
2.4. Biclustering
Biclustering	can	be	performed	with	the	module	sklearn.cluster.bicluster .	Biclustering	algorithms	simultaneously	cluster	rows	and
columns	of	a	data	matrix.	These	clusters	of	rows	and	columns	are	known	as	biclusters.	Each	determines	a	submatrix	of	the	original
data	matrix	with	some	desired	properties.

For	instance,	given	a	matrix	of	shape	(10,	10) ,	one	possible	bicluster	with	three	rows	and	two	columns	induces	a	submatrix	of	shape
(3,	2) :

For	visualization	purposes,	given	a	bicluster,	the	rows	and	columns	of	the	data	matrix	may	be	rearranged	to	make	the	bicluster
contiguous.

Algorithms	differ	in	how	they	define	biclusters.	Some	of	the	common	types	include:

constant	values,	constant	rows,	or	constant	columns
unusually	high	or	low	values
submatrices	with	low	variance
correlated	rows	or	columns

Algorithms	also	differ	in	how	rows	and	columns	may	be	assigned	to	biclusters,	which	leads	to	different	bicluster	structures.	Block
diagonal	or	checkerboard	structures	occur	when	rows	and	columns	are	divided	into	partitions.

If	each	row	and	each	column	belongs	to	exactly	one	bicluster,	then	rearranging	the	rows	and	columns	of	the	data	matrix	reveals	the
biclusters	on	the	diagonal.	Here	is	an	example	of	this	structure	where	biclusters	have	higher	average	values	than	the	other	rows	and
columns:

An	example	of	biclusters	formed	by	partitioning	rows	and	columns.

In	the	checkerboard	case,	each	row	belongs	to	all	column	clusters,	and	each	column	belongs	to	all	row	clusters.	Here	is	an	example	of
this	structure	where	the	variance	of	the	values	within	each	bicluster	is	small:

An	example	of	checkerboard	biclusters.

>>>	import	numpy	as	np
>>>	data	=	np.arange(100).reshape(10,	10)
>>>	rows	=	np.array([0,	2,	3])[:,	np.newaxis]
>>>	columns	=	np.array([1,	2])
>>>	data[rows,	columns]
array([[	1,		2],
							[21,	22],
							[31,	32]])

>>>
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After	fitting	a	model,	row	and	column	cluster	membership	can	be	found	in	the	rows_ 	and	columns_ 	attributes.	rows_[i] 	is	a	binary
vector	with	nonzero	entries	corresponding	to	rows	that	belong	to	bicluster	i .	Similarly,	columns_[i] 	indicates	which	columns	belong
to	bicluster	i .

Some	models	also	have	row_labels_ 	and	column_labels_ 	attributes.	These	models	partition	the	rows	and	columns,	such	as	in	the
block	diagonal	and	checkerboard	bicluster	structures.

Note: 	Biclustering	has	many	other	names	in	different	fields	including	co-clustering,	two-mode	clustering,	two-way	clustering,	block
clustering,	coupled	two-way	clustering,	etc.	The	names	of	some	algorithms,	such	as	the	Spectral	Co-Clustering	algorithm,	reflect
these	alternate	names.

2.4.1. Spectral Co-Clustering

The	SpectralCoclustering 	algorithm	finds	biclusters	with	values	higher	than	those	in	the	corresponding	other	rows	and	columns.
Each	row	and	each	column	belongs	to	exactly	one	bicluster,	so	rearranging	the	rows	and	columns	to	make	partitions	contiguous	reveals
these	high	values	along	the	diagonal:

Note: 	The	algorithm	treats	the	input	data	matrix	as	a	bipartite	graph:	the	rows	and	columns	of	the	matrix	correspond	to	the	two	sets
of	vertices,	and	each	entry	corresponds	to	an	edge	between	a	row	and	a	column.	The	algorithm	approximates	the	normalized	cut	of
this	graph	to	find	heavy	subgraphs.

2.4.1.1. Mathematical formulation

An	approximate	solution	to	the	optimal	normalized	cut	may	be	found	via	the	generalized	eigenvalue	decomposition	of	the	Laplacian	of
the	graph.	Usually	this	would	mean	working	directly	with	the	Laplacian	matrix.	If	the	original	data	matrix	 	has	shape	 ,	the
Laplacian	matrix	for	the	corresponding	bipartite	graph	has	shape	 .	However,	in	this	case	it	is	possible	to	work
directly	with	 ,	which	is	smaller	and	more	efficient.

The	input	matrix	 	is	preprocessed	as	follows:

Where	 	is	the	diagonal	matrix	with	entry	 	equal	to	 	and	 	is	the	diagonal	matrix	with	entry	 	equal	to	 .

The	singular	value	decomposition,	 ,	provides	the	partitions	of	the	rows	and	columns	of	 .	A	subset	of	the	left	singular
vectors	gives	the	row	partitions,	and	a	subset	of	the	right	singular	vectors	gives	the	column	partitions.

The	 	singular	vectors,	starting	from	the	second,	provide	the	desired	partitioning	information.	They	are	used	to	form	the
matrix	 :

where	the	columns	of	 	are	 ,	and	similarly	for	 .

Then	the	rows	of	 	are	clustered	using	k-means.	The	first	n_rows 	labels	provide	the	row	partitioning,	and	the	remaining	n_columns
labels	provide	the	column	partitioning.

Examples:

A	demo	of	the	Spectral	Co-Clustering	algorithm:	A	simple	example	showing	how	to	generate	a	data	matrix	with	biclusters	and
apply	this	method	to	it.
Biclustering	documents	with	the	Spectral	Co-clustering	algorithm:	An	example	of	finding	biclusters	in	the	twenty	newsgroup
dataset.

References:

Dhillon,	Inderjit	S,	2001.	Co-clustering	documents	and	words	using	bipartite	spectral	graph	partitioning.

2.4.2. Spectral Biclustering
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The	SpectralBiclustering 	algorithm	assumes	that	the	input	data	matrix	has	a	hidden	checkerboard	structure.	The	rows	and	columns
of	a	matrix	with	this	structure	may	be	partitioned	so	that	the	entries	of	any	bicluster	in	the	Cartesian	product	of	row	clusters	and	column
clusters	are	approximately	constant.	For	instance,	if	there	are	two	row	partitions	and	three	column	partitions,	each	row	will	belong	to
three	biclusters,	and	each	column	will	belong	to	two	biclusters.

The	algorithm	partitions	the	rows	and	columns	of	a	matrix	so	that	a	corresponding	blockwise-constant	checkerboard	matrix	provides	a
good	approximation	to	the	original	matrix.

2.4.2.1. Mathematical formulation

The	input	matrix	 	is	first	normalized	to	make	the	checkerboard	pattern	more	obvious.	There	are	three	possible	methods:

1.	 Independent	row	and	column	normalization,	as	in	Spectral	Co-Clustering.	This	method	makes	the	rows	sum	to	a	constant	and	the
columns	sum	to	a	different	constant.

2.	 Bistochastization:	repeated	row	and	column	normalization	until	convergence.	This	method	makes	both	rows	and	columns	sum	to
the	same	constant.

3.	 Log	normalization:	the	log	of	the	data	matrix	is	computed:	 .	Then	the	column	mean	 ,	row	mean	 ,	and	overall

mean	 	of	 	are	computed.	The	final	matrix	is	computed	according	to	the	formula

After	normalizing,	the	first	few	singular	vectors	are	computed,	just	as	in	the	Spectral	Co-Clustering	algorithm.

If	log	normalization	was	used,	all	the	singular	vectors	are	meaningful.	However,	if	independent	normalization	or	bistochastization	were
used,	the	first	singular	vectors,	 	and	 .	are	discarded.	From	now	on,	the	“first”	singular	vectors	refers	to	 	and	
except	in	the	case	of	log	normalization.

Given	these	singular	vectors,	they	are	ranked	according	to	which	can	be	best	approximated	by	a	piecewise-constant	vector.	The
approximations	for	each	vector	are	found	using	one-dimensional	k-means	and	scored	using	the	Euclidean	distance.	Some	subset	of	the
best	left	and	right	singular	vector	are	selected.	Next,	the	data	is	projected	to	this	best	subset	of	singular	vectors	and	clustered.

For	instance,	if	 	singular	vectors	were	calculated,	the	 	best	are	found	as	described,	where	 .	Let	 	be	the	matrix	with	columns
the	 	best	left	singular	vectors,	and	similarly	 	for	the	right.	To	partition	the	rows,	the	rows	of	 	are	projected	to	a	 	dimensional	space:

.	Treating	the	 	rows	of	this	 	matrix	as	samples	and	clustering	using	k-means	yields	the	row	labels.	Similarly,	projecting
the	columns	to	 	and	clustering	this	 	matrix	yields	the	column	labels.

Examples:

A	demo	of	the	Spectral	Biclustering	algorithm:	a	simple	example	showing	how	to	generate	a	checkerboard	matrix	and	bicluster	it.

References:

Kluger,	Yuval,	et.	al.,	2003.	Spectral	biclustering	of	microarray	data:	coclustering	genes	and	conditions.

2.4.3. Biclustering evaluation

There	are	two	ways	of	evaluating	a	biclustering	result:	internal	and	external.	Internal	measures,	such	as	cluster	stability,	rely	only	on	the
data	and	the	result	themselves.	Currently	there	are	no	internal	bicluster	measures	in	scikit-learn.	External	measures	refer	to	an	external
source	of	information,	such	as	the	true	solution.	When	working	with	real	data	the	true	solution	is	usually	unknown,	but	biclustering
artificial	data	may	be	useful	for	evaluating	algorithms	precisely	because	the	true	solution	is	known.

To	compare	a	set	of	found	biclusters	to	the	set	of	true	biclusters,	two	similarity	measures	are	needed:	a	similarity	measure	for
individual	biclusters,	and	a	way	to	combine	these	individual	similarities	into	an	overall	score.

To	compare	individual	biclusters,	several	measures	have	been	used.	For	now,	only	the	Jaccard	index	is	implemented:

where	 	and	 	are	biclusters,	 	is	the	number	of	elements	in	their	intersection.	The	Jaccard	index	achieves	its	minimum	of	0
when	the	biclusters	to	not	overlap	at	all	and	its	maximum	of	1	when	they	are	identical.
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Several	methods	have	been	developed	to	compare	two	sets	of	biclusters.	For	now,	only	consensus_score	(Hochreiter	et.	al.,	2010)	is
available:

1.	 Compute	bicluster	similarities	for	pairs	of	biclusters,	one	in	each	set,	using	the	Jaccard	index	or	a	similar	measure.

2.	 Assign	biclusters	from	one	set	to	another	in	a	one-to-one	fashion	to	maximize	the	sum	of	their	similarities.	This	step	is	performed
using	the	Hungarian	algorithm.

3.	 The	final	sum	of	similarities	is	divided	by	the	size	of	the	larger	set.

The	minimum	consensus	score,	0,	occurs	when	all	pairs	of	biclusters	are	totally	dissimilar.	The	maximum	score,	1,	occurs	when	both
sets	are	identical.

References:

Hochreiter,	Bodenhofer,	et.	al.,	2010.	FABIA:	factor	analysis	for	bicluster	acquisition.
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