
8. Computing with scikit-learn

8.1. Strategies to scale computationally: bigger data

For	some	applications	the	amount	of	examples,	features	(or	both)	and/or	the	speed	at	which	they	need	to	be	processed	are	challenging
for	traditional	approaches.	In	these	cases	scikit-learn	has	a	number	of	options	you	can	consider	to	make	your	system	scale.

8.1.1. Scaling with instances using out-of-core learning

Out-of-core	(or	“external	memory”)	learning	is	a	technique	used	to	learn	from	data	that	cannot	fit	in	a	computer’s	main	memory	(RAM).

Here	is	a	sketch	of	a	system	designed	to	achieve	this	goal:

1.	 a	way	to	stream	instances

2.	 a	way	to	extract	features	from	instances

3.	 an	incremental	algorithm

8.1.1.1. Streaming instances

Basically,	1.	may	be	a	reader	that	yields	instances	from	files	on	a	hard	drive,	a	database,	from	a	network	stream	etc.	However,	details	on
how	to	achieve	this	are	beyond	the	scope	of	this	documentation.

8.1.1.2. Extracting features

2.	could	be	any	relevant	way	to	extract	features	among	the	different	feature	extraction	methods	supported	by	scikit-learn.	However,
when	working	with	data	that	needs	vectorization	and	where	the	set	of	features	or	values	is	not	known	in	advance	one	should	take
explicit	care.	A	good	example	is	text	classification	where	unknown	terms	are	likely	to	be	found	during	training.	It	is	possible	to	use	a
stateful	vectorizer	if	making	multiple	passes	over	the	data	is	reasonable	from	an	application	point	of	view.	Otherwise,	one	can	turn	up
the	difficulty	by	using	a	stateless	feature	extractor.	Currently	the	preferred	way	to	do	this	is	to	use	the	so-called	hashing	trick	as
implemented	by	sklearn.feature_extraction.FeatureHasher	for	datasets	with	categorical	variables	represented	as	list	of	Python
dicts	or	sklearn.feature_extraction.text.HashingVectorizer	for	text	documents.

8.1.1.3. Incremental learning

Finally,	for	3.	we	have	a	number	of	options	inside	scikit-learn.	Although	not	all	algorithms	can	learn	incrementally	(i.e.	without	seeing	all
the	instances	at	once),	all	estimators	implementing	the	partial_fit 	API	are	candidates.	Actually,	the	ability	to	learn	incrementally
from	a	mini-batch	of	instances	(sometimes	called	“online	learning”)	is	key	to	out-of-core	learning	as	it	guarantees	that	at	any	given	time
there	will	be	only	a	small	amount	of	instances	in	the	main	memory.	Choosing	a	good	size	for	the	mini-batch	that	balances	relevancy	and
memory	footprint	could	involve	some	tuning	[1].

Here	is	a	list	of	incremental	estimators	for	different	tasks:
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Classification
sklearn.naive_bayes.MultinomialNB

sklearn.naive_bayes.BernoulliNB

sklearn.linear_model.Perceptron

sklearn.linear_model.SGDClassifier

sklearn.linear_model.PassiveAggressiveClassifier

sklearn.neural_network.MLPClassifier

Regression
sklearn.linear_model.SGDRegressor

sklearn.linear_model.PassiveAggressiveRegressor

sklearn.neural_network.MLPRegressor

Clustering
sklearn.cluster.MiniBatchKMeans

sklearn.cluster.Birch

Decomposition	/	feature	Extraction
sklearn.decomposition.MiniBatchDictionaryLearning

sklearn.decomposition.IncrementalPCA

sklearn.decomposition.LatentDirichletAllocation

Preprocessing
sklearn.preprocessing.StandardScaler

sklearn.preprocessing.MinMaxScaler

sklearn.preprocessing.MaxAbsScaler

For	classification,	a	somewhat	important	thing	to	note	is	that	although	a	stateless	feature	extraction	routine	may	be	able	to	cope	with
new/unseen	attributes,	the	incremental	learner	itself	may	be	unable	to	cope	with	new/unseen	targets	classes.	In	this	case	you	have	to
pass	all	the	possible	classes	to	the	first	partial_fit 	call	using	the	classes= 	parameter.

Another	aspect	to	consider	when	choosing	a	proper	algorithm	is	that	not	all	of	them	put	the	same	importance	on	each	example	over
time.	Namely,	the	Perceptron 	is	still	sensitive	to	badly	labeled	examples	even	after	many	examples	whereas	the	SGD* 	and
PassiveAggressive* 	families	are	more	robust	to	this	kind	of	artifacts.	Conversely,	the	latter	also	tend	to	give	less	importance	to
remarkably	different,	yet	properly	labeled	examples	when	they	come	late	in	the	stream	as	their	learning	rate	decreases	over	time.

8.1.1.4. Examples

Finally,	we	have	a	full-fledged	example	of	Out-of-core	classification	of	text	documents.	It	is	aimed	at	providing	a	starting	point	for
people	wanting	to	build	out-of-core	learning	systems	and	demonstrates	most	of	the	notions	discussed	above.

Furthermore,	it	also	shows	the	evolution	of	the	performance	of	different	algorithms	with	the	number	of	processed	examples.
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Now	looking	at	the	computation	time	of	the	different	parts,	we	see	that	the	vectorization	is	much	more	expensive	than	learning	itself.
From	the	different	algorithms,	MultinomialNB 	is	the	most	expensive,	but	its	overhead	can	be	mitigated	by	increasing	the	size	of	the
mini-batches	(exercise:	change	minibatch_size 	to	100	and	10000	in	the	program	and	compare).

8.1.1.5. Notes

Depending	on	the	algorithm	the	mini-batch	size	can	influence	results	or	not.	SGD*,	PassiveAggressive*,	and	discrete	NaiveBayes	are
truly	online	and	are	not	affected	by	batch	size.	Conversely,	MiniBatchKMeans	convergence	rate	is	affected	by	the	batch	size.	Also,	its
memory	footprint	can	vary	dramatically	with	batch	size.

8.2. Computational Performance

For	some	applications	the	performance	(mainly	latency	and	throughput	at	prediction	time)	of	estimators	is	crucial.	It	may	also	be	of
interest	to	consider	the	training	throughput	but	this	is	often	less	important	in	a	production	setup	(where	it	often	takes	place	offline).

We	will	review	here	the	orders	of	magnitude	you	can	expect	from	a	number	of	scikit-learn	estimators	in	different	contexts	and	provide
some	tips	and	tricks	for	overcoming	performance	bottlenecks.

Prediction	latency	is	measured	as	the	elapsed	time	necessary	to	make	a	prediction	(e.g.	in	micro-seconds).	Latency	is	often	viewed	as	a
distribution	and	operations	engineers	often	focus	on	the	latency	at	a	given	percentile	of	this	distribution	(e.g.	the	90	percentile).

Prediction	throughput	is	defined	as	the	number	of	predictions	the	software	can	deliver	in	a	given	amount	of	time	(e.g.	in	predictions	per
second).

An	important	aspect	of	performance	optimization	is	also	that	it	can	hurt	prediction	accuracy.	Indeed,	simpler	models	(e.g.	linear	instead
of	non-linear,	or	with	fewer	parameters)	often	run	faster	but	are	not	always	able	to	take	into	account	the	same	exact	properties	of	the
data	as	more	complex	ones.

8.2.1. Prediction Latency

One	of	the	most	straight-forward	concerns	one	may	have	when	using/choosing	a	machine	learning	toolkit	is	the	latency	at	which
predictions	can	be	made	in	a	production	environment.

The	main	factors	that	influence	the	prediction	latency	are
1.	 Number	of	features

2.	 Input	data	representation	and	sparsity

3.	 Model	complexity

4.	 Feature	extraction

A	last	major	parameter	is	also	the	possibility	to	do	predictions	in	bulk	or	one-at-a-time	mode.

8.2.1.1. Bulk versus Atomic mode
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In	general	doing	predictions	in	bulk	(many	instances	at	the	same	time)	is	more	efficient	for	a	number	of	reasons	(branching
predictability,	CPU	cache,	linear	algebra	libraries	optimizations	etc.).	Here	we	see	on	a	setting	with	few	features	that	independently	of
estimator	choice	the	bulk	mode	is	always	faster,	and	for	some	of	them	by	1	to	2	orders	of	magnitude:

To	benchmark	different	estimators	for	your	case	you	can	simply	change	the	n_features 	parameter	in	this	example:	Prediction	Latency.
This	should	give	you	an	estimate	of	the	order	of	magnitude	of	the	prediction	latency.

8.2.1.2. Configuring Scikit-learn for reduced validation overhead

Scikit-learn	does	some	validation	on	data	that	increases	the	overhead	per	call	to	predict 	and	similar	functions.	In	particular,	checking
that	features	are	finite	(not	NaN	or	infinite)	involves	a	full	pass	over	the	data.	If	you	ensure	that	your	data	is	acceptable,	you	may
suppress	checking	for	finiteness	by	setting	the	environment	variable	SKLEARN_ASSUME_FINITE 	to	a	non-empty	string	before	importing
scikit-learn,	or	configure	it	in	Python	with	sklearn.set_config.	For	more	control	than	these	global	settings,	a	config_context 	allows
you	to	set	this	configuration	within	a	specified	context:

Note	that	this	will	affect	all	uses	of	sklearn.utils.assert_all_finite	within	the	context.

>>>	import	sklearn
>>>	with	sklearn.config_context(assume_finite=True):
...					pass		#	do	learning/prediction	here	with	reduced	validation

>>>

https://scikit-learn.org/stable/auto_examples/applications/plot_prediction_latency.html
https://scikit-learn.org/stable/auto_examples/applications/plot_prediction_latency.html
https://scikit-learn.org/stable/auto_examples/applications/plot_prediction_latency.html#sphx-glr-auto-examples-applications-plot-prediction-latency-py
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config
https://scikit-learn.org/stable/modules/generated/sklearn.utils.assert_all_finite.html#sklearn.utils.assert_all_finite


8.2.1.3. Influence of the Number of Features

Obviously	when	the	number	of	features	increases	so	does	the	memory	consumption	of	each	example.	Indeed,	for	a	matrix	of	
instances	with	 	features,	the	space	complexity	is	in	 .	From	a	computing	perspective	it	also	means	that	the	number	of	basic
operations	(e.g.,	multiplications	for	vector-matrix	products	in	linear	models)	increases	too.	Here	is	a	graph	of	the	evolution	of	the
prediction	latency	with	the	number	of	features:

Overall	you	can	expect	the	prediction	time	to	increase	at	least	linearly	with	the	number	of	features	(non-linear	cases	can	happen
depending	on	the	global	memory	footprint	and	estimator).

8.2.1.4. Influence of the Input Data Representation

Scipy	provides	sparse	matrix	data	structures	which	are	optimized	for	storing	sparse	data.	The	main	feature	of	sparse	formats	is	that
you	don’t	store	zeros	so	if	your	data	is	sparse	then	you	use	much	less	memory.	A	non-zero	value	in	a	sparse	(CSR	or	CSC)
representation	will	only	take	on	average	one	32bit	integer	position	+	the	64	bit	floating	point	value	+	an	additional	32bit	per	row	or
column	in	the	matrix.	Using	sparse	input	on	a	dense	(or	sparse)	linear	model	can	speedup	prediction	by	quite	a	bit	as	only	the	non	zero
valued	features	impact	the	dot	product	and	thus	the	model	predictions.	Hence	if	you	have	100	non	zeros	in	1e6	dimensional	space,	you
only	need	100	multiply	and	add	operation	instead	of	1e6.

Calculation	over	a	dense	representation,	however,	may	leverage	highly	optimised	vector	operations	and	multithreading	in	BLAS,	and
tends	to	result	in	fewer	CPU	cache	misses.	So	the	sparsity	should	typically	be	quite	high	(10%	non-zeros	max,	to	be	checked	depending
on	the	hardware)	for	the	sparse	input	representation	to	be	faster	than	the	dense	input	representation	on	a	machine	with	many	CPUs	and
an	optimized	BLAS	implementation.

Here	is	sample	code	to	test	the	sparsity	of	your	input:

As	a	rule	of	thumb	you	can	consider	that	if	the	sparsity	ratio	is	greater	than	90%	you	can	probably	benefit	from	sparse	formats.	Check
Scipy’s	sparse	matrix	formats	documentation	for	more	information	on	how	to	build	(or	convert	your	data	to)	sparse	matrix	formats.
Most	of	the	time	the	CSR 	and	CSC 	formats	work	best.

8.2.1.5. Influence of the Model Complexity

Generally	speaking,	when	model	complexity	increases,	predictive	power	and	latency	are	supposed	to	increase.	Increasing	predictive
power	is	usually	interesting,	but	for	many	applications	we	would	better	not	increase	prediction	latency	too	much.	We	will	now	review
this	idea	for	different	families	of	supervised	models.

For	sklearn.linear_model	(e.g.	Lasso,	ElasticNet,	SGDClassifier/Regressor,	Ridge	&	RidgeClassifier,
PassiveAggressiveClassifier/Regressor,	LinearSVC,	LogisticRegression…)	the	decision	function	that	is	applied	at	prediction	time	is	the
same	(a	dot	product)	,	so	latency	should	be	equivalent.

def	sparsity_ratio(X):
				return	1.0	-	np.count_nonzero(X)	/	float(X.shape[0]	*	X.shape[1])
print("input	sparsity	ratio:",	sparsity_ratio(X))
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Here	is	an	example	using	sklearn.linear_model.SGDClassifier	with	the	elasticnet 	penalty.	The	regularization	strength	is	globally
controlled	by	the	alpha 	parameter.	With	a	sufficiently	high	alpha ,	one	can	then	increase	the	l1_ratio 	parameter	of	elasticnet 	to
enforce	various	levels	of	sparsity	in	the	model	coefficients.	Higher	sparsity	here	is	interpreted	as	less	model	complexity	as	we	need
fewer	coefficients	to	describe	it	fully.	Of	course	sparsity	influences	in	turn	the	prediction	time	as	the	sparse	dot-product	takes	time
roughly	proportional	to	the	number	of	non-zero	coefficients.

For	the	sklearn.svm	family	of	algorithms	with	a	non-linear	kernel,	the	latency	is	tied	to	the	number	of	support	vectors	(the	fewer	the
faster).	Latency	and	throughput	should	(asymptotically)	grow	linearly	with	the	number	of	support	vectors	in	a	SVC	or	SVR	model.	The
kernel	will	also	influence	the	latency	as	it	is	used	to	compute	the	projection	of	the	input	vector	once	per	support	vector.	In	the	following
graph	the	nu 	parameter	of	sklearn.svm.NuSVR	was	used	to	influence	the	number	of	support	vectors.

For	sklearn.ensemble	of	trees	(e.g.	RandomForest,	GBT,	ExtraTrees	etc)	the	number	of	trees	and	their	depth	play	the	most	important
role.	Latency	and	throughput	should	scale	linearly	with	the	number	of	trees.	In	this	case	we	used	directly	the	n_estimators 	parameter
of	sklearn.ensemble.gradient_boosting.GradientBoostingRegressor .

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier
https://scikit-learn.org/stable/auto_examples/applications/plot_model_complexity_influence.html
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.svm
https://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVR.html#sklearn.svm.NuSVR
https://scikit-learn.org/stable/auto_examples/applications/plot_model_complexity_influence.html
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble


In	any	case	be	warned	that	decreasing	model	complexity	can	hurt	accuracy	as	mentioned	above.	For	instance	a	non-linearly	separable
problem	can	be	handled	with	a	speedy	linear	model	but	prediction	power	will	very	likely	suffer	in	the	process.

8.2.1.6. Feature Extraction Latency

Most	scikit-learn	models	are	usually	pretty	fast	as	they	are	implemented	either	with	compiled	Cython	extensions	or	optimized
computing	libraries.	On	the	other	hand,	in	many	real	world	applications	the	feature	extraction	process	(i.e.	turning	raw	data	like
database	rows	or	network	packets	into	numpy	arrays)	governs	the	overall	prediction	time.	For	example	on	the	Reuters	text
classification	task	the	whole	preparation	(reading	and	parsing	SGML	files,	tokenizing	the	text	and	hashing	it	into	a	common	vector
space)	is	taking	100	to	500	times	more	time	than	the	actual	prediction	code,	depending	on	the	chosen	model.

In	many	cases	it	is	thus	recommended	to	carefully	time	and	profile	your	feature	extraction	code	as	it	may	be	a	good	place	to	start
optimizing	when	your	overall	latency	is	too	slow	for	your	application.

8.2.2. Prediction Throughput

Another	important	metric	to	care	about	when	sizing	production	systems	is	the	throughput	i.e.	the	number	of	predictions	you	can	make
in	a	given	amount	of	time.	Here	is	a	benchmark	from	the	Prediction	Latency	example	that	measures	this	quantity	for	a	number	of
estimators	on	synthetic	data:
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These	throughputs	are	achieved	on	a	single	process.	An	obvious	way	to	increase	the	throughput	of	your	application	is	to	spawn
additional	instances	(usually	processes	in	Python	because	of	the	GIL)	that	share	the	same	model.	One	might	also	add	machines	to
spread	the	load.	A	detailed	explanation	on	how	to	achieve	this	is	beyond	the	scope	of	this	documentation	though.

8.2.3. Tips and Tricks

8.2.3.1. Linear algebra libraries

As	scikit-learn	relies	heavily	on	Numpy/Scipy	and	linear	algebra	in	general	it	makes	sense	to	take	explicit	care	of	the	versions	of	these
libraries.	Basically,	you	ought	to	make	sure	that	Numpy	is	built	using	an	optimized	BLAS	/	LAPACK	library.

Not	all	models	benefit	from	optimized	BLAS	and	Lapack	implementations.	For	instance	models	based	on	(randomized)	decision	trees
typically	do	not	rely	on	BLAS	calls	in	their	inner	loops,	nor	do	kernel	SVMs	(SVC ,	SVR ,	NuSVC ,	NuSVR ).	On	the	other	hand	a	linear	model
implemented	with	a	BLAS	DGEMM	call	(via	numpy.dot )	will	typically	benefit	hugely	from	a	tuned	BLAS	implementation	and	lead	to
orders	of	magnitude	speedup	over	a	non-optimized	BLAS.

You	can	display	the	BLAS	/	LAPACK	implementation	used	by	your	NumPy	/	SciPy	/	scikit-learn	install	with	the	following	commands:

Optimized	BLAS	/	LAPACK	implementations	include:
Atlas	(need	hardware	specific	tuning	by	rebuilding	on	the	target	machine)
OpenBLAS
MKL
Apple	Accelerate	and	vecLib	frameworks	(OSX	only)

More	information	can	be	found	on	the	Scipy	install	page	and	in	this	blog	post	from	Daniel	Nouri	which	has	some	nice	step	by	step
install	instructions	for	Debian	/	Ubuntu.

8.2.3.2. Limiting Working Memory

Some	calculations	when	implemented	using	standard	numpy	vectorized	operations	involve	using	a	large	amount	of	temporary	memory.
This	may	potentially	exhaust	system	memory.	Where	computations	can	be	performed	in	fixed-memory	chunks,	we	attempt	to	do	so,
and	allow	the	user	to	hint	at	the	maximum	size	of	this	working	memory	(defaulting	to	1GB)	using	sklearn.set_config	or
config_context .	The	following	suggests	to	limit	temporary	working	memory	to	128	MiB:

from	numpy.distutils.system_info	import	get_info
print(get_info('blas_opt'))
print(get_info('lapack_opt'))

>>>	import	sklearn
>>>	with	sklearn.config_context(working_memory=128):
...					pass		#	do	chunked	work	here

>>>

https://scikit-learn.org/stable/auto_examples/applications/plot_prediction_latency.html
https://wiki.python.org/moin/GlobalInterpreterLock
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://en.wikipedia.org/wiki/LAPACK
https://docs.scipy.org/doc/numpy/user/install.html
http://danielnouri.org/notes/2012/12/19/libblas-and-liblapack-issues-and-speed,-with-scipy-and-ubuntu/
https://scikit-learn.org/stable/modules/generated/sklearn.set_config.html#sklearn.set_config


An	example	of	a	chunked	operation	adhering	to	this	setting	is	metric.pairwise_distances_chunked ,	which	facilitates	computing	row-
wise	reductions	of	a	pairwise	distance	matrix.

8.2.3.3. Model Compression

Model	compression	in	scikit-learn	only	concerns	linear	models	for	the	moment.	In	this	context	it	means	that	we	want	to	control	the
model	sparsity	(i.e.	the	number	of	non-zero	coordinates	in	the	model	vectors).	It	is	generally	a	good	idea	to	combine	model	sparsity	with
sparse	input	data	representation.

Here	is	sample	code	that	illustrates	the	use	of	the	sparsify() 	method:

In	this	example	we	prefer	the	elasticnet 	penalty	as	it	is	often	a	good	compromise	between	model	compactness	and	prediction	power.
One	can	also	further	tune	the	l1_ratio 	parameter	(in	combination	with	the	regularization	strength	alpha )	to	control	this	tradeoff.

A	typical	benchmark	on	synthetic	data	yields	a	>30%	decrease	in	latency	when	both	the	model	and	input	are	sparse	(with	0.000024	and
0.027400	non-zero	coefficients	ratio	respectively).	Your	mileage	may	vary	depending	on	the	sparsity	and	size	of	your	data	and	model.
Furthermore,	sparsifying	can	be	very	useful	to	reduce	the	memory	usage	of	predictive	models	deployed	on	production	servers.

8.2.3.4. Model Reshaping

Model	reshaping	consists	in	selecting	only	a	portion	of	the	available	features	to	fit	a	model.	In	other	words,	if	a	model	discards	features
during	the	learning	phase	we	can	then	strip	those	from	the	input.	This	has	several	benefits.	Firstly	it	reduces	memory	(and	therefore
time)	overhead	of	the	model	itself.	It	also	allows	to	discard	explicit	feature	selection	components	in	a	pipeline	once	we	know	which
features	to	keep	from	a	previous	run.	Finally,	it	can	help	reduce	processing	time	and	I/O	usage	upstream	in	the	data	access	and	feature
extraction	layers	by	not	collecting	and	building	features	that	are	discarded	by	the	model.	For	instance	if	the	raw	data	come	from	a
database,	it	can	make	it	possible	to	write	simpler	and	faster	queries	or	reduce	I/O	usage	by	making	the	queries	return	lighter	records.	At
the	moment,	reshaping	needs	to	be	performed	manually	in	scikit-learn.	In	the	case	of	sparse	input	(particularly	in	CSR 	format),	it	is
generally	sufficient	to	not	generate	the	relevant	features,	leaving	their	columns	empty.

8.2.3.5. Links

scikit-learn	developer	performance	documentation
Scipy	sparse	matrix	formats	documentation

8.3. Parallelism, resource management, and configuration

8.3.1. Parallelism

Some	scikit-learn	estimators	and	utilities	can	parallelize	costly	operations	using	multiple	CPU	cores,	thanks	to	the	following
components:

via	the	joblib	library.	In	this	case	the	number	of	threads	or	processes	can	be	controlled	with	the	n_jobs 	parameter.
via	OpenMP,	used	in	C	or	Cython	code.

In	addition,	some	of	the	numpy	routines	that	are	used	internally	by	scikit-learn	may	also	be	parallelized	if	numpy	is	installed	with
specific	numerical	libraries	such	as	MKL,	OpenBLAS,	or	BLIS.

We	describe	these	3	scenarios	in	the	following	subsections.

8.3.1.1. Joblib-based parallelism

When	the	underlying	implementation	uses	joblib,	the	number	of	workers	(threads	or	processes)	that	are	spawned	in	parallel	can	be
controlled	via	the	n_jobs 	parameter.

Note: 	Where	(and	how)	parallelization	happens	in	the	estimators	is	currently	poorly	documented.	Please	help	us	by	improving	our
docs	and	tackle	issue	14228!

Joblib	is	able	to	support	both	multi-processing	and	multi-threading.	Whether	joblib	chooses	to	spawn	a	thread	or	a	process	depends	on
the	backend	that	it’s	using.

clf	=	SGDRegressor(penalty='elasticnet',	l1_ratio=0.25)
clf.fit(X_train,	y_train).sparsify()
clf.predict(X_test)

https://github.com/scikit-learn/scikit-learn/blob/master/benchmarks/bench_sparsify.py
https://scikit-learn.org/stable/developers/performance.html#performance-howto
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://joblib.readthedocs.io/en/latest/
https://github.com/scikit-learn/scikit-learn/issues/14228


Scikit-learn	generally	relies	on	the	loky 	backend,	which	is	joblib’s	default	backend.	Loky	is	a	multi-processing	backend.	When	doing
multi-processing,	in	order	to	avoid	duplicating	the	memory	in	each	process	(which	isn’t	reasonable	with	big	datasets),	joblib	will	create	a
memmap	that	all	processes	can	share,	when	the	data	is	bigger	than	1MB.

In	some	specific	cases	(when	the	code	that	is	run	in	parallel	releases	the	GIL),	scikit-learn	will	indicate	to	joblib 	that	a	multi-threading
backend	is	preferable.

As	a	user,	you	may	control	the	backend	that	joblib	will	use	(regardless	of	what	scikit-learn	recommends)	by	using	a	context	manager:

Please	refer	to	the	joblib’s	docs	for	more	details.

In	practice,	whether	parallelism	is	helpful	at	improving	runtime	depends	on	many	factors.	It	is	usually	a	good	idea	to	experiment	rather
than	assuming	that	increasing	the	number	of	workers	is	always	a	good	thing.	In	some	cases	it	can	be	highly	detrimental	to	performance
to	run	multiple	copies	of	some	estimators	or	functions	in	parallel	(see	oversubscription	below).

8.3.1.2. OpenMP-based parallelism

OpenMP	is	used	to	parallelize	code	written	in	Cython	or	C,	relying	on	multi-threading	exclusively.	By	default	(and	unless	joblib	is	trying	to
avoid	oversubscription),	the	implementation	will	use	as	many	threads	as	possible.

You	can	control	the	exact	number	of	threads	that	are	used	via	the	OMP_NUM_THREADS 	environment	variable:

8.3.1.3. Parallel Numpy routines from numerical libraries

Scikit-learn	relies	heavily	on	NumPy	and	SciPy,	which	internally	call	multi-threaded	linear	algebra	routines	implemented	in	libraries	such
as	MKL,	OpenBLAS	or	BLIS.

The	number	of	threads	used	by	the	OpenBLAS,	MKL	or	BLIS	libraries	can	be	set	via	the	MKL_NUM_THREADS ,	OPENBLAS_NUM_THREADS ,	and
BLIS_NUM_THREADS 	environment	variables.

Please	note	that	scikit-learn	has	no	direct	control	over	these	implementations.	Scikit-learn	solely	relies	on	Numpy	and	Scipy.

Note: 	At	the	time	of	writing	(2019),	NumPy	and	SciPy	packages	distributed	on	pypi.org	(used	by	pip )	and	on	the	conda-forge
channel	are	linked	with	OpenBLAS,	while	conda	packages	shipped	on	the	“defaults”	channel	from	anaconda.org	are	linked	by	default
with	MKL.

8.3.1.4. Oversubscription: spawning too many threads

It	is	generally	recommended	to	avoid	using	significantly	more	processes	or	threads	than	the	number	of	CPUs	on	a	machine.	Over-
subscription	happens	when	a	program	is	running	too	many	threads	at	the	same	time.

Suppose	you	have	a	machine	with	8	CPUs.	Consider	a	case	where	you’re	running	a	GridSearchCV 	(parallelized	with	joblib)	with
n_jobs=8 	over	a	HistGradientBoostingClassifier 	(parallelized	with	OpenMP).	Each	instance	of	HistGradientBoostingClassifier
will	spawn	8	threads	(since	you	have	8	CPUs).	That’s	a	total	of	8	*	8	=	64 	threads,	which	leads	to	oversubscription	of	physical	CPU
resources	and	to	scheduling	overhead.

Oversubscription	can	arise	in	the	exact	same	fashion	with	parallelized	routines	from	MKL,	OpenBLAS	or	BLIS	that	are	nested	in	joblib
calls.

Starting	from	joblib	>=	0.14 ,	when	the	loky 	backend	is	used	(which	is	the	default),	joblib	will	tell	its	child	processes	to	limit	the
number	of	threads	they	can	use,	so	as	to	avoid	oversubscription.	In	practice	the	heuristic	that	joblib	uses	is	to	tell	the	processes	to	use
max_threads	=	n_cpus	//	n_jobs ,	via	their	corresponding	environment	variable.	Back	to	our	example	from	above,	since	the	joblib
backend	of	GridSearchCV 	is	loky ,	each	process	will	only	be	able	to	use	1	thread	instead	of	8,	thus	mitigating	the	oversubscription
issue.

Note	that:

from	joblib	import	parallel_backend

with	parallel_backend('threading',	n_jobs=2):
				#	Your	scikit-learn	code	here

OMP_NUM_THREADS=4	python	my_script.py

https://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html
https://joblib.readthedocs.io/en/latest/parallel.html#thread-based-parallelism-vs-process-based-parallelism
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Manually	setting	one	of	the	environment	variables	(OMP_NUM_THREADS ,	MKL_NUM_THREADS ,	OPENBLAS_NUM_THREADS ,	or
BLIS_NUM_THREADS )	will	take	precedence	over	what	joblib	tries	to	do.	The	total	number	of	threads	will	be
n_jobs	*	<LIB>_NUM_THREADS .	Note	that	setting	this	limit	will	also	impact	your	computations	in	the	main	process,	which	will	only
use	<LIB>_NUM_THREADS .	Joblib	exposes	a	context	manager	for	finer	control	over	the	number	of	threads	in	its	workers	(see	joblib
docs	linked	below).
Joblib	is	currently	unable	to	avoid	oversubscription	in	a	multi-threading	context.	It	can	only	do	so	with	the	loky 	backend	(which
spawns	processes).

You	will	find	additional	details	about	joblib	mitigation	of	oversubscription	in	joblib	documentation.

8.3.2. Configuration switches

8.3.2.1. Python runtime

sklearn.set_config	controls	the	following	behaviors:

assume_finite:
used	to	skip	validation,	which	enables	faster	computations	but	may	lead	to	segmentation	faults	if	the	data	contains	NaNs.

working_memory:
the	optimal	size	of	temporary	arrays	used	by	some	algorithms.

8.3.2.2. Environment variables

These	environment	variables	should	be	set	before	importing	scikit-learn.

SKLEARN_SITE_JOBLIB:
When	this	environment	variable	is	set	to	a	non	zero	value,	scikit-learn	uses	the	site	joblib	rather	than	its	vendored	version.
Consequently,	joblib	must	be	installed	for	scikit-learn	to	run.	Note	that	using	the	site	joblib	is	at	your	own	risks:	the	versions	of	scikit-
learn	and	joblib	need	to	be	compatible.	Currently,	joblib	0.11+	is	supported.	In	addition,	dumps	from	joblib.Memory	might	be
incompatible,	and	you	might	loose	some	caches	and	have	to	redownload	some	datasets.

Deprecated	since	version	0.21:	As	of	version	0.21	this	parameter	has	no	effect,	vendored	joblib	was	removed	and	site	joblib	is
always	used.

SKLEARN_ASSUME_FINITE:
Sets	the	default	value	for	the	assume_finite 	argument	of	sklearn.set_config.

SKLEARN_WORKING_MEMORY:
Sets	the	default	value	for	the	working_memory 	argument	of	sklearn.set_config.

SKLEARN_SEED:
Sets	the	seed	of	the	global	random	generator	when	running	the	tests,	for	reproducibility.

SKLEARN_SKIP_NETWORK_TESTS:
When	this	environment	variable	is	set	to	a	non	zero	value,	the	tests	that	need	network	access	are	skipped.
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