
2.6. Covariance estimation
Many	statistical	problems	require	the	estimation	of	a	population’s	covariance	matrix,	which	can	be	seen	as	an	estimation	of	data	set
scatter	plot	shape.	Most	of	the	time,	such	an	estimation	has	to	be	done	on	a	sample	whose	properties	(size,	structure,	homogeneity)
have	a	large	influence	on	the	estimation’s	quality.	The	sklearn.covariance	package	provides	tools	for	accurately	estimating	a
population’s	covariance	matrix	under	various	settings.

We	assume	that	the	observations	are	independent	and	identically	distributed	(i.i.d.).

2.6.1. Empirical covariance

The	covariance	matrix	of	a	data	set	is	known	to	be	well	approximated	by	the	classical	maximum	likelihood	estimator	(or	“empirical
covariance”),	provided	the	number	of	observations	is	large	enough	compared	to	the	number	of	features	(the	variables	describing	the
observations).	More	precisely,	the	Maximum	Likelihood	Estimator	of	a	sample	is	an	unbiased	estimator	of	the	corresponding
population’s	covariance	matrix.

The	empirical	covariance	matrix	of	a	sample	can	be	computed	using	the	empirical_covariance	function	of	the	package,	or	by	fitting
an	EmpiricalCovariance	object	to	the	data	sample	with	the	EmpiricalCovariance.fit	method.	Be	careful	that	results	depend	on
whether	the	data	are	centered,	so	one	may	want	to	use	the	assume_centered 	parameter	accurately.	More	precisely,	if
assume_centered=False ,	then	the	test	set	is	supposed	to	have	the	same	mean	vector	as	the	training	set.	If	not,	both	should	be
centered	by	the	user,	and	assume_centered=True 	should	be	used.

Examples:

See	Shrinkage	covariance	estimation:	LedoitWolf	vs	OAS	and	max-likelihood	for	an	example	on	how	to	fit	an
EmpiricalCovariance	object	to	data.

2.6.2. Shrunk Covariance

2.6.2.1. Basic shrinkage

Despite	being	an	unbiased	estimator	of	the	covariance	matrix,	the	Maximum	Likelihood	Estimator	is	not	a	good	estimator	of	the
eigenvalues	of	the	covariance	matrix,	so	the	precision	matrix	obtained	from	its	inversion	is	not	accurate.	Sometimes,	it	even	occurs	that
the	empirical	covariance	matrix	cannot	be	inverted	for	numerical	reasons.	To	avoid	such	an	inversion	problem,	a	transformation	of	the
empirical	covariance	matrix	has	been	introduced:	the	shrinkage .

In	scikit-learn,	this	transformation	(with	a	user-defined	shrinkage	coefficient)	can	be	directly	applied	to	a	pre-computed	covariance	with
the	shrunk_covariance	method.	Also,	a	shrunk	estimator	of	the	covariance	can	be	fitted	to	data	with	a	ShrunkCovariance	object	and
its	ShrunkCovariance.fit	method.	Again,	results	depend	on	whether	the	data	are	centered,	so	one	may	want	to	use	the
assume_centered 	parameter	accurately.

Mathematically,	this	shrinkage	consists	in	reducing	the	ratio	between	the	smallest	and	the	largest	eigenvalues	of	the	empirical
covariance	matrix.	It	can	be	done	by	simply	shifting	every	eigenvalue	according	to	a	given	offset,	which	is	equivalent	of	finding	the	l2-
penalized	Maximum	Likelihood	Estimator	of	the	covariance	matrix.	In	practice,	shrinkage	boils	down	to	a	simple	a	convex

transformation	:	 .

Choosing	the	amount	of	shrinkage,	 	amounts	to	setting	a	bias/variance	trade-off,	and	is	discussed	below.

Examples:

See	Shrinkage	covariance	estimation:	LedoitWolf	vs	OAS	and	max-likelihood	for	an	example	on	how	to	fit	a	ShrunkCovariance
object	to	data.

2.6.2.2. Ledoit-Wolf shrinkage

In	their	2004	paper	[1],	O.	Ledoit	and	M.	Wolf	propose	a	formula	to	compute	the	optimal	shrinkage	coefficient	 	that	minimizes	the
Mean	Squared	Error	between	the	estimated	and	the	real	covariance	matrix.
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The	Ledoit-Wolf	estimator	of	the	covariance	matrix	can	be	computed	on	a	sample	with	the	ledoit_wolf	function	of	the
sklearn.covariance	package,	or	it	can	be	otherwise	obtained	by	fitting	a	LedoitWolf	object	to	the	same	sample.

Note: 	Case	when	population	covariance	matrix	is	isotropic
It	is	important	to	note	that	when	the	number	of	samples	is	much	larger	than	the	number	of	features,	one	would	expect	that	no
shrinkage	would	be	necessary.	The	intuition	behind	this	is	that	if	the	population	covariance	is	full	rank,	when	the	number	of	sample
grows,	the	sample	covariance	will	also	become	positive	definite.	As	a	result,	no	shrinkage	would	necessary	and	the	method	should
automatically	do	this.
This,	however,	is	not	the	case	in	the	Ledoit-Wolf	procedure	when	the	population	covariance	happens	to	be	a	multiple	of	the	identity
matrix.	In	this	case,	the	Ledoit-Wolf	shrinkage	estimate	approaches	1	as	the	number	of	samples	increases.	This	indicates	that	the
optimal	estimate	of	the	covariance	matrix	in	the	Ledoit-Wolf	sense	is	multiple	of	the	identity.	Since	the	population	covariance	is
already	a	multiple	of	the	identity	matrix,	the	Ledoit-Wolf	solution	is	indeed	a	reasonable	estimate.

Examples:

See	Shrinkage	covariance	estimation:	LedoitWolf	vs	OAS	and	max-likelihood	for	an	example	on	how	to	fit	a	LedoitWolf	object	to
data	and	for	visualizing	the	performances	of	the	Ledoit-Wolf	estimator	in	terms	of	likelihood.

References:

O.	Ledoit	and	M.	Wolf,	“A	Well-Conditioned	Estimator	for	Large-Dimensional	Covariance	Matrices”,	Journal	of	Multivariate
Analysis,	Volume	88,	Issue	2,	February	2004,	pages	365-411.

2.6.2.3. Oracle Approximating Shrinkage

Under	the	assumption	that	the	data	are	Gaussian	distributed,	Chen	et	al.	[2]	derived	a	formula	aimed	at	choosing	a	shrinkage	coefficient
that	yields	a	smaller	Mean	Squared	Error	than	the	one	given	by	Ledoit	and	Wolf’s	formula.	The	resulting	estimator	is	known	as	the
Oracle	Shrinkage	Approximating	estimator	of	the	covariance.

The	OAS	estimator	of	the	covariance	matrix	can	be	computed	on	a	sample	with	the	oas	function	of	the	sklearn.covariance	package,
or	it	can	be	otherwise	obtained	by	fitting	an	OAS	object	to	the	same	sample.

Bias-variance	trade-off	when	setting	the	shrinkage:	comparing	the	choices	of	Ledoit-Wolf	and	OAS	estimators

References:

Chen	et	al.,	“Shrinkage	Algorithms	for	MMSE	Covariance	Estimation”,	IEEE	Trans.	on	Sign.	Proc.,	Volume	58,	Issue	10,	October
2010.

Examples:

See	Shrinkage	covariance	estimation:	LedoitWolf	vs	OAS	and	max-likelihood	for	an	example	on	how	to	fit	an	OAS	object	to	data.
See	Ledoit-Wolf	vs	OAS	estimation	to	visualize	the	Mean	Squared	Error	difference	between	a	LedoitWolf	and	an	OAS	estimator	of
the	covariance.
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2.6.3. Sparse inverse covariance

The	matrix	inverse	of	the	covariance	matrix,	often	called	the	precision	matrix,	is	proportional	to	the	partial	correlation	matrix.	It	gives	the
partial	independence	relationship.	In	other	words,	if	two	features	are	independent	conditionally	on	the	others,	the	corresponding
coefficient	in	the	precision	matrix	will	be	zero.	This	is	why	it	makes	sense	to	estimate	a	sparse	precision	matrix:	the	estimation	of	the
covariance	matrix	is	better	conditioned	by	learning	independence	relations	from	the	data.	This	is	known	as	covariance	selection.

In	the	small-samples	situation,	in	which	n_samples 	is	on	the	order	of	n_features 	or	smaller,	sparse	inverse	covariance	estimators
tend	to	work	better	than	shrunk	covariance	estimators.	However,	in	the	opposite	situation,	or	for	very	correlated	data,	they	can	be
numerically	unstable.	In	addition,	unlike	shrinkage	estimators,	sparse	estimators	are	able	to	recover	off-diagonal	structure.

The	GraphicalLasso	estimator	uses	an	l1	penalty	to	enforce	sparsity	on	the	precision	matrix:	the	higher	its	alpha 	parameter,	the	more
sparse	the	precision	matrix.	The	corresponding	GraphicalLassoCV	object	uses	cross-validation	to	automatically	set	the	alpha
parameter.

A	comparison	of	maximum	likelihood,	shrinkage	and	sparse	estimates	of	the	covariance	and	precision	matrix	in	the	very	small	samples
settings.

Note: 	Structure	recovery
Recovering	a	graphical	structure	from	correlations	in	the	data	is	a	challenging	thing.	If	you	are	interested	in	such	recovery	keep	in
mind	that:

Recovery	is	easier	from	a	correlation	matrix	than	a	covariance	matrix:	standardize	your	observations	before	running
GraphicalLasso

If	the	underlying	graph	has	nodes	with	much	more	connections	than	the	average	node,	the	algorithm	will	miss	some	of	these
connections.
If	your	number	of	observations	is	not	large	compared	to	the	number	of	edges	in	your	underlying	graph,	you	will	not	recover	it.
Even	if	you	are	in	favorable	recovery	conditions,	the	alpha	parameter	chosen	by	cross-validation	(e.g.	using	the	GraphicalLassoCV
object)	will	lead	to	selecting	too	many	edges.	However,	the	relevant	edges	will	have	heavier	weights	than	the	irrelevant	ones.
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The	mathematical	formulation	is	the	following:

Where	 	is	the	precision	matrix	to	be	estimated,	and	 	is	the	sample	covariance	matrix.	 	is	the	sum	of	the	absolute	values	of	off-
diagonal	coefficients	of	 .	The	algorithm	employed	to	solve	this	problem	is	the	GLasso	algorithm,	from	the	Friedman	2008
Biostatistics	paper.	It	is	the	same	algorithm	as	in	the	R	glasso 	package.

Examples:

Sparse	inverse	covariance	estimation:	example	on	synthetic	data	showing	some	recovery	of	a	structure,	and	comparing	to	other
covariance	estimators.
Visualizing	the	stock	market	structure:	example	on	real	stock	market	data,	finding	which	symbols	are	most	linked.

References:

Friedman	et	al,	“Sparse	inverse	covariance	estimation	with	the	graphical	lasso”,	Biostatistics	9,	pp	432,	2008

2.6.4. Robust Covariance Estimation

Real	data	sets	are	often	subject	to	measurement	or	recording	errors.	Regular	but	uncommon	observations	may	also	appear	for	a	variety
of	reasons.	Observations	which	are	very	uncommon	are	called	outliers.	The	empirical	covariance	estimator	and	the	shrunk	covariance
estimators	presented	above	are	very	sensitive	to	the	presence	of	outliers	in	the	data.	Therefore,	one	should	use	robust	covariance
estimators	to	estimate	the	covariance	of	its	real	data	sets.	Alternatively,	robust	covariance	estimators	can	be	used	to	perform	outlier
detection	and	discard/downweight	some	observations	according	to	further	processing	of	the	data.

The	sklearn.covariance 	package	implements	a	robust	estimator	of	covariance,	the	Minimum	Covariance	Determinant	[3].

2.6.4.1. Minimum Covariance Determinant

The	Minimum	Covariance	Determinant	estimator	is	a	robust	estimator	of	a	data	set’s	covariance	introduced	by	P.J.	Rousseeuw	in	[3].
The	idea	is	to	find	a	given	proportion	(h)	of	“good”	observations	which	are	not	outliers	and	compute	their	empirical	covariance	matrix.
This	empirical	covariance	matrix	is	then	rescaled	to	compensate	the	performed	selection	of	observations	(“consistency	step”).	Having
computed	the	Minimum	Covariance	Determinant	estimator,	one	can	give	weights	to	observations	according	to	their	Mahalanobis
distance,	leading	to	a	reweighted	estimate	of	the	covariance	matrix	of	the	data	set	(“reweighting	step”).

Rousseeuw	and	Van	Driessen	[4]	developed	the	FastMCD	algorithm	in	order	to	compute	the	Minimum	Covariance	Determinant.	This
algorithm	is	used	in	scikit-learn	when	fitting	an	MCD	object	to	data.	The	FastMCD	algorithm	also	computes	a	robust	estimate	of	the
data	set	location	at	the	same	time.

Raw	estimates	can	be	accessed	as	raw_location_ 	and	raw_covariance_ 	attributes	of	a	MinCovDet	robust	covariance	estimator
object.

References:

P.	J.	Rousseeuw.	Least	median	of	squares	regression.	J.	Am	Stat	Ass,	79:871,	1984.

A	Fast	Algorithm	for	the	Minimum	Covariance	Determinant	Estimator,	1999,	American	Statistical	Association	and	the	American
Society	for	Quality,	TECHNOMETRICS.

Examples:

See	Robust	vs	Empirical	covariance	estimate	for	an	example	on	how	to	fit	a	MinCovDet	object	to	data	and	see	how	the	estimate
remains	accurate	despite	the	presence	of	outliers.
See	Robust	covariance	estimation	and	Mahalanobis	distances	relevance	to	visualize	the	difference	between
EmpiricalCovariance	and	MinCovDet	covariance	estimators	in	terms	of	Mahalanobis	distance	(so	we	get	a	better	estimate	of	the
precision	matrix	too).

Influence	of	outliers	on	location	and	covariance	estimates Separating	inliers	from	outliers	using	a	Mahalanobis	distance
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