and parsing streams compliant with RSS 0.9, RSS 1.0, and RSS 2.0.

• Reads and summarizes the latest stories from http://rubylang.org:

Download samples/slrss_1.rb

require 'rss/2.0'

require 'openuri'

open('http://rubylang.org/en/feeds/news.rss') do |http|

response = http.read

result = RSS::Parser.parse(response, false)

puts "Channel: " + result.channel.title

result.items.each_with_index do |item, i|

puts "#{i+1}. #{item.title}" if i < 3

end

end

produces:

Channel: Ruby News

1. MountainWest RubyConf Schedule

2. Ruby 1.9.1 released

3. Server maintenance

• Generates some RSS information:

Download samples/slrss_2.rb

require 'rss/0.9'

rss = RSS::Rss.new("0.9")

chan = RSS::Rss::Channel.new

chan.title = "The Daily Dave"

chan.description = "Dave's Feed"

chan.language = "enUS"

chan.link = "http://pragdave.pragprog.com"

rss.channel = chan

image = RSS::Rss::Channel::Image.new

image.url = "http://pragprog.com/pragdave.gif"

image.title = "PragDave"

image.link = chan.link

chan.image = image

3.times do |i|

item = RSS::Rss::Channel::Item.new

item.title = "My News Number #{i}"

item.link = "http://pragprog.com/pragdave/story_#{i}"

item.description = "This is a story about number #{i}"

chan.items << item

end

puts rss.to_s

Report erratum

http://ruby-lang.org
http://media.pragprog.com/titles/ruby3/code/samples/slrss_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slrss_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=804

SCANF 805

S
c
a
n
f

Library
Scanf Input Format Conversion

Implements a version of the C library scanf function, which extracts values from a string

under the control of a format specifier.

The Ruby version of the library adds a scanf method to both class IO and class String. The

version in IO applies the format string to the next line read from the receiver. The version

in String applies the format string to the receiver. The library also adds the global method

Kernel.scanf, which uses as its source the next line of standard input.

Scanf has one main advantage over using regular expressions to break apart a string: a

regular expression extracts strings whereas scanf will return objects converted to the correct

type.

• Splits a date string into its constituents:

Download samples/slscanf_1.rb

require 'scanf'

date = "20041215"

year, month, day = date.scanf("%4d%2d%2d")

year # => 2004

month # => 12

day # => 15

year.class # => Fixnum

• The block form of scanf applies the format multiple times to the input string, returning

each set of results to the block:

Download samples/slscanf_2.rb

require 'scanf'

data = "cat:7 dog:9 cow:17 walrus:31"

data.scanf("%[^:]:%d ") do |animal, value|

puts "A #{animal.strip} has #{value*1.4}"

end

produces:

A cat has 9.8

A dog has 12.6

A cow has 23.8

A walrus has 43.4

• Extracts hex numbers:

Download samples/slscanf_3.rb

require 'scanf'

data = "decaf bad"

data.scanf("%3x%2x%x") # => [3564, 175, 2989]

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slscanf_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slscanf_2.rb
http://media.pragprog.com/titles/ruby3/code/samples/slscanf_3.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=805

SDBM 806

S
D

B
M

Library
SDBM Interface to SDBM Database

The SDBM database implements a simple key/value persistence mechanism. Because the

underlying SDBM library itself is provided with Ruby, there are no external dependencies,

and SDBM should be available on all platforms supported by Ruby. SDBM database keys

and values must be strings. SDBM databases are effectively hashlike.

See also: DBM (page 743), GDBM (page 758)

• Stores a record in a new database and then fetches it back. Unlike the DBM library, all

values to SDBM must be strings (or implement to_str).

Download samples/slsdbm_1.rb

require 'sdbm'

require 'date'

SDBM.open("data.dbm") do |dbm|

dbm['name'] = "Walter Wombat"

dbm['dob'] = Date.new(1997, 12,25).to_s

dbm['uses'] = "Ruby"

end

SDBM.open("data.dbm", nil) do |dbm|

p dbm.keys

p dbm['dob']

p dbm['dob'].class

end

produces:

["name", "dob", "uses"]

"19971225"

String

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slsdbm_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=806

SECURERANDOM 807

S
e
c
u
re

R
a
n
d
o
m

Library
SecureRandom Access to Secure Random Number Generators

Provides access to one of your operating system’s secure random number generators. If the

OpenSSL library is installed, the module uses it’s random_bytes method. Otherwise, the

module looks for and uses /dev/urandom or the CryptGenRandom method in the Windows

API.

• Generates some random numbers:

Download samples/slsecurerandom_1.rb

require 'securerandom'

Random floats such that 0.0 <= rand < 1.0

SecureRandom.random_number(0) # => 0.936650421906334

SecureRandom.random_number(0) # => 0.320008123694954

Random integers such that 0 <= rand < 1000

SecureRandom.random_number(1000) # => 670

SecureRandom.random_number(1000) # => 486

• Generates 10 random bytes, returning the result as a hex string, a Base64 string, and a

string of binary data. A different random string is returned for each call.

Download samples/slsecurerandom_2.rb

require 'securerandom'

SecureRandom.hex(10) # => "e04f6894931d226d30a3"

SecureRandom.base64(10) # => "BENl6hFc8BuklQ=="

SecureRandom.random_bytes(10) # => "NqP\xB7d[\xD7\xF5k5"

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slsecurerandom_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slsecurerandom_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=807

SET 808

S
e
t

Library
Set Implement Various Forms of Set

A Set is a collection of unique values (where uniqueness is determined using eql? and hash).

Convenience methods let you build sets from enumerable objects.

• Basic set operations:

require 'set'

set1 = Set.new([:bear, :cat, :deer])

set1.include?(:bat) # => false

set1.add(:fox) # => #<Set: {:bear, :cat, :deer, :fox}>

partition = set1.classify {|element| element.to_s.length }

partition # => {4=>#<Set: {:bear, :deer}>, 3=>#<Set: {:cat,

:fox}>}

set2 = [:cat, :dog, :cow].to_set

set1 | set2 # => #<Set: {:bear, :cat, :deer, :fox, :dog, :cow}>

set1 & set2 # => #<Set: {:cat}>

set1 set2 # => #<Set: {:bear, :deer, :fox}>

set1 ^ set2 # => #<Set: {:dog, :cow, :bear, :deer, :fox}>

• Partitions the users in our /etc/passwd file into subsets where members of each subset

have adjacent user IDs:

require 'etc'

require 'set'

users = []

Etc.passwd {|u| users << u }

related_users = users.to_set.divide do |u1, u2|

(u1.uid u2.uid).abs <= 1

end

related_users.each do |relatives|

relatives.each {|u| print "#{u.uid}/#{u.name} " }

puts

end

produces:

67/_ard

93/_calendar 92/_securityagent 91/_tokend

59/_devdocs 60/_sandbox 58/_serialnumberd

26/_lp 27/_postfix

54/_mcxalr 55/_pcastagent 56/_pcastserver

65/_mdnsresponder

4/_uucp

1/daemon 0/root

501/dave 502/juliet 503/testuser

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=808

SHELLWORDS 809

S
h
e
llw

o
rd

s

Library
Shellwords Manipulate Shell Lines Using POSIX Semantics

Given a string representative of a shell command line, splits it into word tokens according

to POSIX semantics. Also allows you to create properly escaped shell lines from individual

words.

• Spaces between double or single quotes are treated as part of a word.

• Double quotes may be escaped using a backslash.

• Spaces escaped by a backslash are not used to separate words.

• Otherwise, tokens separated by whitespace are treated as words.

Download samples/slshellwords_1.rb

require 'shellwords'

include Shellwords

line = %{Code Ruby Be Happy!}

shellwords(line) # => ["Code", "Ruby", "Be",

"Happy!"]

line = %{"Code Ruby" 'Be Happy'!}

shellwords(line) # => ["Code Ruby", "Be Happy!"]

line = %q{Code\ Ruby "Be Happy"!}

shellwords(line) # => ["Code Ruby", "Be Happy!"]

shelljoin(["Code Ruby", "Be Happy"]) # => Code\ Ruby Be\ Happy

In addition, the library adds shellsplit and shelljoin methods to classes String and CArray,

respectively:

Download samples/slshellwords_2.rb

require 'shellwords'

include Shellwords

%{Code\\ Ruby Be Happy!}.shellsplit # => ["Code Ruby", "Be", "Happy!"]

["Code Ruby", "Be Happy"].shelljoin # => "Code\\ Ruby Be\\ Happy"

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slshellwords_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slshellwords_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=809

SINGLETON 810

S
in

g
le

to
n

Library
Singleton The Singleton Pattern

The Singleton design pattern ensures that only one instance of a particular class may be

created for the lifetime of a program (see Design Patterns [GHJV95]).

The singleton library makes this simple to implement. Mix the Singleton module into each

class that is to be a singleton, and that class’s new method will be made private. In its place,

users of the class call the method instance, which returns a singleton instance of that class.

In this example, the two instances of MyClass are the same object:

Download samples/slsingleton_1.rb

require 'singleton'

class MyClass

attr_accessor :data

include Singleton

end

a = MyClass.instance # => #<MyClass:0x128d4c>

b = MyClass.instance # => #<MyClass:0x128d4c>

a.data = 123 # => 123

b.data # => 123

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slsingleton_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=810

SOCKET 811

S
o
ck

e
t

Library
Socket IP, TCP, Unix, and SOCKS Socket Access

IO

BasicSocket

IPSocket

TCPSocket

SOCKSSocket

TCPServer

UDPSocket

Socket

UNIXSocket

UNIXServer

The socket extension defines nine classes for

accessing the socket-level communications of

the underlying system. All of these classes are

(indirect) subclasses of class IO, meaning that

IO’s methods can be used with socket connec-

tions.

The hierarchy of socket classes reflects the

reality of network programming and hence is

somewhat confusing. The BasicSocket class

largely contains methods common to data

transfer for all socket-based connections. It is subclassed to provide protocol-specific imple-

mentations: IPSocket, UNIXSocket (for domain sockets), and (indirectly) TCPSocket, UDP-

Socket, and SOCKSSocket.

BasicSocket is also subclassed by class Socket, which is a more generic interface to socket-

oriented networking. Although classes such as TCPSocket are specific to a protocol, Socket

objects can, with some work, be used regardless of protocol.

TCPSocket, SOCKSSocket, and UNIXSocket are each connection oriented. Each has a cor-

responding xxxxServer class, which implements the server end of a connection.

The socket libraries are something that you may never use directly. However, if you do use

them, you’ll need to know the details. For that reason, we’ve included a reference section

covering the socket library methods in Appendix A on page 878.

The following code shows a trivial UDP server and client. For more examples see Appendix

A:

Download samples/slsocket_1.rb

Simple logger prints messages

received on UDP port 12121

require 'socket'

socket = UDPSocket.new

socket.bind("127.0.0.1", 12121)

loop do

msg, sender = socket.recvfrom(100)

host = sender[3]

puts "#{Time.now}: #{host} '#{msg}'"

STDOUT.flush

end

Download samples/slsocket_2.rb

Exercise the logger

require 'socket'

log = UDPSocket.new

log.connect("127.0.0.1", 12121)

log.print "Up and Running!"

process ... process ..

log.print "Done!"

produces:

20090413 13:27:15 0500: 127.0.0.1 'Up and Running!'

20090413 13:27:15 0500: 127.0.0.1 'Done!'

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slsocket_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slsocket_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=811

STRINGIO 812

S
tr

in
g
IO

Library
StringIO Treat Strings as IO Objects

In some ways the distinction between strings and file contents is artificial: the contents of

a file is basically a string that happens to live on disk, not in memory. The StringIO library

aims to unify the two concepts, making strings act as if they were opened IO objects. Once

a string is wrapped in a StringIO object, it can be read from and written to as if it were an

open file. This can make unit testing a lot easier. It also lets you pass strings into classes and

methods that were originally written to work with files. StringIO1.9 objects take their encoding

from the string you pass in or the default external encoding is no string is passed.

• Reads and writes from a string:

Download samples/slstringio_1.rb

require 'stringio'

sio = StringIO.new("time flies like an arrow")

sio.read(5) # => "time "

sio.read(5) # => "flies"

sio.pos = 19

sio.read(5) # => "arrow"

sio.rewind # => 0

sio.write("fruit") # => 5

sio.pos = 16

sio.write("a banana") # => 8

sio.rewind # => 0

sio.read # => "fruitflies like a banana"

• Uses StringIO as a testing aid:

Download samples/slstringio_2.rb

require 'stringio'

require 'csv'

require 'test/unit'

class TestCSV < Test::Unit::TestCase

def test_simple

StringIO.open do |op|

CSV(op) do |csv|

csv << [1, "line 1", 27]

csv << [2, nil, 123]

end

assert_equal("1,line 1,27\n2,,123\n", op.string)

end

end

end

produces:

Loaded suite /tmp/prog

Started

.

Finished in 0.013298 seconds.

1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slstringio_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slstringio_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=812

STRINGSCANNER 813

S
tr

in
g
S

c
a
n
n
e
r

Library
StringScanner Basic String Tokenizer

StringScanner objects progress through a string, matching (and optionally returning) tokens

that match a given pattern. Unlike the built-in scan methods, StringScanner objects main-

tain a current position pointer in the string being examined, so each call resumes from the

position in the string where the previous call left off. Pattern matches are anchored to this

previous point.

• Implements a simple language:

Download samples/slstrscan_1.rb

require 'strscan'

Handle the language:

set <var> = <value>

get <var>

values = {}

while line = gets

scanner = StringScanner.new(line.chomp)

scanner.scan(/(get|set)\s+/) or fail "Missing command"

cmd = scanner[1]

var_name = scanner.scan(/\w+/) or fail "Missing variable"

case cmd

when "get"

puts "#{var_name} => #{values[var_name].inspect}"

when "set"

scanner.skip(/\s+=\s+/) or fail "Missing '='"

value = scanner.rest

values[var_name] = value

else

fail cmd

end

end

produces:

% ruby code/strscan.rb

set a = dave

set b = hello

get b

b => "hello"

get a

a => "dave"

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slstrscan_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=813

SYSLOG 814

S
y
s
lo

g

Library
Syslog Interface to Unix System Logging

The Syslog class is a simple wrapper around the Unix syslog(3) library. It allows messagesOnly if: Unix
system with

syslog to be written at various severity levels to the logging daemon, where they are disseminated

according to the configuration in syslog.conf. The following examples assume the log file is

/var/log/system.log.

• Adds to our local system log. We’ll log all the levels configured for the user facility for

our system (which is every level except debug and info messages).

Download samples/slsyslog_1.rb

require 'syslog'

log = Syslog.open("test") # "test" is the app name

log.debug("Warm and fuzzy greetings from your program")

log.info("Program starting")

log.notice("I said 'Hello!'")

log.warning("If you don't respond soon, I'm quitting")

log.err("You haven't responded after %d milliseconds", 7)

log.alert("I'm telling your mother...")

log.emerg("I'm feeling totally crushed")

log.crit("Aarrgh....")

system("tail 6 /var/log/system.log")

produces:

Apr 13 13:27:15 dave2 test[86448]: I said 'Hello!'

Apr 13 13:27:15 dave2 test[86448]: If you don't respond soon, I'm quitting

Apr 13 13:27:15 dave2 test[86448]: You haven't responded after 7 milliseconds

Apr 13 13:27:15 dave2 test[86448]: I'm telling your mother...

Apr 13 13:27:15 dave2 test[86448]: I'm feeling totally crushed

Apr 13 13:27:15 dave2 test[86448]: Aarrgh....

• Logs only errors and above:

Download samples/slsyslog_3.rb

require 'syslog'

log = Syslog.open("test")

log.mask = Syslog::LOG_UPTO(Syslog::LOG_ERR)

log.debug("Warm and fuzzy greetings from your program")

log.info("Program starting")

log.notice("I said 'Hello!'")

log.warning("If you don't respond soon, I'm quitting")

log.err("You haven't responded after %d milliseconds", 7)

log.alert("I'm telling your mother...")

log.emerg("I'm feeling totally crushed")

log.crit("Aarrgh....")

system("tail 4 /var/log/system.log")

produces:

Apr 13 13:27:16 dave2 test[86454]: You haven't responded after 7 milliseconds

Apr 13 13:27:16 dave2 test[86454]: I'm telling your mother...

Apr 13 13:27:16 dave2 test[86454]: I'm feeling totally crushed

Apr 13 13:27:16 dave2 test[86454]: Aarrgh....

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slsyslog_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slsyslog_3.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=814

TEMPFILE 815

T
e
m

p
fi
le

Library
Tempfile Temporary File Support

Class Tempfile creates managed temporary files. Although they behave the same as any other

IO objects, temporary files are automatically deleted when the Ruby program terminates.

Once a Tempfile object has been created, the underlying file may be opened and closed a

number of times in succession.

Tempfile does not directly inherit from IO. Instead, it delegates calls to a File object. From

the programmer’s perspective, apart from the unusual new, open, and close semantics, a

Tempfile object behaves as if it were an IO object.

If you don’t specify a directory to hold temporary files when you create them, the tmpdir

library will be used to find a system-dependent location.

See also: tmpdir (page 822)

Download samples/sltempfile_1.rb

require 'tempfile'

tf = Tempfile.new("afile")

tf.path # => "/var/folders/.../Tmp/afile2009041386464iwdzcf0"

tf.puts("Cosi Fan Tutte")

tf.close

tf.open

tf.gets # => "Cosi Fan Tutte\n"

tf.close(true)

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/sltempfile_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=815

TEST::UNIT 816

T
e
s
t:

:U
n
it

Library
Test::Unit Unit Testing Framework

Test::Unit is a unit testing framework based on the original SUnit Smalltalk framework. It

provides a structure in which unit tests may be organized, selected, and run. Tests can be

run from the command line or using one of several GUI-based interfaces.

Chapter 13 on page 198 contains a tutorial on Test::Unit.

We could have a simple playlist class, designed to store and retrieve songs:

Download samples/sltestunit_1.rb

require 'code/testunit/song.rb'

require 'forwardable'

class Playlist

extend Forwardable

def_delegator(:@list, :<<, :add_song)

def_delegators(:@list, :size, :empty?)

def initialize

@list = []

end

def find(title)

@list.find {|song| song.title == title}

end

end

We can write unit tests to exercise this class. The Test::Unit framework is smart enough to

run the tests in a test class if no main program is supplied.

Download samples/sltestunit_2.rb

require 'test/unit'

require 'code/testunit/playlist.rb'

class TestPlaylist < Test::Unit::TestCase

def test_adding

pl = Playlist.new

assert_empty(pl)

assert_nil(pl.find("My Way"))

pl.add_song(Song.new("My Way", "Sinatra"))

assert_equal(1, pl.size)

s = pl.find("My Way")

refute_nil(s)

assert_equal("Sinatra", s.artist)

assert_nil(pl.find("Chicago"))

.. and so on

end

end

produces:

Loaded suite /tmp/prog

Started

.

Finished in 0.002641 seconds.

1 tests, 7 assertions, 0 failures, 0 errors, 0 skips

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/sltestunit_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/sltestunit_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=816

THREAD 817

T
h
re

a
d

Library
thread Utility Functionality for Threading

The thread library adds some utility functions and classes for supporting threads. Much of

this has been superseded by the Monitor class, but the thread library contains two classes,

Queue and SizedQueue, that are still useful. Both classes implement a thread-safe queue

that can be used to pass objects between producers and consumers in multiple threads.

The Queue object implements a unbounded queue. A SizedQueue is told its capacity; any

producer that tries to add an object when the queue is at that capacity will block until a

consumer has removed an object.

• The following example was provided by Robert Kellner. It has three consumers taking

objects from an unsized queue. Those objects are provided by two producers, which

each add three items.

Download samples/slthread_1.rb

require 'thread'

queue = Queue.new

consumers = (1..3).map do |i|

Thread.new("consumer #{i}") do |name|

begin

obj = queue.deq

print "#{name}: consumed #{obj.inspect}\n"

end until obj == :END_OF_WORK

end

end

producers = (1..2).map do |i|

Thread.new("producer #{i}") do |name|

3.times do |j|

queue.enq("Item #{j} from #{name}")

end

end

end

producers.each(&:join)

consumers.size.times { queue.enq(:END_OF_WORK) }

consumers.each(&:join)

produces:

consumer 1: consumed "Item 0 from producer 2"

consumer 1: consumed "Item 0 from producer 1"

consumer 2: consumed "Item 1 from producer 2"

consumer 1: consumed "Item 1 from producer 1"

consumer 2: consumed "Item 2 from producer 2"

consumer 3: consumed "Item 2 from producer 1"

consumer 2: consumed :END_OF_WORK

consumer 3: consumed :END_OF_WORK

consumer 1: consumed :END_OF_WORK

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slthread_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=817

THREADSWAIT 818

T
h
re

a
d
s
W

a
it

Library
ThreadsWait Wait for Multiple Threads to Terminate

Class ThreadsWait handles the termination of a group of thread objects. It provides methods

to allow you to check for termination of any managed thread and to wait for all managed

threads to terminate.

The following example kicks off a number of threads that each wait for a slightly shorter

length of time before terminating and returning their thread number. Using ThreadsWait,

we can capture these threads as they terminate, either individually or as a group.

Download samples/slthwait_1.rb

require 'thwait'

group = ThreadsWait.new

construct threads that wait for 1 second, .9 second, etc.

add each to the group

9.times do |i|

thread = Thread.new(i) {|index| sleep 1.0 index/10.0; index }

group.join_nowait(thread)

end

any threads finished?

group.finished? # => false

wait for one to finish

group.next_wait.value # => 8

wait for 5 more to finish

5.times { group.next_wait } # => 5

wait for next one to finish

group.next_wait.value # => 2

and then wait for all the rest

group.all_waits # => nil

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slthwait_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=818

TIME 819

T
im

e

Library
Time Extended Functionality for Class Time

The time library adds functionality to the built-in class Time, supporting date and/or time

formats used by RFC 2822 (e-mail), RFC 2616 (HTTP), and ISO 8601 (the subset used by

XML schema).

require ’time’

Time.rfc2822("Thu, 1 Apr 2008 16:32:45 CST")

→ 20080401 17:32:45 0500

Time.rfc2822("Thu, 1 Apr 2008 16:32:45 0600")

→ 20080401 17:32:45 0500

Time.now.rfc2822 →Mon, 13 Apr 2009 13:27:18 -0500

Time.httpdate("Thu, 01 Apr 2008 16:32:45 GMT")

→ 20080401 11:32:45 0500

Time.httpdate("Thursday, 01Apr04 16:32:45 GMT")

→ 20040401 16:32:45 UTC

Time.httpdate("Thu Apr 1 16:32:45 2008")

→ 20080401 16:32:45 UTC

Time.now.httpdate →Mon, 13 Apr 2009 18:27:18 GMT

Time.xmlschema("20080401T16:32:45")

→ 20080401 16:32:45 0500

Time.xmlschema("20080401T16:32:45.1206:00")

→ 20080401 22:32:45 UTC

Time.now.xmlschema → 2009-04-13T13:27:18-05:00

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=819

TIMEOUT 820

T
im

e
o
u
t

Library
Timeout Run a Block with Timeout

The Timeout.timeout method takes a parameter representing a timeout period in seconds,

an optional exception parameter, and a block. The block is executed, and a timer is run

concurrently. If the block terminates before the timeout, timeout returns the value of the

block. Otherwise, the exception (default Timeout::Error) is raised.

Download samples/sltimeout_1.rb

require 'timeout'

for snooze in 1..2

puts "About to sleep for #{snooze}"

begin

Timeout::timeout(1.5) do |timeout_length|

puts "Timeout period is #{timeout_length}"

sleep(snooze)

puts "That was refreshing"

end

rescue Timeout::Error

puts "Woken up early!!"

end

end

produces:

About to sleep for 1

Timeout period is 1.5

That was refreshing

About to sleep for 2

Timeout period is 1.5

Woken up early!!

Be careful when using timeouts—you may find them interrupting system calls that you

cannot reliably restart, resulting in possible data loss.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/sltimeout_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=820

TK 821

T
k

Library
Tk Wrapper for Tcl/Tk

Of all the Ruby options for creating GUIs, the Tk library is probably the most widely sup-Only if: Tk
library installed

ported, running on Windows, Linux, Mac OS X, and other Unix-like platforms.5 Although

it doesn’t produce the prettiest interfaces, Tk is functional and relatively simple to program.

Download samples/sltk_1.rb

require 'tk'

include Math

TkRoot.new do |root|

title "Curves"

geometry "400x400"

TkCanvas.new(root) do |canvas|

width 400

height 400

pack('side'=>'top', 'fill'=>'both', 'expand'=>'yes')

points = []

10.upto(30) do |scale|

(0.0).step(2*PI,0.1) do |i|

new_x = 5*scale*sin(i) + 200 + scale*sin(i*2)

new_y = 5*scale*cos(i) + 200 + scale*cos(i*6)

points << [new_x, new_y]

f = scale/5.0

r = (Math.sin(f)+1)*127.0

g = (Math.cos(2*f)+1)*127.0

b = (Math.sin(3*f)+1)*127.0

col = sprintf("#%02x%02x%02x", r.to_i, g.to_i, b.to_i)

if points.size == 3

TkcLine.new(canvas,

points[0][0], points[0][1],

points[1][0], points[1][1],

points[2][0], points[2][1],

'smooth'=>'on',

'width'=> 7,

'fill' => col,

'capstyle' => 'round')

points.shift

end

end

end

end

end

Tk.mainloop

5. All these environments require that the Tcl/Tk libraries are installed before the Ruby Tk extension can be

used.

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/sltk_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=821

TMPDIR 822

T
m

p
d
ir

Library
tmpdir System-Independent Temporary Directory Location

The tmpdir library adds the tmpdir method to class Dir. This method returns the path to a

temporary directory that should be writable by the current process. (This will not be true if

none of the well-known temporary directories is writable and if the current working direc-

tory is also not writable.) Candidate directories include those referenced by the environment

variables TMPDIR, TMP, TEMP, and USERPROFILE, the directory /tmp, and (on Windows

boxes) the temp subdirectory of the Windows or System directory.

Download samples/sltmpdir_1.rb

require 'tmpdir'

Dir.tmpdir # => "/var/folders/a4/a4daQQOG4anplm9DAY+TE+++TI/Tmp"

ENV['TMPDIR'] = "/wibble" # doesn't exist

ENV['TMP'] = "/sbin" # not writable

ENV['TEMP'] = "/Users/dave/tmp" # just right

Dir.tmpdir # => "/Users/dave/tmp"

The mktmpdir method can be used to create a new temporary directory:

Download samples/sltmpdir_2.rb

require 'tmpdir'

name = Dir.mktmpdir

.. process, process, process ..

Dir.rmdir(name)

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/sltmpdir_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/sltmpdir_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=822

TRACER 823

T
ra

c
e
r

Library
Tracer Trace Program Execution

The tracer library uses Kernel.set_trace_func to trace all or part of a Ruby program’s exe-

cution. The traced lines show the thread number, file, line number, class, event, and source

line. The events shown are - for a change of line, > for a call, < for a return, C for a class

definition, and E for the end of a definition.

• You can trace an entire program by including the tracer library from the command line:

class Account

def initialize(balance)

@balance = balance

end

def debit(amt)

if @balance < amt

fail "Insufficient funds"

else

@balance = amt

end

end

end

acct = Account.new(100)

acct.debit(40)

% ruby r tracer account.rb

#0:account.rb:1::: class Account

#0:account.rb:1:Class:>: class Account

#0:account.rb:1:Class:<: class Account

#0:account.rb:1::C: class Account

#0:account.rb:2::: def initialize(balance)

#0:account.rb:2:Module:>: def initialize(balance)

#0:account.rb:2:Module:<: def initialize(balance)

#0:account.rb:5::: def debit(amt)

#0:account.rb:5:Module:>: def debit(amt)

#0:account.rb:5:Module:<: def debit(amt)

#0:account.rb:1::E: class Account

#0:account.rb:13::: acct = Account.new(100)

#0:account.rb:13:Class:>: acct = Account.new(100)

#0:account.rb:2:Account:>: def initialize(balance)

#0:account.rb:3:Account:: @balance = balance

#0:account.rb:13:Account:<: acct = Account.new(100)

#0:account.rb:13:Class:<: acct = Account.new(100)

#0:account.rb:14::: acct.debit(40)

#0:account.rb:5:Account:>: def debit(amt)

#0:account.rb:6:Account:: if @balance < amt

#0:account.rb:6:Account:: if @balance < amt

#0:account.rb:6:Fixnum:>: if @balance < amt

#0:account.rb:6:Fixnum:<: if @balance < amt

#0:account.rb:9:Account:: @balance = amt

#0:account.rb:9:Fixnum:>: @balance = amt

#0:account.rb:9:Fixnum:<: @balance = amt

#0:account.rb:9:Account:<: @balance = amt

• You can also use tracer objects to trace just a portion of your code and use filters to

select what to trace:

require 'tracer'

class Account

def initialize(balance)

@balance = balance

end

def debit(amt)

if @balance < amt

fail "Insufficient funds"

else

@balance = amt

end

end

end

#0:account.rb:20::: acct.debit(40)

#0:account.rb:8:Account:: if @balance < amt

#0:account.rb:8:Account:: if @balance < amt

#0:account.rb:11:Account:: @balance = amt

tracer = Tracer.new

tracer.add_filter lambda {|event, *rest| event == "line" }

acct = Account.new(100)

tracer.on do

acct.debit(40)

end

Report erratum

http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=823

TSORT 824

T
S

o
rt

Library
TSort Topological Sort

Given a set of dependencies between nodes (where each node depends on zero or more other

nodes and there are no cycles in the graph of dependencies), a topological sort will return

a list of the nodes ordered such that no node follows a node that depends on it. One use

for this is scheduling tasks, where the order means that you will complete the dependencies

before you start any task that depends on them. The make program uses a topological sort

to order its execution.

In this library’s implementation, you mix in the TSort module and define two methods:

tsort_each_node, which yields each node in turn, and tsort_each_child, which, given a node,

yields each of that nodes dependencies.

• Given the set of dependencies among the steps for making a piña colada, what is the

optimum order for undertaking the steps?

Download samples/sltsort_1.rb

require 'tsort'

class Tasks

include TSort

def initialize

@dependencies = {}

end

def add_dependency(task, *relies_on)

@dependencies[task] = relies_on

end

def tsort_each_node(&block)

@dependencies.each_key(&block)

end

def tsort_each_child(node, &block)

deps = @dependencies[node]

deps.each(&block) if deps

end

end

tasks = Tasks.new

tasks.add_dependency(:add_rum, :open_blender)

tasks.add_dependency(:add_pc_mix, :open_blender)

tasks.add_dependency(:add_ice, :open_blender)

tasks.add_dependency(:close_blender, :add_rum, :add_pc_mix, :add_ice)

tasks.add_dependency(:blend_mix, :close_blender)

tasks.add_dependency(:pour_drink, :blend_mix)

tasks.add_dependency(:pour_drink, :open_blender)

puts tasks.tsort

produces:

open_blender

add_rum

add_pc_mix

add_ice

close_blender

blend_mix

pour_drink

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/sltsort_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=824

UN 825

U
n

Library
un Command-Line Interface to FileUtils

Why un? When you invoke it from the command line with the -r option to Ruby, it spells

-run. This pun gives a hint as to the intent of the library: it lets you run commands (in this

case, a subset of the methods in FileUtils) from the command line. In theory this gives you

an operating system–independent set of file manipulation commands, possibly useful when

writing portable Makefiles.

See also: FileUtils (page 755)

• The available commands are as follows:

% ruby run e cp <options> source dest

% ruby run e ln <options> target linkname

% ruby run e mv <options> source dest

% ruby run e rm <options> file

% ruby run e mkdir <options> dirs

% ruby run e rmdir <options> dirs

% ruby run e install <options> source dest

% ruby run e chmod <options> octal_mode file

% ruby run e touch <options> file

Note the use of -- to tell the Ruby interpreter that options to the program follow.

You can get a list of all available commands with this:

Download samples/slun_1.rb

% ruby run e help

For help on a particular command, append the command’s name:

Download samples/slun_2.rb

% ruby run e help mkdir

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slun_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slun_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=825

URI 826

U
R

I

Library
URI RFC 2396 Uniform Resource Identifier (URI) Support

URI encapsulates the concept of a Uniform Resource Identifier (URI), a way of specifying

some kind of (potentially networked) resource. URIs are a superset of URLs: URLs (such

as the addresses of web pages) allow specification of addresses by location, and URIs also

allow specification by name.

URIs consist of a scheme (such as http, mailto, ftp, and so on), followed by structured data

identifying the resource within the scheme.

URI has factory methods that take a URI string and return a subclass of URI specific to

the scheme. The library explicitly supports the ftp, http, https, ldap, and mailto schemes;

others will be treated as generic URIs. The module also has convenience methods to escape

and unescape URIs. The class Net::HTTP accepts URI objects where a URL parameter is

expected.

See also: open-uri (page 782), Net::HTTP (page 774)

Download samples/sluri_1.rb

require 'uri'

uri = URI.parse("http://pragprog.com:1234/mypage.cgi?q=ruby")

uri.class # => URI::HTTP

uri.scheme # => "http"

uri.host # => "pragprog.com"

uri.port # => 1234

uri.path # => "/mypage.cgi"

uri.query # => "q=ruby"

uri = URI.parse("mailto:ruby@pragprog.com?Subject=help&body=info")

uri.class # => URI::MailTo

uri.scheme # => "mailto"

uri.to # => "ruby@pragprog.com"

uri.headers # => [["Subject", "help"], ["body", "info"]]

uri = URI.parse("ftp://dave@anon.com:/pub/ruby;type=i")

uri.class # => URI::FTP

uri.scheme # => "ftp"

uri.host # => "anon.com"

uri.port # => 21

uri.path # => "pub/ruby"

uri.typecode # => "i"

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/sluri_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=826

WEAKREF 827

W
e
a
k
R

e
f

Library
WeakRef Support for Weak References

In Ruby, objects are not eligible for garbage collection if references still exist to them. Nor-

mally, this is a Good Thing—it would be disconcerting to have an object simply evaporate

while you were using it. However, sometimes you may need more flexibility. For example,

you might want to implement an in-memory cache of commonly used file contents. As you

read more files, the cache grows. At some point, you may run low on memory. The garbage

collector will be invoked, but the objects in the cache are all referenced by the cache data

structures and so will not be deleted.

A weak reference behaves like any normal object reference with one important exception—

the referenced object may be garbage collected, even while references to it exist. In the

cache example, if the cached files were accessed using weak references, once memory runs

low, they will be garbage collected, freeing memory for the rest of the application.

• Weak references introduce a slight complexity. Because the object referenced can be

deleted by garbage collection at any time, code that accesses these objects must take

care to ensure that the references are valid. Two techniques can be used. First, the code

can reference the objects normally. Any attempt to reference an object that has been

garbage collected will raise a WeakRef::RefError exception.

Download samples/slweakref_1.rb

require 'weakref'

Generate lots of small strings. Hopefully the early ones will have

been garbage collected...

refs = (1..10000).map {|i| WeakRef.new("#{i}") }

puts "Last element is #{refs.last}"

puts "First element is #{refs.first}"

produces:

Last element is 10000

prog.rb:6:in `<main>': Invalid Reference probably recycled

(WeakRef::RefError)

• Alternatively, use the WeakRef#weakref_alive? method to check that a reference is

valid before using it. Garbage collection must be disabled during the test and subse-

quent reference to the object. In a single-threaded program, you could use something

like this:

Download samples/slweakref_2.rb

ref = WeakRef.new(some_object)

.. some time later

gc_was_disabled = GC.disable

if ref.weakref_alive?

do stuff with 'ref'

end

GC.enable unless gc_was_disabled

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slweakref_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slweakref_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=827

WEBRICK 828

W
E

B
ri

ck

Library
WEBrick Web Server Toolkit

WEBrick is a pure-Ruby framework for implementing HTTP-based servers. The standard

library includes WEBrick services that implement a standard web server (serving files and

directory listings) and servlets supporting CGI, erb, file download, and the mounting of

Ruby lambdas.

More examples of WEBrick start on page 314.

• The following code mounts two Ruby procs on a web server. Requests to the URI

http://localhost:2000/hello run one proc, and requests to http://localhost:2000/bye

run the other.

Download samples/slwebrick_1.rb

#!/usr/bin/ruby

require 'webrick'

include WEBrick

hello_proc = lambda do |req, resp|

resp['ContentType'] = "text/html"

resp.body = %{

<html><body>

Hello. You're calling from a #{req['UserAgent']}

<p>

I see parameters: #{req.query.keys.join(', ')}

</body></html>

}

end

bye_proc = lambda do |req, resp|

resp['ContentType'] = "text/html"

resp.body = %{

<html><body>

<h3>Goodbye!</h3>

</body></html>

}

end

hello = HTTPServlet::ProcHandler.new(hello_proc)

bye = HTTPServlet::ProcHandler.new(bye_proc)

s = HTTPServer.new(:Port => 2000)

s.mount("/hello", hello)

s.mount("/bye", bye)

trap("INT"){ s.shutdown }

s.start

Report erratum

http://localhost:2000/hello
http://localhost:2000/bye
http://media.pragprog.com/titles/ruby3/code/samples/slwebrick_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=828

WIN32OLE 829

W
IN

3
2
O

L
E

Library
WIN32OLE Windows Automation

Interface to Windows automation, allowing Ruby code to interact with Windows applica-Only if:
Windows

tions. The Ruby interface to Windows is discussed in more detail in Chapter 21 on page 316.

• Opens Internet Explorer and asks it to display our home page:

Download samples/slwin32ole_1.rb

ie = WIN32OLE.new('InternetExplorer.Application')

ie.visible = true

ie.navigate("http://www.pragprog.com")

• Creates a new chart in Microsoft Excel and then rotates it:

Download samples/slwin32ole_2.rb

require 'win32ole'

4100 is the value for the Excel constant xl3DColumn.

ChartTypeVal = 4100;

excel = WIN32OLE.new("excel.application")

Create and rotate the chart

excel['Visible'] = TRUE

excel.Workbooks.Add()

excel.Range("a1")['Value'] = 3

excel.Range("a2")['Value'] = 2

excel.Range("a3")['Value'] = 1

excel.Range("a1:a3").Select()

excelchart = excel.Charts.Add()

excelchart['Type'] = ChartTypeVal

30.step(180, 5) do |rot|

excelchart.rotation = rot

sleep(0.1)

end

excel.ActiveWorkbook.Close(0)

excel.Quit()

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slwin32ole_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slwin32ole_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=829

XMLRPC 830

X
M

L
R

P
C

Library
XMLRPC Remote Procedure Calls using XML-RPC

XMLRPC allows clients to invoke methods on networked servers using the XML-RPC pro-

tocol. Communications take place over HTTP. The server may run in the context of a web

server, in which case ports 80 or 443 (for SSL) will typically be used. The server may also

be run stand-alone. The Ruby XML-RPC server implementation supports operation as a

CGI script, as a mod_ruby script, as a WEBrick handler, and as a stand-alone server. Basic

authentication is supported, and clients can communicate with servers via proxies. Servers

may throw FaultException errors—these generate the corresponding exception on the client

(or optionally may be flagged as a status return to the call).

See also: dRuby (page 747), WEBrick (page 828)

• The following simple server accepts a temperature in Celsius and converts it to Fahren-

heit. It runs within the context of the WEBrick web server.

Download samples/slxmlrpc_1.rb

require 'webrick'

require 'xmlrpc/server'

xml_servlet = XMLRPC::WEBrickServlet.new

xml_servlet.add_handler("convert_celcius") do |celcius|

celcius*1.8 + 32

end

xml_servlet.add_multicall # Add support for multicall

server = WEBrick::HTTPServer.new(:Port => 2000)

server.mount("/RPC2", xml_servlet)

trap("INT"){ server.shutdown }

server.start

• This client makes calls to the temperature conversion server. Note that in the output we

show both the server’s logging and the client program’s output.

Download samples/slxmlrpc_2.rb

require 'xmlrpc/client'

server = XMLRPC::Client.new("localhost", "/RPC2", 2000)

puts server.call("convert_celcius", 0)

puts server.call("convert_celcius", 100)

puts server.multicall(['convert_celcius', 10],

['convert_celcius', 200])

Produces:

localhost [10/Apr/2008:17:17:23 CDT] "POST /RPC2 HTTP/1.1" 200 124 > /RPC2

32.0

localhost [10/Apr/2008:17:17:23 CDT] "POST /RPC2 HTTP/1.1" 200 125 > /RPC2

212.0

localhost [10/Apr/2008:17:17:23 CDT] "POST /RPC2 HTTP/1.1" 200 290 > /RPC2

14.0

392.0

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slxmlrpc_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slxmlrpc_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=830

YAML 831

Y
A

M
L

Library
YAML Object Serialization/Deserialization

The YAML library (also described in the tutorial starting on page 433) serializes and dese-

rializes Ruby object trees to and from an external, readable, plain-text format. YAML can

be used as a portable object marshaling scheme, allowing objects to be passed in plain text

between separate Ruby processes. In some cases, objects may also be exchanged between

Ruby programs and programs in other languages that also have YAML support.

See also: json (page 765)

• YAML can be used to store an object tree in a flat file:

Download samples/slyaml_1.rb

require 'yaml'

tree = { :name => 'ruby',

:uses => ['scripting', 'web', 'testing', 'etc']

}

File.open("tree.yaml", "w") {|f| YAML.dump(tree, f)}

• Once stored, it can be read by another program:

Download samples/slyaml_2.rb

require 'yaml'

tree = YAML.load_file("tree.yaml")

tree[:uses][1] # => "web"

• The YAML format is also a convenient way to store configuration information for

programs. Because it is readable, it can be maintained by hand using a normal editor

and then read as objects by programs. For example, a configuration file may contain

the following:

Download samples/slyaml_3.rb

username: dave

prefs:

background: dark

foreground: cyan

timeout: 30

We can use this in a program:

Download samples/slyaml_4.rb

require 'yaml'

config = YAML.load_file("code/config.yaml")

config["username"] # => "dave"

config["prefs"]["timeout"] * 10 # => 300

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slyaml_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slyaml_2.rb
http://media.pragprog.com/titles/ruby3/code/samples/slyaml_3.rb
http://media.pragprog.com/titles/ruby3/code/samples/slyaml_4.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=831

ZLIB 832

Z
lib

Library
Zlib Read and Write Compressed Files

The Zlib module is home to a number of classes for compressing and decompressing streamsOnly if: zlib
library available

and for working with gzip-format compressed files. They also calculate zip checksums.

• Compresses /etc/passwd as a gzip file and then reads the result back:

Download samples/slzlib_1.rb

require 'zlib'

These methods can take a filename

Zlib::GzipWriter.open("passwd.gz") do |gz|

gz.write(File.read("/etc/passwd"))

end

system("ls l /etc/passwd passwd.gz")

or a stream

File.open("passwd.gz") do |f|

gzip = Zlib::GzipReader.new(f)

data = gzip.read.split(/\n/)

puts data[15,3]

end

produces:

rwrr 1 root wheel 2888 Sep 23 2007 /etc/passwd

rwrwr 1 dave dave 1057 Apr 13 13:27 passwd.gz

daemon:*:1:1:System Services:/var/root:/usr/bin/false

_uucp:*:4:4:Unix to Unix Copy Protocol:/var/spool/uucp:/usr/sbin/uucico

_lp:*:26:26:Printing Services:/var/spool/cups:/usr/bin/false

• Compresses data sent between two processes:

Download samples/slzlib_2.rb

require 'zlib'

rd, wr = IO.pipe

if fork

rd.close

zipper = Zlib::Deflate.new

zipper << "This is a string "

data = zipper.deflate("to compress", Zlib::FINISH)

wr.write(data)

wr.close

Process.wait

else

wr.close

unzipper = Zlib::Inflate.new

unzipper << rd.read

puts "We got: #{unzipper.inflate(nil)}"

end

produces:

We got: This is a string to compress

Report erratum

http://media.pragprog.com/titles/ruby3/code/samples/slzlib_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/slzlib_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=832

