
2.3. Clustering
Clustering	of	unlabeled	data	can	be	performed	with	the	module	sklearn.cluster.

Each	clustering	algorithm	comes	in	two	variants:	a	class,	that	implements	the	fit 	method	to	learn	the	clusters	on	train	data,	and	a
function,	that,	given	train	data,	returns	an	array	of	integer	labels	corresponding	to	the	different	clusters.	For	the	class,	the	labels	over	the
training	data	can	be	found	in	the	labels_ 	attribute.

Input	data

One	important	thing	to	note	is	that	the	algorithms	implemented	in	this	module	can	take	different	kinds	of	matrix	as	input.	All	the
methods	accept	standard	data	matrices	of	shape	[n_samples,	n_features] .	These	can	be	obtained	from	the	classes	in	the
sklearn.feature_extraction	module.	For	AffinityPropagation,	SpectralClustering	and	DBSCAN	one	can	also	input	similarity
matrices	of	shape	[n_samples,	n_samples] .	These	can	be	obtained	from	the	functions	in	the	sklearn.metrics.pairwise	module.

2.3.1. Overview of clustering methods

A	comparison	of	the	clustering	algorithms	in	scikit-learn

Method	name Parameters Scalability Usecase Geometry	(metric	used)

K-Means number	of	clusters
Very	large	n_samples ,	
medium	n_clusters 	
with
MiniBatch	code

General-purpose,	even	cluster	size,	
flat	geometry,	not	too	many	
clusters

Distances	between	points

Affinity	
propagation

damping,	sample	
preference

Not	scalable	with	
n_samples

Many	clusters,	uneven	cluster	size,	
non-flat	geometry

Graph	distance	(e.g.	
nearest-neighbor	graph)

Mean-shift bandwidth Not	scalable	with
	n_samples

Many	clusters,	uneven	cluster	size,	
non-flat	geometry Distances	between	points

Spectral	
clustering number	of	clusters Medium	n_samples ,	

small	n_clusters
Few	clusters,	even	cluster	size,	
non-flat	geometry

Graph	distance	(e.g.	
nearest-neighbor	graph)

Ward	hierarchical	
clustering

number	of	clusters	
or	distance	
threshold

Large	n_samples 	and
	n_clusters

Many	clusters,	possibly	
connectivity	constraints Distances	between	points

Agglomerative	
clustering

number	of	clusters	
or	distance	
threshold,	linkage	
type,	distance

Large	n_samples 	and
	n_clusters

Many	clusters,	possibly	
connectivity	constraints,	non	
Euclidean
distances

Any	pairwise	distance

https://en.wikipedia.org/wiki/Cluster_analysis
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.cluster
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_extraction
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html#sklearn.cluster.AffinityPropagation
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html#sklearn.cluster.SpectralClustering
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics.pairwise
https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
https://scikit-learn.org/stable/modules/clustering.html#k-means
https://scikit-learn.org/stable/modules/clustering.html#mini-batch-kmeans
https://scikit-learn.org/stable/modules/clustering.html#affinity-propagation
https://scikit-learn.org/stable/modules/clustering.html#mean-shift
https://scikit-learn.org/stable/modules/clustering.html#spectral-clustering
https://scikit-learn.org/stable/modules/clustering.html#hierarchical-clustering
https://scikit-learn.org/stable/modules/clustering.html#hierarchical-clustering


DBSCAN neighborhood	size Very	large	n_samples ,	
medium	n_clusters

Non-flat	geometry,	uneven	cluster	
sizes

Distances	between	nearest	
points

OPTICS minimum	cluster	
membership

Very	large	n_samples ,	
large	n_clusters

Non-flat	geometry,	uneven	cluster	
sizes,	variable	cluster	density Distances	between	points

Gaussian	mixtures many Not	scalable Flat	geometry,	good	for	density	
estimation

Mahalanobis	distances	to		
centers

Birch
branching	factor,	
threshold,	optional	
global	clusterer.

Large	n_clusters 	and
	n_samples

Large	dataset,	outlier	removal,	
data	reduction.

Euclidean	distance	between	
points

Non-flat	geometry	clustering	is	useful	when	the	clusters	have	a	specific	shape,	i.e.	a	non-flat	manifold,	and	the	standard	euclidean
distance	is	not	the	right	metric.	This	case	arises	in	the	two	top	rows	of	the	figure	above.

Gaussian	mixture	models,	useful	for	clustering,	are	described	in	another	chapter	of	the	documentation	dedicated	to	mixture	models.
KMeans	can	be	seen	as	a	special	case	of	Gaussian	mixture	model	with	equal	covariance	per	component.

2.3.2. K-means

The	KMeans	algorithm	clusters	data	by	trying	to	separate	samples	in	n	groups	of	equal	variance,	minimizing	a	criterion	known	as	the
inertia	or	within-cluster	sum-of-squares	(see	below).	This	algorithm	requires	the	number	of	clusters	to	be	specified.	It	scales	well	to
large	number	of	samples	and	has	been	used	across	a	large	range	of	application	areas	in	many	different	fields.

The	k-means	algorithm	divides	a	set	of	 	samples	 	into	 	disjoint	clusters	 ,	each	described	by	the	mean	 	of	the	samples	in	the
cluster.	The	means	are	commonly	called	the	cluster	“centroids”;	note	that	they	are	not,	in	general,	points	from	 ,	although	they	live	in
the	same	space.

The	K-means	algorithm	aims	to	choose	centroids	that	minimise	the	inertia,	or	within-cluster	sum-of-squares	criterion:

Inertia	can	be	recognized	as	a	measure	of	how	internally	coherent	clusters	are.	It	suffers	from	various	drawbacks:

Inertia	makes	the	assumption	that	clusters	are	convex	and	isotropic,	which	is	not	always	the	case.	It	responds	poorly	to	elongated
clusters,	or	manifolds	with	irregular	shapes.
Inertia	is	not	a	normalized	metric:	we	just	know	that	lower	values	are	better	and	zero	is	optimal.	But	in	very	high-dimensional	spaces,
Euclidean	distances	tend	to	become	inflated	(this	is	an	instance	of	the	so-called	“curse	of	dimensionality”).	Running	a	dimensionality
reduction	algorithm	such	as	Principal	component	analysis	(PCA)	prior	to	k-means	clustering	can	alleviate	this	problem	and	speed	up
the	computations.

https://scikit-learn.org/stable/modules/clustering.html#dbscan
https://scikit-learn.org/stable/modules/clustering.html#optics
https://scikit-learn.org/stable/modules/mixture.html#mixture
https://scikit-learn.org/stable/modules/clustering.html#birch
https://scikit-learn.org/stable/modules/mixture.html#mixture
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans
https://scikit-learn.org/stable/modules/decomposition.html#pca


K-means	is	often	referred	to	as	Lloyd’s	algorithm.	In	basic	terms,	the	algorithm	has	three	steps.	The	first	step	chooses	the	initial
centroids,	with	the	most	basic	method	being	to	choose	 	samples	from	the	dataset	 .	After	initialization,	K-means	consists	of	looping
between	the	two	other	steps.	The	first	step	assigns	each	sample	to	its	nearest	centroid.	The	second	step	creates	new	centroids	by
taking	the	mean	value	of	all	of	the	samples	assigned	to	each	previous	centroid.	The	difference	between	the	old	and	the	new	centroids
are	computed	and	the	algorithm	repeats	these	last	two	steps	until	this	value	is	less	than	a	threshold.	In	other	words,	it	repeats	until	the
centroids	do	not	move	significantly.

K-means	is	equivalent	to	the	expectation-maximization	algorithm	with	a	small,	all-equal,	diagonal
covariance	matrix.

The	algorithm	can	also	be	understood	through	the	concept	of	Voronoi	diagrams.	First	the	Voronoi
diagram	of	the	points	is	calculated	using	the	current	centroids.	Each	segment	in	the	Voronoi	diagram
becomes	a	separate	cluster.	Secondly,	the	centroids	are	updated	to	the	mean	of	each	segment.	The
algorithm	then	repeats	this	until	a	stopping	criterion	is	fulfilled.	Usually,	the	algorithm	stops	when	the
relative	decrease	in	the	objective	function	between	iterations	is	less	than	the	given	tolerance	value.
This	is	not	the	case	in	this	implementation:	iteration	stops	when	centroids	move	less	than	the	tolerance.

Given	enough	time,	K-means	will	always	converge,	however	this	may	be	to	a	local	minimum.	This	is	highly	dependent	on	the
initialization	of	the	centroids.	As	a	result,	the	computation	is	often	done	several	times,	with	different	initializations	of	the	centroids.	One
method	to	help	address	this	issue	is	the	k-means++	initialization	scheme,	which	has	been	implemented	in	scikit-learn	(use	the
init='k-means++' 	parameter).	This	initializes	the	centroids	to	be	(generally)	distant	from	each	other,	leading	to	provably	better	results
than	random	initialization,	as	shown	in	the	reference.

The	algorithm	supports	sample	weights,	which	can	be	given	by	a	parameter	sample_weight .	This	allows	to	assign	more	weight	to
some	samples	when	computing	cluster	centers	and	values	of	inertia.	For	example,	assigning	a	weight	of	2	to	a	sample	is	equivalent	to
adding	a	duplicate	of	that	sample	to	the	dataset	 .

A	parameter	can	be	given	to	allow	K-means	to	be	run	in	parallel,	called	n_jobs .	Giving	this	parameter	a	positive	value	uses	that	many
processors	(default:	1).	A	value	of	-1	uses	all	available	processors,	with	-2	using	one	less,	and	so	on.	Parallelization	generally	speeds	up
computation	at	the	cost	of	memory	(in	this	case,	multiple	copies	of	centroids	need	to	be	stored,	one	for	each	job).

Warning: 	The	parallel	version	of	K-Means	is	broken	on	OS	X	when	numpy 	uses	the	Accelerate 	Framework.	This	is	expected
behavior:	Accelerate 	can	be	called	after	a	fork	but	you	need	to	execv	the	subprocess	with	the	Python	binary	(which	multiprocessing
does	not	do	under	posix).

https://en.wikipedia.org/wiki/Voronoi_diagram
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html


K-means	can	be	used	for	vector	quantization.	This	is	achieved	using	the	transform	method	of	a	trained	model	of	KMeans.

Examples:

Demonstration	of	k-means	assumptions:	Demonstrating	when	k-means	performs	intuitively	and	when	it	does	not
A	demo	of	K-Means	clustering	on	the	handwritten	digits	data:	Clustering	handwritten	digits

References:

“k-means++:	The	advantages	of	careful	seeding”	Arthur,	David,	and	Sergei	Vassilvitskii,	Proceedings	of	the	eighteenth	annual	ACM-
SIAM	symposium	on	Discrete	algorithms,	Society	for	Industrial	and	Applied	Mathematics	(2007)

2.3.2.1. Mini Batch K-Means

The	MiniBatchKMeans	is	a	variant	of	the	KMeans	algorithm	which	uses	mini-batches	to	reduce	the	computation	time,	while	still
attempting	to	optimise	the	same	objective	function.	Mini-batches	are	subsets	of	the	input	data,	randomly	sampled	in	each	training
iteration.	These	mini-batches	drastically	reduce	the	amount	of	computation	required	to	converge	to	a	local	solution.	In	contrast	to	other
algorithms	that	reduce	the	convergence	time	of	k-means,	mini-batch	k-means	produces	results	that	are	generally	only	slightly	worse
than	the	standard	algorithm.

The	algorithm	iterates	between	two	major	steps,	similar	to	vanilla	k-means.	In	the	first	step,	 	samples	are	drawn	randomly	from	the
dataset,	to	form	a	mini-batch.	These	are	then	assigned	to	the	nearest	centroid.	In	the	second	step,	the	centroids	are	updated.	In
contrast	to	k-means,	this	is	done	on	a	per-sample	basis.	For	each	sample	in	the	mini-batch,	the	assigned	centroid	is	updated	by	taking
the	streaming	average	of	the	sample	and	all	previous	samples	assigned	to	that	centroid.	This	has	the	effect	of	decreasing	the	rate	of
change	for	a	centroid	over	time.	These	steps	are	performed	until	convergence	or	a	predetermined	number	of	iterations	is	reached.

MiniBatchKMeans	converges	faster	than	KMeans,	but	the	quality	of	the	results	is	reduced.	In	practice	this	difference	in	quality	can	be
quite	small,	as	shown	in	the	example	and	cited	reference.

Examples:

Comparison	of	the	K-Means	and	MiniBatchKMeans	clustering	algorithms:	Comparison	of	KMeans	and	MiniBatchKMeans
Clustering	text	documents	using	k-means:	Document	clustering	using	sparse	MiniBatchKMeans
Online	learning	of	a	dictionary	of	parts	of	faces

References:

“Web	Scale	K-Means	clustering”	D.	Sculley,	Proceedings	of	the	19th	international	conference	on	World	wide	web	(2010)

2.3.3. Affinity Propagation

AffinityPropagation	creates	clusters	by	sending	messages	between	pairs	of	samples	until	convergence.	A	dataset	is	then	described
using	a	small	number	of	exemplars,	which	are	identified	as	those	most	representative	of	other	samples.	The	messages	sent	between
pairs	represent	the	suitability	for	one	sample	to	be	the	exemplar	of	the	other,	which	is	updated	in	response	to	the	values	from	other
pairs.	This	updating	happens	iteratively	until	convergence,	at	which	point	the	final	exemplars	are	chosen,	and	hence	the	final	clustering
is	given.

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_digits.html#sphx-glr-auto-examples-cluster-plot-kmeans-digits-py
http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html#sklearn.cluster.MiniBatchKMeans
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html#sklearn.cluster.MiniBatchKMeans
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans
https://scikit-learn.org/stable/auto_examples/cluster/plot_mini_batch_kmeans.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_mini_batch_kmeans.html#sphx-glr-auto-examples-cluster-plot-mini-batch-kmeans-py
https://scikit-learn.org/stable/auto_examples/text/plot_document_clustering.html#sphx-glr-auto-examples-text-plot-document-clustering-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_dict_face_patches.html#sphx-glr-auto-examples-cluster-plot-dict-face-patches-py
https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html#sklearn.cluster.AffinityPropagation


Affinity	Propagation	can	be	interesting	as	it	chooses	the	number	of	clusters	based	on	the	data	provided.	For	this	purpose,	the	two
important	parameters	are	the	preference,	which	controls	how	many	exemplars	are	used,	and	the	damping	factor	which	damps	the
responsibility	and	availability	messages	to	avoid	numerical	oscillations	when	updating	these	messages.

The	main	drawback	of	Affinity	Propagation	is	its	complexity.	The	algorithm	has	a	time	complexity	of	the	order	 ,	where	 	is	the
number	of	samples	and	 	is	the	number	of	iterations	until	convergence.	Further,	the	memory	complexity	is	of	the	order	 	if	a
dense	similarity	matrix	is	used,	but	reducible	if	a	sparse	similarity	matrix	is	used.	This	makes	Affinity	Propagation	most	appropriate	for
small	to	medium	sized	datasets.

Examples:

Demo	of	affinity	propagation	clustering	algorithm:	Affinity	Propagation	on	a	synthetic	2D	datasets	with	3	classes.
Visualizing	the	stock	market	structure	Affinity	Propagation	on	Financial	time	series	to	find	groups	of	companies

Algorithm	description:	The	messages	sent	between	points	belong	to	one	of	two	categories.	The	first	is	the	responsibility	 ,	which
is	the	accumulated	evidence	that	sample	 	should	be	the	exemplar	for	sample	 .	The	second	is	the	availability	 	which	is	the
accumulated	evidence	that	sample	 	should	choose	sample	 	to	be	its	exemplar,	and	considers	the	values	for	all	other	samples	that	
should	be	an	exemplar.	In	this	way,	exemplars	are	chosen	by	samples	if	they	are	(1)	similar	enough	to	many	samples	and	(2)	chosen	by
many	samples	to	be	representative	of	themselves.

More	formally,	the	responsibility	of	a	sample	 	to	be	the	exemplar	of	sample	 	is	given	by:

Where	 	is	the	similarity	between	samples	 	and	 .	The	availability	of	sample	 	to	be	the	exemplar	of	sample	 	is	given	by:

To	begin	with,	all	values	for	 	and	 	are	set	to	zero,	and	the	calculation	of	each	iterates	until	convergence.	As	discussed	above,	in	order
to	avoid	numerical	oscillations	when	updating	the	messages,	the	damping	factor	 	is	introduced	to	iteration	process:

where	 	indicates	the	iteration	times.

2.3.4. Mean Shift

MeanShift	clustering	aims	to	discover	blobs	in	a	smooth	density	of	samples.	It	is	a	centroid	based	algorithm,	which	works	by	updating
candidates	for	centroids	to	be	the	mean	of	the	points	within	a	given	region.	These	candidates	are	then	filtered	in	a	post-processing
stage	to	eliminate	near-duplicates	to	form	the	final	set	of	centroids.

Given	a	candidate	centroid	 	for	iteration	 ,	the	candidate	is	updated	according	to	the	following	equation:

Where	 	is	the	neighborhood	of	samples	within	a	given	distance	around	 	and	 	is	the	mean	shift	vector	that	is	computed	for
each	centroid	that	points	towards	a	region	of	the	maximum	increase	in	the	density	of	points.	This	is	computed	using	the	following
equation,	effectively	updating	a	centroid	to	be	the	mean	of	the	samples	within	its	neighborhood:

https://scikit-learn.org/stable/auto_examples/cluster/plot_affinity_propagation.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_affinity_propagation.html#sphx-glr-auto-examples-cluster-plot-affinity-propagation-py
https://scikit-learn.org/stable/auto_examples/applications/plot_stock_market.html#sphx-glr-auto-examples-applications-plot-stock-market-py
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html#sklearn.cluster.MeanShift


The	algorithm	automatically	sets	the	number	of	clusters,	instead	of	relying	on	a	parameter	bandwidth ,	which	dictates	the	size	of	the
region	to	search	through.	This	parameter	can	be	set	manually,	but	can	be	estimated	using	the	provided	estimate_bandwidth 	function,
which	is	called	if	the	bandwidth	is	not	set.

The	algorithm	is	not	highly	scalable,	as	it	requires	multiple	nearest	neighbor	searches	during	the	execution	of	the	algorithm.	The
algorithm	is	guaranteed	to	converge,	however	the	algorithm	will	stop	iterating	when	the	change	in	centroids	is	small.

Labelling	a	new	sample	is	performed	by	finding	the	nearest	centroid	for	a	given	sample.

Examples:

A	demo	of	the	mean-shift	clustering	algorithm:	Mean	Shift	clustering	on	a	synthetic	2D	datasets	with	3	classes.

References:

“Mean	shift:	A	robust	approach	toward	feature	space	analysis.”	D.	Comaniciu	and	P.	Meer,	IEEE	Transactions	on	Pattern	Analysis
and	Machine	Intelligence	(2002)

2.3.5. Spectral clustering

SpectralClustering	performs	a	low-dimension	embedding	of	the	affinity	matrix	between	samples,	followed	by	clustering,	e.g.,	by
KMeans,	of	the	components	of	the	eigenvectors	in	the	low	dimensional	space.	It	is	especially	computationally	efficient	if	the	affinity
matrix	is	sparse	and	the	amg 	solver	is	used	for	the	eigenvalue	problem	(Note,	the	amg 	solver	requires	that	the	pyamg	module	is
installed.)

The	present	version	of	SpectralClustering	requires	the	number	of	clusters	to	be	specified	in	advance.	It	works	well	for	a	small	number	of
clusters,	but	is	not	advised	for	many	clusters.

For	two	clusters,	SpectralClustering	solves	a	convex	relaxation	of	the	normalised	cuts	problem	on	the	similarity	graph:	cutting	the	graph
in	two	so	that	the	weight	of	the	edges	cut	is	small	compared	to	the	weights	of	the	edges	inside	each	cluster.	This	criteria	is	especially
interesting	when	working	on	images,	where	graph	vertices	are	pixels,	and	weights	of	the	edges	of	the	similarity	graph	are	computed
using	a	function	of	a	gradient	of	the	image.

	

Warning: 	Transforming	distance	to	well-behaved	similarities

https://scikit-learn.org/stable/auto_examples/cluster/plot_mean_shift.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_mean_shift.html#sphx-glr-auto-examples-cluster-plot-mean-shift-py
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.8968&rep=rep1&type=pdf
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html#sklearn.cluster.SpectralClustering
https://github.com/pyamg/pyamg
https://people.eecs.berkeley.edu/~malik/papers/SM-ncut.pdf
https://scikit-learn.org/stable/auto_examples/cluster/plot_segmentation_toy.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_segmentation_toy.html


Note	that	if	the	values	of	your	similarity	matrix	are	not	well	distributed,	e.g.	with	negative	values	or	with	a	distance	matrix	rather	than
a	similarity,	the	spectral	problem	will	be	singular	and	the	problem	not	solvable.	In	which	case	it	is	advised	to	apply	a	transformation
to	the	entries	of	the	matrix.	For	instance,	in	the	case	of	a	signed	distance	matrix,	is	common	to	apply	a	heat	kernel:

See	the	examples	for	such	an	application.

Examples:

Spectral	clustering	for	image	segmentation:	Segmenting	objects	from	a	noisy	background	using	spectral	clustering.
Segmenting	the	picture	of	greek	coins	in	regions:	Spectral	clustering	to	split	the	image	of	coins	in	regions.

2.3.5.1. Different label assignment strategies

Different	label	assignment	strategies	can	be	used,	corresponding	to	the	assign_labels 	parameter	of	SpectralClustering.	"kmeans"
strategy	can	match	finer	details,	but	can	be	unstable.	In	particular,	unless	you	control	the	random_state ,	it	may	not	be	reproducible
from	run-to-run,	as	it	depends	on	random	initialization.	The	alternative	"discretize" 	strategy	is	100%	reproducible,	but	tends	to	create
parcels	of	fairly	even	and	geometrical	shape.

assign_labels="kmeans" assign_labels="discretize"

2.3.5.2. Spectral Clustering Graphs

Spectral	Clustering	can	also	be	used	to	partition	graphs	via	their	spectral	embeddings.	In	this	case,	the	affinity	matrix	is	the	adjacency
matrix	of	the	graph,	and	SpectralClustering	is	initialized	with	affinity='precomputed' :

References:

“A	Tutorial	on	Spectral	Clustering”	Ulrike	von	Luxburg,	2007
“Normalized	cuts	and	image	segmentation”	Jianbo	Shi,	Jitendra	Malik,	2000
“A	Random	Walks	View	of	Spectral	Segmentation”	Marina	Meila,	Jianbo	Shi,	2001
“On	Spectral	Clustering:	Analysis	and	an	algorithm”	Andrew	Y.	Ng,	Michael	I.	Jordan,	Yair	Weiss,	2001
“Preconditioned	Spectral	Clustering	for	Stochastic	Block	Partition	Streaming	Graph	Challenge”	David	Zhuzhunashvili,	Andrew
Knyazev

2.3.6. Hierarchical clustering

Hierarchical	clustering	is	a	general	family	of	clustering	algorithms	that	build	nested	clusters	by	merging	or	splitting	them	successively.
This	hierarchy	of	clusters	is	represented	as	a	tree	(or	dendrogram).	The	root	of	the	tree	is	the	unique	cluster	that	gathers	all	the
samples,	the	leaves	being	the	clusters	with	only	one	sample.	See	the	Wikipedia	page	for	more	details.

The	AgglomerativeClustering	object	performs	a	hierarchical	clustering	using	a	bottom	up	approach:	each	observation	starts	in	its
own	cluster,	and	clusters	are	successively	merged	together.	The	linkage	criteria	determines	the	metric	used	for	the	merge	strategy:

similarity	=	np.exp(-beta	*	distance	/	distance.std())

>>>	from	sklearn.cluster	import	SpectralClustering
>>>	sc	=	SpectralClustering(3,	affinity='precomputed',	n_init=100,
...																									assign_labels='discretize')
>>>	sc.fit_predict(adjacency_matrix)		

>>>

https://scikit-learn.org/stable/auto_examples/cluster/plot_segmentation_toy.html#sphx-glr-auto-examples-cluster-plot-segmentation-toy-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_coin_segmentation.html#sphx-glr-auto-examples-cluster-plot-coin-segmentation-py
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html#sklearn.cluster.SpectralClustering
https://scikit-learn.org/stable/auto_examples/cluster/plot_coin_segmentation.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_coin_segmentation.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.1501
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.8100
https://arxiv.org/abs/1708.07481
https://en.wikipedia.org/wiki/Hierarchical_clustering
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering


Ward	minimizes	the	sum	of	squared	differences	within	all	clusters.	It	is	a	variance-minimizing	approach	and	in	this	sense	is	similar
to	the	k-means	objective	function	but	tackled	with	an	agglomerative	hierarchical	approach.
Maximum	or	complete	linkage	minimizes	the	maximum	distance	between	observations	of	pairs	of	clusters.
Average	linkage	minimizes	the	average	of	the	distances	between	all	observations	of	pairs	of	clusters.
Single	linkage	minimizes	the	distance	between	the	closest	observations	of	pairs	of	clusters.

AgglomerativeClustering	can	also	scale	to	large	number	of	samples	when	it	is	used	jointly	with	a	connectivity	matrix,	but	is
computationally	expensive	when	no	connectivity	constraints	are	added	between	samples:	it	considers	at	each	step	all	the	possible
merges.

FeatureAgglomeration

The	FeatureAgglomeration	uses	agglomerative	clustering	to	group	together	features	that	look	very	similar,	thus	decreasing	the
number	of	features.	It	is	a	dimensionality	reduction	tool,	see	Unsupervised	dimensionality	reduction.

2.3.6.1. Different linkage type: Ward, complete, average, and single linkage

AgglomerativeClustering	supports	Ward,	single,	average,	and	complete	linkage	strategies.

Agglomerative	cluster	has	a	“rich	get	richer”	behavior	that	leads	to	uneven	cluster	sizes.	In	this	regard,	single	linkage	is	the	worst
strategy,	and	Ward	gives	the	most	regular	sizes.	However,	the	affinity	(or	distance	used	in	clustering)	cannot	be	varied	with	Ward,	thus
for	non	Euclidean	metrics,	average	linkage	is	a	good	alternative.	Single	linkage,	while	not	robust	to	noisy	data,	can	be	computed	very
efficiently	and	can	therefore	be	useful	to	provide	hierarchical	clustering	of	larger	datasets.	Single	linkage	can	also	perform	well	on	non-
globular	data.

Examples:

Various	Agglomerative	Clustering	on	a	2D	embedding	of	digits:	exploration	of	the	different	linkage	strategies	in	a	real	dataset.

2.3.6.2. Visualization of cluster hierarchy

It’s	possible	to	visualize	the	tree	representing	the	hierarchical	merging	of	clusters	as	a	dendrogram.	Visual	inspection	can	often	be
useful	for	understanding	the	structure	of	the	data,	though	more	so	in	the	case	of	small	sample	sizes.

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.FeatureAgglomeration.html#sklearn.cluster.FeatureAgglomeration
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.FeatureAgglomeration.html#sklearn.cluster.FeatureAgglomeration
https://scikit-learn.org/stable/modules/unsupervised_reduction.html#data-reduction
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering
https://scikit-learn.org/stable/auto_examples/cluster/plot_linkage_comparison.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_digits_linkage.html#sphx-glr-auto-examples-cluster-plot-digits-linkage-py


2.3.6.3. Adding connectivity constraints

An	interesting	aspect	of	AgglomerativeClustering	is	that	connectivity	constraints	can	be	added	to	this	algorithm	(only	adjacent
clusters	can	be	merged	together),	through	a	connectivity	matrix	that	defines	for	each	sample	the	neighboring	samples	following	a	given
structure	of	the	data.	For	instance,	in	the	swiss-roll	example	below,	the	connectivity	constraints	forbid	the	merging	of	points	that	are	not
adjacent	on	the	swiss	roll,	and	thus	avoid	forming	clusters	that	extend	across	overlapping	folds	of	the	roll.

	

These	constraint	are	useful	to	impose	a	certain	local	structure,	but	they	also	make	the	algorithm	faster,	especially	when	the	number	of
the	samples	is	high.

The	connectivity	constraints	are	imposed	via	an	connectivity	matrix:	a	scipy	sparse	matrix	that	has	elements	only	at	the	intersection	of
a	row	and	a	column	with	indices	of	the	dataset	that	should	be	connected.	This	matrix	can	be	constructed	from	a-priori	information:	for
instance,	you	may	wish	to	cluster	web	pages	by	only	merging	pages	with	a	link	pointing	from	one	to	another.	It	can	also	be	learned	from
the	data,	for	instance	using	sklearn.neighbors.kneighbors_graph	to	restrict	merging	to	nearest	neighbors	as	in	this	example,	or
using	sklearn.feature_extraction.image.grid_to_graph	to	enable	only	merging	of	neighboring	pixels	on	an	image,	as	in	the	coin
example.

Examples:

A	demo	of	structured	Ward	hierarchical	clustering	on	an	image	of	coins:	Ward	clustering	to	split	the	image	of	coins	in	regions.
Hierarchical	clustering:	structured	vs	unstructured	ward:	Example	of	Ward	algorithm	on	a	swiss-roll,	comparison	of	structured
approaches	versus	unstructured	approaches.
Feature	agglomeration	vs.	univariate	selection:	Example	of	dimensionality	reduction	with	feature	agglomeration	based	on	Ward
hierarchical	clustering.
Agglomerative	clustering	with	and	without	structure

Warning: 	Connectivity	constraints	with	single,	average	and	complete	linkage
Connectivity	constraints	and	single,	complete	or	average	linkage	can	enhance	the	‘rich	getting	richer’	aspect	of	agglomerative
clustering,	particularly	so	if	they	are	built	with	sklearn.neighbors.kneighbors_graph.	In	the	limit	of	a	small	number	of	clusters,	they
tend	to	give	a	few	macroscopically	occupied	clusters	and	almost	empty	ones.	(see	the	discussion	in	Agglomerative	clustering	with
and	without	structure).	Single	linkage	is	the	most	brittle	linkage	option	with	regard	to	this	issue.

	 	

https://scikit-learn.org/stable/auto_examples/cluster/plot_agglomerative_dendrogram.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering
https://scikit-learn.org/stable/auto_examples/cluster/plot_ward_structured_vs_unstructured.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_ward_structured_vs_unstructured.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.kneighbors_graph.html#sklearn.neighbors.kneighbors_graph
https://scikit-learn.org/stable/auto_examples/cluster/plot_agglomerative_clustering.html#sphx-glr-auto-examples-cluster-plot-agglomerative-clustering-py
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.image.grid_to_graph.html#sklearn.feature_extraction.image.grid_to_graph
https://scikit-learn.org/stable/auto_examples/cluster/plot_coin_ward_segmentation.html#sphx-glr-auto-examples-cluster-plot-coin-ward-segmentation-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_coin_ward_segmentation.html#sphx-glr-auto-examples-cluster-plot-coin-ward-segmentation-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_ward_structured_vs_unstructured.html#sphx-glr-auto-examples-cluster-plot-ward-structured-vs-unstructured-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_feature_agglomeration_vs_univariate_selection.html#sphx-glr-auto-examples-cluster-plot-feature-agglomeration-vs-univariate-selection-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_agglomerative_clustering.html#sphx-glr-auto-examples-cluster-plot-agglomerative-clustering-py
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.kneighbors_graph.html#sklearn.neighbors.kneighbors_graph
https://scikit-learn.org/stable/auto_examples/cluster/plot_agglomerative_clustering.html#sphx-glr-auto-examples-cluster-plot-agglomerative-clustering-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_agglomerative_clustering.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_agglomerative_clustering.html


	

2.3.6.4. Varying the metric

Single,	average	and	complete	linkage	can	be	used	with	a	variety	of	distances	(or	affinities),	in	particular	Euclidean	distance	(l2),
Manhattan	distance	(or	Cityblock,	or	l1),	cosine	distance,	or	any	precomputed	affinity	matrix.

l1	distance	is	often	good	for	sparse	features,	or	sparse	noise:	i.e.	many	of	the	features	are	zero,	as	in	text	mining	using	occurrences
of	rare	words.
cosine	distance	is	interesting	because	it	is	invariant	to	global	scalings	of	the	signal.

The	guidelines	for	choosing	a	metric	is	to	use	one	that	maximizes	the	distance	between	samples	in	different	classes,	and	minimizes
that	within	each	class.

	 	

Examples:

Agglomerative	clustering	with	different	metrics

2.3.7. DBSCAN

The	DBSCAN	algorithm	views	clusters	as	areas	of	high	density	separated	by	areas	of	low	density.	Due	to	this	rather	generic	view,	clusters
found	by	DBSCAN	can	be	any	shape,	as	opposed	to	k-means	which	assumes	that	clusters	are	convex	shaped.	The	central	component
to	the	DBSCAN	is	the	concept	of	core	samples,	which	are	samples	that	are	in	areas	of	high	density.	A	cluster	is	therefore	a	set	of	core
samples,	each	close	to	each	other	(measured	by	some	distance	measure)	and	a	set	of	non-core	samples	that	are	close	to	a	core
sample	(but	are	not	themselves	core	samples).	There	are	two	parameters	to	the	algorithm,	min_samples 	and	eps ,	which	define
formally	what	we	mean	when	we	say	dense.	Higher	min_samples 	or	lower	eps 	indicate	higher	density	necessary	to	form	a	cluster.

More	formally,	we	define	a	core	sample	as	being	a	sample	in	the	dataset	such	that	there	exist	min_samples 	other	samples	within	a
distance	of	eps ,	which	are	defined	as	neighbors	of	the	core	sample.	This	tells	us	that	the	core	sample	is	in	a	dense	area	of	the	vector
space.	A	cluster	is	a	set	of	core	samples	that	can	be	built	by	recursively	taking	a	core	sample,	finding	all	of	its	neighbors	that	are	core
samples,	finding	all	of	their	neighbors	that	are	core	samples,	and	so	on.	A	cluster	also	has	a	set	of	non-core	samples,	which	are
samples	that	are	neighbors	of	a	core	sample	in	the	cluster	but	are	not	themselves	core	samples.	Intuitively,	these	samples	are	on	the
fringes	of	a	cluster.

Any	core	sample	is	part	of	a	cluster,	by	definition.	Any	sample	that	is	not	a	core	sample,	and	is	at	least	eps 	in	distance	from	any	core
sample,	is	considered	an	outlier	by	the	algorithm.

While	the	parameter	min_samples 	primarily	controls	how	tolerant	the	algorithm	is	towards	noise	(on	noisy	and	large	data	sets	it	may	be
desirable	to	increase	this	parameter),	the	parameter	eps 	is	crucial	to	choose	appropriately	for	the	data	set	and	distance	function	and
usually	cannot	be	left	at	the	default	value.	It	controls	the	local	neighborhood	of	the	points.	When	chosen	too	small,	most	data	will	not	be
clustered	at	all	(and	labeled	as	-1 	for	“noise”).	When	chosen	too	large,	it	causes	close	clusters	to	be	merged	into	one	cluster,	and
eventually	the	entire	data	set	to	be	returned	as	a	single	cluster.	Some	heuristics	for	choosing	this	parameter	have	been	discussed	in	the
literature,	for	example	based	on	a	knee	in	the	nearest	neighbor	distances	plot	(as	discussed	in	the	references	below).

In	the	figure	below,	the	color	indicates	cluster	membership,	with	large	circles	indicating	core	samples	found	by	the	algorithm.	Smaller
circles	are	non-core	samples	that	are	still	part	of	a	cluster.	Moreover,	the	outliers	are	indicated	by	black	points	below.

https://scikit-learn.org/stable/auto_examples/cluster/plot_agglomerative_clustering.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_agglomerative_clustering.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_agglomerative_clustering_metrics.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_agglomerative_clustering_metrics.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_agglomerative_clustering_metrics.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_agglomerative_clustering_metrics.html#sphx-glr-auto-examples-cluster-plot-agglomerative-clustering-metrics-py
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN


Examples:

Demo	of	DBSCAN	clustering	algorithm

Implementation

The	DBSCAN	algorithm	is	deterministic,	always	generating	the	same	clusters	when	given	the	same	data	in	the	same	order.	However,
the	results	can	differ	when	data	is	provided	in	a	different	order.	First,	even	though	the	core	samples	will	always	be	assigned	to	the
same	clusters,	the	labels	of	those	clusters	will	depend	on	the	order	in	which	those	samples	are	encountered	in	the	data.	Second	and
more	importantly,	the	clusters	to	which	non-core	samples	are	assigned	can	differ	depending	on	the	data	order.	This	would	happen
when	a	non-core	sample	has	a	distance	lower	than	eps 	to	two	core	samples	in	different	clusters.	By	the	triangular	inequality,	those
two	core	samples	must	be	more	distant	than	eps 	from	each	other,	or	they	would	be	in	the	same	cluster.	The	non-core	sample	is
assigned	to	whichever	cluster	is	generated	first	in	a	pass	through	the	data,	and	so	the	results	will	depend	on	the	data	ordering.

The	current	implementation	uses	ball	trees	and	kd-trees	to	determine	the	neighborhood	of	points,	which	avoids	calculating	the	full
distance	matrix	(as	was	done	in	scikit-learn	versions	before	0.14).	The	possibility	to	use	custom	metrics	is	retained;	for	details,	see
NearestNeighbors .

Memory	consumption	for	large	sample	sizes

This	implementation	is	by	default	not	memory	efficient	because	it	constructs	a	full	pairwise	similarity	matrix	in	the	case	where	kd-
trees	or	ball-trees	cannot	be	used	(e.g.,	with	sparse	matrices).	This	matrix	will	consume	n^2	floats.	A	couple	of	mechanisms	for
getting	around	this	are:

Use	OPTICS	clustering	in	conjunction	with	the	extract_dbscan 	method.	OPTICS	clustering	also	calculates	the	full	pairwise
matrix,	but	only	keeps	one	row	in	memory	at	a	time	(memory	complexity	n).
A	sparse	radius	neighborhood	graph	(where	missing	entries	are	presumed	to	be	out	of	eps)	can	be	precomputed	in	a	memory-
efficient	way	and	dbscan	can	be	run	over	this	with	metric='precomputed' .	See
sklearn.neighbors.NearestNeighbors.radius_neighbors_graph.
The	dataset	can	be	compressed,	either	by	removing	exact	duplicates	if	these	occur	in	your	data,	or	by	using	BIRCH.	Then	you	only
have	a	relatively	small	number	of	representatives	for	a	large	number	of	points.	You	can	then	provide	a	sample_weight 	when
fitting	DBSCAN.

References:

“A	Density-Based	Algorithm	for	Discovering	Clusters	in	Large	Spatial	Databases	with	Noise”	Ester,	M.,	H.	P.	Kriegel,	J.	Sander,	and
X.	Xu,	In	Proceedings	of	the	2nd	International	Conference	on	Knowledge	Discovery	and	Data	Mining,	Portland,	OR,	AAAI	Press,	pp.
226–231.	1996
“DBSCAN	revisited,	revisited:	why	and	how	you	should	(still)	use	DBSCAN.	Schubert,	E.,	Sander,	J.,	Ester,	M.,	Kriegel,	H.	P.,	&	Xu,	X.
(2017).	In	ACM	Transactions	on	Database	Systems	(TODS),	42(3),	19.

2.3.8. OPTICS

The	OPTICS	algorithm	shares	many	similarities	with	the	DBSCAN	algorithm,	and	can	be	considered	a	generalization	of	DBSCAN	that
relaxes	the	eps 	requirement	from	a	single	value	to	a	value	range.	The	key	difference	between	DBSCAN	and	OPTICS	is	that	the	OPTICS
algorithm	builds	a	reachability	graph,	which	assigns	each	sample	both	a	reachability_ 	distance,	and	a	spot	within	the	cluster
ordering_ 	attribute;	these	two	attributes	are	assigned	when	the	model	is	fitted,	and	are	used	to	determine	cluster	membership.	If
OPTICS	is	run	with	the	default	value	of	inf	set	for	max_eps ,	then	DBSCAN	style	cluster	extraction	can	be	performed	repeatedly	in	linear
time	for	any	given	eps 	value	using	the	cluster_optics_dbscan 	method.	Setting	max_eps 	to	a	lower	value	will	result	in	shorter	run
times,	and	can	be	thought	of	as	the	maximum	neighborhood	radius	from	each	point	to	find	other	potential	reachable	points.

https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py
https://scikit-learn.org/stable/modules/clustering.html#optics
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html#sklearn.neighbors.NearestNeighbors.radius_neighbors_graph
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html#sklearn.cluster.OPTICS
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN


The	reachability	distances	generated	by	OPTICS	allow	for	variable	density	extraction	of	clusters	within	a	single	data	set.	As	shown	in	the
above	plot,	combining	reachability	distances	and	data	set	ordering_ 	produces	a	reachability	plot,	where	point	density	is	represented	on
the	Y-axis,	and	points	are	ordered	such	that	nearby	points	are	adjacent.	‘Cutting’	the	reachability	plot	at	a	single	value	produces
DBSCAN	like	results;	all	points	above	the	‘cut’	are	classified	as	noise,	and	each	time	that	there	is	a	break	when	reading	from	left	to	right
signifies	a	new	cluster.	The	default	cluster	extraction	with	OPTICS	looks	at	the	steep	slopes	within	the	graph	to	find	clusters,	and	the
user	can	define	what	counts	as	a	steep	slope	using	the	parameter	xi .	There	are	also	other	possibilities	for	analysis	on	the	graph	itself,
such	as	generating	hierarchical	representations	of	the	data	through	reachability-plot	dendrograms,	and	the	hierarchy	of	clusters
detected	by	the	algorithm	can	be	accessed	through	the	cluster_hierarchy_ 	parameter.	The	plot	above	has	been	color-coded	so	that
cluster	colors	in	planar	space	match	the	linear	segment	clusters	of	the	reachability	plot.	Note	that	the	blue	and	red	clusters	are	adjacent
in	the	reachability	plot,	and	can	be	hierarchically	represented	as	children	of	a	larger	parent	cluster.

Examples:

Demo	of	OPTICS	clustering	algorithm

Comparison	with	DBSCAN

The	results	from	OPTICS	cluster_optics_dbscan 	method	and	DBSCAN	are	very	similar,	but	not	always	identical;	specifically,
labeling	of	periphery	and	noise	points.	This	is	in	part	because	the	first	samples	of	each	dense	area	processed	by	OPTICS	have	a	large
reachability	value	while	being	close	to	other	points	in	their	area,	and	will	thus	sometimes	be	marked	as	noise	rather	than	periphery.
This	affects	adjacent	points	when	they	are	considered	as	candidates	for	being	marked	as	either	periphery	or	noise.

Note	that	for	any	single	value	of	eps ,	DBSCAN	will	tend	to	have	a	shorter	run	time	than	OPTICS;	however,	for	repeated	runs	at	varying
eps 	values,	a	single	run	of	OPTICS	may	require	less	cumulative	runtime	than	DBSCAN.	It	is	also	important	to	note	that	OPTICS’
output	is	close	to	DBSCAN’s	only	if	eps 	and	max_eps 	are	close.

Computational	Complexity

Spatial	indexing	trees	are	used	to	avoid	calculating	the	full	distance	matrix,	and	allow	for	efficient	memory	usage	on	large	sets	of
samples.	Different	distance	metrics	can	be	supplied	via	the	metric 	keyword.

For	large	datasets,	similar	(but	not	identical)	results	can	be	obtained	via	HDBSCAN.	The	HDBSCAN	implementation	is	multithreaded,
and	has	better	algorithmic	runtime	complexity	than	OPTICS,	at	the	cost	of	worse	memory	scaling.	For	extremely	large	datasets	that
exhaust	system	memory	using	HDBSCAN,	OPTICS	will	maintain	n	(as	opposed	to	n^2)	memory	scaling;	however,	tuning	of	the
max_eps 	parameter	will	likely	need	to	be	used	to	give	a	solution	in	a	reasonable	amount	of	wall	time.

References:

“OPTICS:	ordering	points	to	identify	the	clustering	structure.”	Ankerst,	Mihael,	Markus	M.	Breunig,	Hans-Peter	Kriegel,	and	Jörg
Sander.	In	ACM	Sigmod	Record,	vol.	28,	no.	2,	pp.	49-60.	ACM,	1999.

2.3.9. Birch

The	Birch	builds	a	tree	called	the	Clustering	Feature	Tree	(CFT)	for	the	given	data.	The	data	is	essentially	lossy	compressed	to	a	set	of
Clustering	Feature	nodes	(CF	Nodes).	The	CF	Nodes	have	a	number	of	subclusters	called	Clustering	Feature	subclusters	(CF
Subclusters)	and	these	CF	Subclusters	located	in	the	non-terminal	CF	Nodes	can	have	CF	Nodes	as	children.

https://scikit-learn.org/stable/auto_examples/cluster/plot_optics.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_optics.html#sphx-glr-auto-examples-cluster-plot-optics-py
https://hdbscan.readthedocs.io/
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.Birch.html#sklearn.cluster.Birch


The	CF	Subclusters	hold	the	necessary	information	for	clustering	which	prevents	the	need	to	hold	the	entire	input	data	in	memory.	This
information	includes:

Number	of	samples	in	a	subcluster.
Linear	Sum	-	A	n-dimensional	vector	holding	the	sum	of	all	samples
Squared	Sum	-	Sum	of	the	squared	L2	norm	of	all	samples.
Centroids	-	To	avoid	recalculation	linear	sum	/	n_samples.
Squared	norm	of	the	centroids.

The	Birch	algorithm	has	two	parameters,	the	threshold	and	the	branching	factor.	The	branching	factor	limits	the	number	of	subclusters
in	a	node	and	the	threshold	limits	the	distance	between	the	entering	sample	and	the	existing	subclusters.

This	algorithm	can	be	viewed	as	an	instance	or	data	reduction	method,	since	it	reduces	the	input	data	to	a	set	of	subclusters	which	are
obtained	directly	from	the	leaves	of	the	CFT.	This	reduced	data	can	be	further	processed	by	feeding	it	into	a	global	clusterer.	This	global
clusterer	can	be	set	by	n_clusters .	If	n_clusters 	is	set	to	None,	the	subclusters	from	the	leaves	are	directly	read	off,	otherwise	a
global	clustering	step	labels	these	subclusters	into	global	clusters	(labels)	and	the	samples	are	mapped	to	the	global	label	of	the
nearest	subcluster.

Algorithm	description:

A	new	sample	is	inserted	into	the	root	of	the	CF	Tree	which	is	a	CF	Node.	It	is	then	merged	with	the	subcluster	of	the	root,	that	has
the	smallest	radius	after	merging,	constrained	by	the	threshold	and	branching	factor	conditions.	If	the	subcluster	has	any	child	node,
then	this	is	done	repeatedly	till	it	reaches	a	leaf.	After	finding	the	nearest	subcluster	in	the	leaf,	the	properties	of	this	subcluster	and
the	parent	subclusters	are	recursively	updated.
If	the	radius	of	the	subcluster	obtained	by	merging	the	new	sample	and	the	nearest	subcluster	is	greater	than	the	square	of	the
threshold	and	if	the	number	of	subclusters	is	greater	than	the	branching	factor,	then	a	space	is	temporarily	allocated	to	this	new
sample.	The	two	farthest	subclusters	are	taken	and	the	subclusters	are	divided	into	two	groups	on	the	basis	of	the	distance
between	these	subclusters.
If	this	split	node	has	a	parent	subcluster	and	there	is	room	for	a	new	subcluster,	then	the	parent	is	split	into	two.	If	there	is	no	room,
then	this	node	is	again	split	into	two	and	the	process	is	continued	recursively,	till	it	reaches	the	root.

Birch	or	MiniBatchKMeans?

Birch	does	not	scale	very	well	to	high	dimensional	data.	As	a	rule	of	thumb	if	n_features 	is	greater	than	twenty,	it	is	generally
better	to	use	MiniBatchKMeans.
If	the	number	of	instances	of	data	needs	to	be	reduced,	or	if	one	wants	a	large	number	of	subclusters	either	as	a	preprocessing	step
or	otherwise,	Birch	is	more	useful	than	MiniBatchKMeans.

How	to	use	partial_fit?

To	avoid	the	computation	of	global	clustering,	for	every	call	of	partial_fit 	the	user	is	advised

1.	 To	set	n_clusters=None 	initially

2.	 Train	all	data	by	multiple	calls	to	partial_fit.

3.	 Set	n_clusters 	to	a	required	value	using	brc.set_params(n_clusters=n_clusters) .

4.	 Call	partial_fit 	finally	with	no	arguments,	i.e.	brc.partial_fit() 	which	performs	the	global	clustering.



References:

Tian	Zhang,	Raghu	Ramakrishnan,	Maron	Livny	BIRCH:	An	efficient	data	clustering	method	for	large	databases.
https://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf
Roberto	Perdisci	JBirch	-	Java	implementation	of	BIRCH	clustering	algorithm	https://code.google.com/archive/p/jbirch

2.3.10. Clustering performance evaluation

Evaluating	the	performance	of	a	clustering	algorithm	is	not	as	trivial	as	counting	the	number	of	errors	or	the	precision	and	recall	of	a
supervised	classification	algorithm.	In	particular	any	evaluation	metric	should	not	take	the	absolute	values	of	the	cluster	labels	into
account	but	rather	if	this	clustering	define	separations	of	the	data	similar	to	some	ground	truth	set	of	classes	or	satisfying	some
assumption	such	that	members	belong	to	the	same	class	are	more	similar	than	members	of	different	classes	according	to	some
similarity	metric.

2.3.10.1. Adjusted Rand index

Given	the	knowledge	of	the	ground	truth	class	assignments	labels_true 	and	our	clustering	algorithm	assignments	of	the	same
samples	labels_pred ,	the	adjusted	Rand	index	is	a	function	that	measures	the	similarity	of	the	two	assignments,	ignoring
permutations	and	with	chance	normalization:

One	can	permute	0	and	1	in	the	predicted	labels,	rename	2	to	3,	and	get	the	same	score:

Furthermore,	adjusted_rand_score	is	symmetric:	swapping	the	argument	does	not	change	the	score.	It	can	thus	be	used	as	a
consensus	measure:

Perfect	labeling	is	scored	1.0:

Bad	(e.g.	independent	labelings)	have	negative	or	close	to	0.0	scores:

2.3.10.1.1. Advantages

>>>	from	sklearn	import	metrics
>>>	labels_true	=	[0,	0,	0,	1,	1,	1]
>>>	labels_pred	=	[0,	0,	1,	1,	2,	2]

>>>	metrics.adjusted_rand_score(labels_true,	labels_pred)
0.24...

>>>

>>>	labels_pred	=	[1,	1,	0,	0,	3,	3]
>>>	metrics.adjusted_rand_score(labels_true,	labels_pred)
0.24...

>>>

>>>	metrics.adjusted_rand_score(labels_pred,	labels_true)
0.24...

>>>

>>>	labels_pred	=	labels_true[:]
>>>	metrics.adjusted_rand_score(labels_true,	labels_pred)
1.0

>>>

>>>	labels_true	=	[0,	1,	2,	0,	3,	4,	5,	1]
>>>	labels_pred	=	[1,	1,	0,	0,	2,	2,	2,	2]
>>>	metrics.adjusted_rand_score(labels_true,	labels_pred)
-0.12...

>>>

https://scikit-learn.org/stable/auto_examples/cluster/plot_birch_vs_minibatchkmeans.html
https://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf
https://code.google.com/archive/p/jbirch
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_rand_score.html#sklearn.metrics.adjusted_rand_score


Random	(uniform)	label	assignments	have	a	ARI	score	close	to	0.0	for	any	value	of	n_clusters 	and	n_samples 	(which	is	not	the
case	for	raw	Rand	index	or	the	V-measure	for	instance).
Bounded	range	[-1,	1]:	negative	values	are	bad	(independent	labelings),	similar	clusterings	have	a	positive	ARI,	1.0	is	the	perfect
match	score.
No	assumption	is	made	on	the	cluster	structure:	can	be	used	to	compare	clustering	algorithms	such	as	k-means	which	assumes
isotropic	blob	shapes	with	results	of	spectral	clustering	algorithms	which	can	find	cluster	with	“folded”	shapes.

2.3.10.1.2. Drawbacks

Contrary	to	inertia,	ARI	requires	knowledge	of	the	ground	truth	classes	while	is	almost	never	available	in	practice	or	requires
manual	assignment	by	human	annotators	(as	in	the	supervised	learning	setting).

However	ARI	can	also	be	useful	in	a	purely	unsupervised	setting	as	a	building	block	for	a	Consensus	Index	that	can	be	used	for
clustering	model	selection	(TODO).

Examples:

Adjustment	for	chance	in	clustering	performance	evaluation:	Analysis	of	the	impact	of	the	dataset	size	on	the	value	of	clustering
measures	for	random	assignments.

2.3.10.1.3. Mathematical formulation

If	C	is	a	ground	truth	class	assignment	and	K	the	clustering,	let	us	define	 	and	 	as:

,	the	number	of	pairs	of	elements	that	are	in	the	same	set	in	C	and	in	the	same	set	in	K
,	the	number	of	pairs	of	elements	that	are	in	different	sets	in	C	and	in	different	sets	in	K

The	raw	(unadjusted)	Rand	index	is	then	given	by:

Where	 	is	the	total	number	of	possible	pairs	in	the	dataset	(without	ordering).

However	the	RI	score	does	not	guarantee	that	random	label	assignments	will	get	a	value	close	to	zero	(esp.	if	the	number	of	clusters	is
in	the	same	order	of	magnitude	as	the	number	of	samples).

To	counter	this	effect	we	can	discount	the	expected	RI	 	of	random	labelings	by	defining	the	adjusted	Rand	index	as	follows:

References

Comparing	Partitions	L.	Hubert	and	P.	Arabie,	Journal	of	Classification	1985
Wikipedia	entry	for	the	adjusted	Rand	index

2.3.10.2. Mutual Information based scores

Given	the	knowledge	of	the	ground	truth	class	assignments	labels_true 	and	our	clustering	algorithm	assignments	of	the	same
samples	labels_pred ,	the	Mutual	Information	is	a	function	that	measures	the	agreement	of	the	two	assignments,	ignoring
permutations.	Two	different	normalized	versions	of	this	measure	are	available,	Normalized	Mutual	Information	(NMI)	and	Adjusted
Mutual	Information	(AMI).	NMI	is	often	used	in	the	literature,	while	AMI	was	proposed	more	recently	and	is	normalized	against	chance:

One	can	permute	0	and	1	in	the	predicted	labels,	rename	2	to	3	and	get	the	same	score:

>>>	from	sklearn	import	metrics
>>>	labels_true	=	[0,	0,	0,	1,	1,	1]
>>>	labels_pred	=	[0,	0,	1,	1,	2,	2]

>>>	metrics.adjusted_mutual_info_score(labels_true,	labels_pred)		
0.22504...

>>>

>>>	labels_pred	=	[1,	1,	0,	0,	3,	3]
>>>	metrics.adjusted_mutual_info_score(labels_true,	labels_pred)		
0.22504...

>>>

https://scikit-learn.org/stable/auto_examples/cluster/plot_adjusted_for_chance_measures.html#sphx-glr-auto-examples-cluster-plot-adjusted-for-chance-measures-py
https://link.springer.com/article/10.1007%2FBF01908075
https://en.wikipedia.org/wiki/Rand_index#Adjusted_Rand_index


All,	mutual_info_score,	adjusted_mutual_info_score	and	normalized_mutual_info_score	are	symmetric:	swapping	the	argument
does	not	change	the	score.	Thus	they	can	be	used	as	a	consensus	measure:

Perfect	labeling	is	scored	1.0:

This	is	not	true	for	mutual_info_score ,	which	is	therefore	harder	to	judge:

Bad	(e.g.	independent	labelings)	have	non-positive	scores:

2.3.10.2.1. Advantages

Random	(uniform)	label	assignments	have	a	AMI	score	close	to	0.0	for	any	value	of	n_clusters 	and	n_samples 	(which	is	not	the
case	for	raw	Mutual	Information	or	the	V-measure	for	instance).
Upper	bound	of	1:	Values	close	to	zero	indicate	two	label	assignments	that	are	largely	independent,	while	values	close	to	one
indicate	significant	agreement.	Further,	an	AMI	of	exactly	1	indicates	that	the	two	label	assignments	are	equal	(with	or	without
permutation).

2.3.10.2.2. Drawbacks

Contrary	to	inertia,	MI-based	measures	require	the	knowledge	of	the	ground	truth	classes	while	almost	never	available	in	practice
or	requires	manual	assignment	by	human	annotators	(as	in	the	supervised	learning	setting).

However	MI-based	measures	can	also	be	useful	in	purely	unsupervised	setting	as	a	building	block	for	a	Consensus	Index	that	can
be	used	for	clustering	model	selection.

NMI	and	MI	are	not	adjusted	against	chance.

Examples:

Adjustment	for	chance	in	clustering	performance	evaluation:	Analysis	of	the	impact	of	the	dataset	size	on	the	value	of	clustering
measures	for	random	assignments.	This	example	also	includes	the	Adjusted	Rand	Index.

2.3.10.2.3. Mathematical formulation

Assume	two	label	assignments	(of	the	same	N	objects),	 	and	 .	Their	entropy	is	the	amount	of	uncertainty	for	a	partition	set,	defined
by:

where	 	is	the	probability	that	an	object	picked	at	random	from	 	falls	into	class	 .	Likewise	for	 :

With	 .	The	mutual	information	(MI)	between	 	and	 	is	calculated	by:

>>>	metrics.adjusted_mutual_info_score(labels_pred,	labels_true)		
0.22504...

>>>

>>>	labels_pred	=	labels_true[:]
>>>	metrics.adjusted_mutual_info_score(labels_true,	labels_pred)		
1.0

>>>	metrics.normalized_mutual_info_score(labels_true,	labels_pred)		
1.0

>>>

>>>	metrics.mutual_info_score(labels_true,	labels_pred)		
0.69...

>>>

>>>	labels_true	=	[0,	1,	2,	0,	3,	4,	5,	1]
>>>	labels_pred	=	[1,	1,	0,	0,	2,	2,	2,	2]
>>>	metrics.adjusted_mutual_info_score(labels_true,	labels_pred)		
-0.10526...

>>>

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mutual_info_score.html#sklearn.metrics.mutual_info_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_mutual_info_score.html#sklearn.metrics.adjusted_mutual_info_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.normalized_mutual_info_score.html#sklearn.metrics.normalized_mutual_info_score
https://scikit-learn.org/stable/auto_examples/cluster/plot_adjusted_for_chance_measures.html#sphx-glr-auto-examples-cluster-plot-adjusted-for-chance-measures-py


[VEB2009]

[VEB2010]

[YAT2016]

where	 	is	the	probability	that	an	object	picked	at	random	falls	into	both	classes	 	and	 .

It	also	can	be	expressed	in	set	cardinality	formulation:

The	normalized	mutual	information	is	defined	as

This	value	of	the	mutual	information	and	also	the	normalized	variant	is	not	adjusted	for	chance	and	will	tend	to	increase	as	the	number
of	different	labels	(clusters)	increases,	regardless	of	the	actual	amount	of	“mutual	information”	between	the	label	assignments.

The	expected	value	for	the	mutual	information	can	be	calculated	using	the	following	equation	[VEB2009].	In	this	equation,	
(the	number	of	elements	in	 )	and	 	(the	number	of	elements	in	 ).

Using	the	expected	value,	the	adjusted	mutual	information	can	then	be	calculated	using	a	similar	form	to	that	of	the	adjusted	Rand
index:

For	normalized	mutual	information	and	adjusted	mutual	information,	the	normalizing	value	is	typically	some	generalized	mean	of	the
entropies	of	each	clustering.	Various	generalized	means	exist,	and	no	firm	rules	exist	for	preferring	one	over	the	others.	The	decision	is
largely	a	field-by-field	basis;	for	instance,	in	community	detection,	the	arithmetic	mean	is	most	common.	Each	normalizing	method
provides	“qualitatively	similar	behaviours”	[YAT2016].	In	our	implementation,	this	is	controlled	by	the	average_method 	parameter.

Vinh	et	al.	(2010)	named	variants	of	NMI	and	AMI	by	their	averaging	method	[VEB2010].	Their	‘sqrt’	and	‘sum’	averages	are	the
geometric	and	arithmetic	means;	we	use	these	more	broadly	common	names.

References

Strehl,	Alexander,	and	Joydeep	Ghosh	(2002).	“Cluster	ensembles	–	a	knowledge	reuse	framework	for	combining	multiple
partitions”.	Journal	of	Machine	Learning	Research	3:	583–617.	doi:10.1162/153244303321897735.
Wikipedia	entry	for	the	(normalized)	Mutual	Information
Wikipedia	entry	for	the	Adjusted	Mutual	Information

Vinh,	Epps,	and	Bailey,	(2009).	“Information	theoretic	measures	for	clusterings	comparison”.	Proceedings	of	the	26th
Annual	International	Conference	on	Machine	Learning	-	ICML	‘09.	doi:10.1145/1553374.1553511.	ISBN	9781605585161.

Vinh,	Epps,	and	Bailey,	(2010).	“Information	Theoretic	Measures	for	Clusterings	Comparison:	Variants,	Properties,
Normalization	and	Correction	for	Chance”.	JMLR	<http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf>

Yang,	Algesheimer,	and	Tessone,	(2016).	“A	comparative	analysis	of	community	detection	algorithms	on	artificial
networks”.	Scientific	Reports	6:	30750.	doi:10.1038/srep30750.

2.3.10.3. Homogeneity, completeness and V-measure

Given	the	knowledge	of	the	ground	truth	class	assignments	of	the	samples,	it	is	possible	to	define	some	intuitive	metric	using
conditional	entropy	analysis.

In	particular	Rosenberg	and	Hirschberg	(2007)	define	the	following	two	desirable	objectives	for	any	cluster	assignment:

homogeneity:	each	cluster	contains	only	members	of	a	single	class.
completeness:	all	members	of	a	given	class	are	assigned	to	the	same	cluster.

We	can	turn	those	concept	as	scores	homogeneity_score	and	completeness_score.	Both	are	bounded	below	by	0.0	and	above	by	1.0
(higher	is	better):

https://scikit-learn.org/stable/modules/clustering.html#id13
https://scikit-learn.org/stable/modules/clustering.html#id15
https://scikit-learn.org/stable/modules/clustering.html#id14
https://scikit-learn.org/stable/modules/clustering.html#veb2009
https://scikit-learn.org/stable/modules/clustering.html#yat2016
https://scikit-learn.org/stable/modules/clustering.html#veb2010
http://strehl.com/download/strehl-jmlr02.pdf
https://en.wikipedia.org/wiki/Mutual_Information
https://en.wikipedia.org/wiki/Adjusted_Mutual_Information
https://dl.acm.org/citation.cfm?doid=1553374.1553511
http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf
https://www.nature.com/articles/srep30750
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.homogeneity_score.html#sklearn.metrics.homogeneity_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.completeness_score.html#sklearn.metrics.completeness_score


Their	harmonic	mean	called	V-measure	is	computed	by	v_measure_score:

This	function’s	formula	is	as	follows:

beta 	defaults	to	a	value	of	1.0,	but	for	using	a	value	less	than	1	for	beta:

more	weight	will	be	attributed	to	homogeneity,	and	using	a	value	greater	than	1:

more	weight	will	be	attributed	to	completeness.

The	V-measure	is	actually	equivalent	to	the	mutual	information	(NMI)	discussed	above,	with	the	aggregation	function	being	the
arithmetic	mean	[B2011].

Homogeneity,	completeness	and	V-measure	can	be	computed	at	once	using	homogeneity_completeness_v_measure	as	follows:

The	following	clustering	assignment	is	slightly	better,	since	it	is	homogeneous	but	not	complete:

Note: 	v_measure_score	is	symmetric:	it	can	be	used	to	evaluate	the	agreement	of	two	independent	assignments	on	the	same
dataset.
This	is	not	the	case	for	completeness_score	and	homogeneity_score:	both	are	bound	by	the	relationship:

2.3.10.3.1. Advantages

Bounded	scores:	0.0	is	as	bad	as	it	can	be,	1.0	is	a	perfect	score.
Intuitive	interpretation:	clustering	with	bad	V-measure	can	be	qualitatively	analyzed	in	terms	of	homogeneity	and	completeness	to
better	feel	what	‘kind’	of	mistakes	is	done	by	the	assignment.
No	assumption	is	made	on	the	cluster	structure:	can	be	used	to	compare	clustering	algorithms	such	as	k-means	which	assumes
isotropic	blob	shapes	with	results	of	spectral	clustering	algorithms	which	can	find	cluster	with	“folded”	shapes.

2.3.10.3.2. Drawbacks

The	previously	introduced	metrics	are	not	normalized	with	regards	to	random	labeling:	this	means	that	depending	on	the	number
of	samples,	clusters	and	ground	truth	classes,	a	completely	random	labeling	will	not	always	yield	the	same	values	for
homogeneity,	completeness	and	hence	v-measure.	In	particular	random	labeling	won’t	yield	zero	scores	especially	when	the
number	of	clusters	is	large.

>>>	from	sklearn	import	metrics
>>>	labels_true	=	[0,	0,	0,	1,	1,	1]
>>>	labels_pred	=	[0,	0,	1,	1,	2,	2]

>>>	metrics.homogeneity_score(labels_true,	labels_pred)
0.66...

>>>	metrics.completeness_score(labels_true,	labels_pred)
0.42...

>>>

>>>	metrics.v_measure_score(labels_true,	labels_pred)
0.51...

>>>

>>>	metrics.v_measure_score(labels_true,	labels_pred,	beta=0.6)
0.54...

>>>

>>>	metrics.v_measure_score(labels_true,	labels_pred,	beta=1.8)
0.48...

>>>

>>>	metrics.homogeneity_completeness_v_measure(labels_true,	labels_pred)
(0.66...,	0.42...,	0.51...)

>>>

>>>	labels_pred	=	[0,	0,	0,	1,	2,	2]
>>>	metrics.homogeneity_completeness_v_measure(labels_true,	labels_pred)
(1.0,	0.68...,	0.81...)

>>>

homogeneity_score(a,	b)	==	completeness_score(b,	a)

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.v_measure_score.html#sklearn.metrics.v_measure_score
https://scikit-learn.org/stable/modules/clustering.html#b2011
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.homogeneity_completeness_v_measure.html#sklearn.metrics.homogeneity_completeness_v_measure
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.v_measure_score.html#sklearn.metrics.v_measure_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.completeness_score.html#sklearn.metrics.completeness_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.homogeneity_score.html#sklearn.metrics.homogeneity_score


This	problem	can	safely	be	ignored	when	the	number	of	samples	is	more	than	a	thousand	and	the	number	of	clusters	is	less	than
10.	For	smaller	sample	sizes	or	larger	number	of	clusters	it	is	safer	to	use	an	adjusted	index	such	as	the	Adjusted	Rand	Index
(ARI).

These	metrics	require	the	knowledge	of	the	ground	truth	classes	while	almost	never	available	in	practice	or	requires	manual
assignment	by	human	annotators	(as	in	the	supervised	learning	setting).

Examples:

Adjustment	for	chance	in	clustering	performance	evaluation:	Analysis	of	the	impact	of	the	dataset	size	on	the	value	of	clustering
measures	for	random	assignments.

2.3.10.3.3. Mathematical formulation

Homogeneity	and	completeness	scores	are	formally	given	by:

where	 	is	the	conditional	entropy	of	the	classes	given	the	cluster	assignments	and	is	given	by:

and	 	is	the	entropy	of	the	classes	and	is	given	by:

with	 	the	total	number	of	samples,	 	and	 	the	number	of	samples	respectively	belonging	to	class	 	and	cluster	 ,	and	finally	
the	number	of	samples	from	class	 	assigned	to	cluster	 .

The	conditional	entropy	of	clusters	given	class	 	and	the	entropy	of	clusters	 	are	defined	in	a	symmetric	manner.

Rosenberg	and	Hirschberg	further	define	V-measure	as	the	harmonic	mean	of	homogeneity	and	completeness:

https://scikit-learn.org/stable/auto_examples/cluster/plot_adjusted_for_chance_measures.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_adjusted_for_chance_measures.html#sphx-glr-auto-examples-cluster-plot-adjusted-for-chance-measures-py


[B2011]

References

V-Measure:	A	conditional	entropy-based	external	cluster	evaluation	measure	Andrew	Rosenberg	and	Julia	Hirschberg,	2007

Identication	and	Characterization	of	Events	in	Social	Media,	Hila	Becker,	PhD	Thesis.

2.3.10.4. Fowlkes-Mallows scores

The	Fowlkes-Mallows	index	(sklearn.metrics.fowlkes_mallows_score)	can	be	used	when	the	ground	truth	class	assignments	of	the
samples	is	known.	The	Fowlkes-Mallows	score	FMI	is	defined	as	the	geometric	mean	of	the	pairwise	precision	and	recall:

Where	TP 	is	the	number	of	True	Positive	(i.e.	the	number	of	pair	of	points	that	belong	to	the	same	clusters	in	both	the	true	labels	and
the	predicted	labels),	FP 	is	the	number	of	False	Positive	(i.e.	the	number	of	pair	of	points	that	belong	to	the	same	clusters	in	the	true
labels	and	not	in	the	predicted	labels)	and	FN 	is	the	number	of	False	Negative	(i.e	the	number	of	pair	of	points	that	belongs	in	the	same
clusters	in	the	predicted	labels	and	not	in	the	true	labels).

The	score	ranges	from	0	to	1.	A	high	value	indicates	a	good	similarity	between	two	clusters.

One	can	permute	0	and	1	in	the	predicted	labels,	rename	2	to	3	and	get	the	same	score:

Perfect	labeling	is	scored	1.0:

Bad	(e.g.	independent	labelings)	have	zero	scores:

2.3.10.4.1. Advantages

Random	(uniform)	label	assignments	have	a	FMI	score	close	to	0.0	for	any	value	of	n_clusters 	and	n_samples 	(which	is	not	the
case	for	raw	Mutual	Information	or	the	V-measure	for	instance).
Upper-bounded	at	1:	Values	close	to	zero	indicate	two	label	assignments	that	are	largely	independent,	while	values	close	to	one
indicate	significant	agreement.	Further,	values	of	exactly	0	indicate	purely	independent	label	assignments	and	a	FMI	of	exactly	1
indicates	that	the	two	label	assignments	are	equal	(with	or	without	permutation).
No	assumption	is	made	on	the	cluster	structure:	can	be	used	to	compare	clustering	algorithms	such	as	k-means	which	assumes
isotropic	blob	shapes	with	results	of	spectral	clustering	algorithms	which	can	find	cluster	with	“folded”	shapes.

2.3.10.4.2. Drawbacks

Contrary	to	inertia,	FMI-based	measures	require	the	knowledge	of	the	ground	truth	classes	while	almost	never	available	in	practice
or	requires	manual	assignment	by	human	annotators	(as	in	the	supervised	learning	setting).

References

E.	B.	Fowkles	and	C.	L.	Mallows,	1983.	“A	method	for	comparing	two	hierarchical	clusterings”.	Journal	of	the	American	Statistical
Association.	http://wildfire.stat.ucla.edu/pdflibrary/fowlkes.pdf
Wikipedia	entry	for	the	Fowlkes-Mallows	Index

>>>	from	sklearn	import	metrics
>>>	labels_true	=	[0,	0,	0,	1,	1,	1]
>>>	labels_pred	=	[0,	0,	1,	1,	2,	2]

>>>

>>>	metrics.fowlkes_mallows_score(labels_true,	labels_pred)
0.47140...

>>>

>>>	labels_pred	=	[1,	1,	0,	0,	3,	3]

>>>	metrics.fowlkes_mallows_score(labels_true,	labels_pred)
0.47140...

>>>

>>>	labels_pred	=	labels_true[:]
>>>	metrics.fowlkes_mallows_score(labels_true,	labels_pred)
1.0

>>>

>>>	labels_true	=	[0,	1,	2,	0,	3,	4,	5,	1]
>>>	labels_pred	=	[1,	1,	0,	0,	2,	2,	2,	2]
>>>	metrics.fowlkes_mallows_score(labels_true,	labels_pred)
0.0

>>>

https://scikit-learn.org/stable/modules/clustering.html#id16
https://aclweb.org/anthology/D/D07/D07-1043.pdf
http://www.cs.columbia.edu/~hila/hila-thesis-distributed.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.fowlkes_mallows_score.html#sklearn.metrics.fowlkes_mallows_score
http://wildfire.stat.ucla.edu/pdflibrary/fowlkes.pdf
https://en.wikipedia.org/wiki/Fowlkes-Mallows_index


2.3.10.5. Silhouette Coefficient

If	the	ground	truth	labels	are	not	known,	evaluation	must	be	performed	using	the	model	itself.	The	Silhouette	Coefficient
(sklearn.metrics.silhouette_score)	is	an	example	of	such	an	evaluation,	where	a	higher	Silhouette	Coefficient	score	relates	to	a
model	with	better	defined	clusters.	The	Silhouette	Coefficient	is	defined	for	each	sample	and	is	composed	of	two	scores:

a:	The	mean	distance	between	a	sample	and	all	other	points	in	the	same	class.
b:	The	mean	distance	between	a	sample	and	all	other	points	in	the	next	nearest	cluster.

The	Silhouette	Coefficient	s	for	a	single	sample	is	then	given	as:

The	Silhouette	Coefficient	for	a	set	of	samples	is	given	as	the	mean	of	the	Silhouette	Coefficient	for	each	sample.

In	normal	usage,	the	Silhouette	Coefficient	is	applied	to	the	results	of	a	cluster	analysis.

References

Peter	J.	Rousseeuw	(1987).	“Silhouettes:	a	Graphical	Aid	to	the	Interpretation	and	Validation	of	Cluster	Analysis”.	Computational
and	Applied	Mathematics	20:	53–65.	doi:10.1016/0377-0427(87)90125-7.

2.3.10.5.1. Advantages

The	score	is	bounded	between	-1	for	incorrect	clustering	and	+1	for	highly	dense	clustering.	Scores	around	zero	indicate	overlapping
clusters.
The	score	is	higher	when	clusters	are	dense	and	well	separated,	which	relates	to	a	standard	concept	of	a	cluster.

2.3.10.5.2. Drawbacks

The	Silhouette	Coefficient	is	generally	higher	for	convex	clusters	than	other	concepts	of	clusters,	such	as	density	based	clusters	like
those	obtained	through	DBSCAN.

Examples:

Selecting	the	number	of	clusters	with	silhouette	analysis	on	KMeans	clustering	:	In	this	example	the	silhouette	analysis	is	used	to
choose	an	optimal	value	for	n_clusters.

2.3.10.6. Calinski-Harabasz Index

If	the	ground	truth	labels	are	not	known,	the	Calinski-Harabasz	index	(sklearn.metrics.calinski_harabasz_score)	-	also	known	as
the	Variance	Ratio	Criterion	-	can	be	used	to	evaluate	the	model,	where	a	higher	Calinski-Harabasz	score	relates	to	a	model	with	better
defined	clusters.

The	index	is	the	ratio	of	the	sum	of	between-clusters	dispersion	and	of	inter-cluster	dispersion	for	all	clusters	(where	dispersion	is
defined	as	the	sum	of	distances	squared):

In	normal	usage,	the	Calinski-Harabasz	index	is	applied	to	the	results	of	a	cluster	analysis:

>>>	from	sklearn	import	metrics
>>>	from	sklearn.metrics	import	pairwise_distances
>>>	from	sklearn	import	datasets
>>>	X,	y	=	datasets.load_iris(return_X_y=True)

>>>

>>>	import	numpy	as	np
>>>	from	sklearn.cluster	import	KMeans
>>>	kmeans_model	=	KMeans(n_clusters=3,	random_state=1).fit(X)
>>>	labels	=	kmeans_model.labels_
>>>	metrics.silhouette_score(X,	labels,	metric='euclidean')
0.55...

>>>

>>>	from	sklearn	import	metrics
>>>	from	sklearn.metrics	import	pairwise_distances
>>>	from	sklearn	import	datasets
>>>	X,	y	=	datasets.load_iris(return_X_y=True)

>>>

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html#sklearn.metrics.silhouette_score
https://doi.org/10.1016/0377-0427(87)90125-7
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html#sphx-glr-auto-examples-cluster-plot-kmeans-silhouette-analysis-py
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.calinski_harabasz_score.html#sklearn.metrics.calinski_harabasz_score


2.3.10.6.1. Advantages

The	score	is	higher	when	clusters	are	dense	and	well	separated,	which	relates	to	a	standard	concept	of	a	cluster.
The	score	is	fast	to	compute.

2.3.10.6.2. Drawbacks

The	Calinski-Harabasz	index	is	generally	higher	for	convex	clusters	than	other	concepts	of	clusters,	such	as	density	based	clusters
like	those	obtained	through	DBSCAN.

2.3.10.6.3. Mathematical formulation

For	a	set	of	data	 	of	size	 	which	has	been	clustered	into	 	clusters,	the	Calinski-Harabasz	score	 	is	defined	as	the	ratio	of	the
between-clusters	dispersion	mean	and	the	within-cluster	dispersion:

where	 	is	trace	of	the	between	group	dispersion	matrix	and	 	is	the	trace	of	the	within-cluster	dispersion	matrix	defined
by:

with	 	the	set	of	points	in	cluster	 ,	 	the	center	of	cluster	 ,	 	the	center	of	 ,	and	 	the	number	of	points	in	cluster	 .

References

Caliński,	T.,	&	Harabasz,	J.	(1974).	“A	Dendrite	Method	for	Cluster	Analysis”.	Communications	in	Statistics-theory	and	Methods	3:
1-27.	doi:10.1080/03610927408827101.

2.3.10.7. Davies-Bouldin Index

If	the	ground	truth	labels	are	not	known,	the	Davies-Bouldin	index	(sklearn.metrics.davies_bouldin_score)	can	be	used	to	evaluate
the	model,	where	a	lower	Davies-Bouldin	index	relates	to	a	model	with	better	separation	between	the	clusters.

This	index	signifies	the	average	‘similarity’	between	clusters,	where	the	similarity	is	a	measure	that	compares	the	distance	between
clusters	with	the	size	of	the	clusters	themselves.

Zero	is	the	lowest	possible	score.	Values	closer	to	zero	indicate	a	better	partition.

In	normal	usage,	the	Davies-Bouldin	index	is	applied	to	the	results	of	a	cluster	analysis	as	follows:

2.3.10.7.1. Advantages

The	computation	of	Davies-Bouldin	is	simpler	than	that	of	Silhouette	scores.
The	index	is	computed	only	quantities	and	features	inherent	to	the	dataset.

2.3.10.7.2. Drawbacks

>>>	import	numpy	as	np
>>>	from	sklearn.cluster	import	KMeans
>>>	kmeans_model	=	KMeans(n_clusters=3,	random_state=1).fit(X)
>>>	labels	=	kmeans_model.labels_
>>>	metrics.calinski_harabasz_score(X,	labels)
561.62...

>>>

>>>	from	sklearn	import	datasets
>>>	iris	=	datasets.load_iris()
>>>	X	=	iris.data
>>>	from	sklearn.cluster	import	KMeans
>>>	from	sklearn.metrics	import	davies_bouldin_score
>>>	kmeans	=	KMeans(n_clusters=3,	random_state=1).fit(X)
>>>	labels	=	kmeans.labels_
>>>	davies_bouldin_score(X,	labels)
0.6619...

>>>

https://www.researchgate.net/publication/233096619_A_Dendrite_Method_for_Cluster_Analysis
https://doi.org/10.1080/03610927408827101
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.davies_bouldin_score.html#sklearn.metrics.davies_bouldin_score


The	Davies-Boulding	index	is	generally	higher	for	convex	clusters	than	other	concepts	of	clusters,	such	as	density	based	clusters	like
those	obtained	from	DBSCAN.
The	usage	of	centroid	distance	limits	the	distance	metric	to	Euclidean	space.

2.3.10.7.3. Mathematical formulation

The	index	is	defined	as	the	average	similarity	between	each	cluster	 	for	 	and	its	most	similar	one	 .	In	the	context	of
this	index,	similarity	is	defined	as	a	measure	 	that	trades	off:

,	the	average	distance	between	each	point	of	cluster	 	and	the	centroid	of	that	cluster	–	also	know	as	cluster	diameter.
,	the	distance	between	cluster	centroids	 	and	 .

A	simple	choice	to	construct	 	so	that	it	is	nonnegative	and	symmetric	is:

Then	the	Davies-Bouldin	index	is	defined	as:

References

Davies,	David	L.;	Bouldin,	Donald	W.	(1979).	“A	Cluster	Separation	Measure”	IEEE	Transactions	on	Pattern	Analysis	and	Machine
Intelligence.	PAMI-1	(2):	224-227.	doi:10.1109/TPAMI.1979.4766909.
Halkidi,	Maria;	Batistakis,	Yannis;	Vazirgiannis,	Michalis	(2001).	“On	Clustering	Validation	Techniques”	Journal	of	Intelligent
Information	Systems,	17(2-3),	107-145.	doi:10.1023/A:1012801612483.
Wikipedia	entry	for	Davies-Bouldin	index.

2.3.10.8. Contingency Matrix

Contingency	matrix	(sklearn.metrics.cluster.contingency_matrix)	reports	the	intersection	cardinality	for	every	true/predicted
cluster	pair.	The	contingency	matrix	provides	sufficient	statistics	for	all	clustering	metrics	where	the	samples	are	independent	and
identically	distributed	and	one	doesn’t	need	to	account	for	some	instances	not	being	clustered.

Here	is	an	example:

The	first	row	of	output	array	indicates	that	there	are	three	samples	whose	true	cluster	is	“a”.	Of	them,	two	are	in	predicted	cluster	0,	one
is	in	1,	and	none	is	in	2.	And	the	second	row	indicates	that	there	are	three	samples	whose	true	cluster	is	“b”.	Of	them,	none	is	in
predicted	cluster	0,	one	is	in	1	and	two	are	in	2.

A	confusion	matrix	for	classification	is	a	square	contingency	matrix	where	the	order	of	rows	and	columns	correspond	to	a	list	of
classes.

2.3.10.8.1. Advantages

Allows	to	examine	the	spread	of	each	true	cluster	across	predicted	clusters	and	vice	versa.
The	contingency	table	calculated	is	typically	utilized	in	the	calculation	of	a	similarity	statistic	(like	the	others	listed	in	this	document)
between	the	two	clusterings.

2.3.10.8.2. Drawbacks

Contingency	matrix	is	easy	to	interpret	for	a	small	number	of	clusters,	but	becomes	very	hard	to	interpret	for	a	large	number	of
clusters.
It	doesn’t	give	a	single	metric	to	use	as	an	objective	for	clustering	optimisation.

References

Wikipedia	entry	for	contingency	matrix

>>>	from	sklearn.metrics.cluster	import	contingency_matrix
>>>	x	=	["a",	"a",	"a",	"b",	"b",	"b"]
>>>	y	=	[0,	0,	1,	1,	2,	2]
>>>	contingency_matrix(x,	y)
array([[2,	1,	0],
							[0,	1,	2]])

>>>

https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1023/A:1012801612483
https://en.wikipedia.org/wiki/Davies%E2%80%93Bouldin_index
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.cluster.contingency_matrix.html#sklearn.metrics.cluster.contingency_matrix
https://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix
https://en.wikipedia.org/wiki/Contingency_table


©	2007	-	2019,	scikit-learn	developers	(BSD	License).	Show	this	page	sourceToggle	Menu

https://scikit-learn.org/stable/_sources/modules/clustering.rst.txt

