
3.1. Cross-validation: evaluating estimator performance
Learning	the	parameters	of	a	prediction	function	and	testing	it	on	the	same	data	is	a	methodological	mistake:	a	model	that	would	just
repeat	the	labels	of	the	samples	that	it	has	just	seen	would	have	a	perfect	score	but	would	fail	to	predict	anything	useful	on	yet-unseen
data.	This	situation	is	called	overfitting.	To	avoid	it,	it	is	common	practice	when	performing	a	(supervised)	machine	learning	experiment
to	hold	out	part	of	the	available	data	as	a	test	set	X_test,	y_test .	Note	that	the	word	“experiment”	is	not	intended	to	denote
academic	use	only,	because	even	in	commercial	settings	machine	learning	usually	starts	out	experimentally.	Here	is	a	flowchart	of
typical	cross	validation	workflow	in	model	training.	The	best	parameters	can	be	determined	by	grid	search	techniques.

In	scikit-learn	a	random	split	into	training	and	test	sets	can	be	quickly	computed	with	the	train_test_split	helper	function.	Let’s	load
the	iris	data	set	to	fit	a	linear	support	vector	machine	on	it:

We	can	now	quickly	sample	a	training	set	while	holding	out	40%	of	the	data	for	testing	(evaluating)	our	classifier:

When	evaluating	different	settings	(“hyperparameters”)	for	estimators,	such	as	the	C 	setting	that	must	be	manually	set	for	an	SVM,
there	is	still	a	risk	of	overfitting	on	the	test	set	because	the	parameters	can	be	tweaked	until	the	estimator	performs	optimally.	This	way,
knowledge	about	the	test	set	can	“leak”	into	the	model	and	evaluation	metrics	no	longer	report	on	generalization	performance.	To	solve
this	problem,	yet	another	part	of	the	dataset	can	be	held	out	as	a	so-called	“validation	set”:	training	proceeds	on	the	training	set,	after
which	evaluation	is	done	on	the	validation	set,	and	when	the	experiment	seems	to	be	successful,	final	evaluation	can	be	done	on	the
test	set.

However,	by	partitioning	the	available	data	into	three	sets,	we	drastically	reduce	the	number	of	samples	which	can	be	used	for	learning
the	model,	and	the	results	can	depend	on	a	particular	random	choice	for	the	pair	of	(train,	validation)	sets.

A	solution	to	this	problem	is	a	procedure	called	cross-validation	(CV	for	short).	A	test	set	should	still	be	held	out	for	final	evaluation,	but
the	validation	set	is	no	longer	needed	when	doing	CV.	In	the	basic	approach,	called	k-fold	CV,	the	training	set	is	split	into	k	smaller	sets
(other	approaches	are	described	below,	but	generally	follow	the	same	principles).	The	following	procedure	is	followed	for	each	of	the	k
“folds”:

>>>	import	numpy	as	np
>>>	from	sklearn.model_selection	import	train_test_split
>>>	from	sklearn	import	datasets
>>>	from	sklearn	import	svm

>>>	X,	y	=	datasets.load_iris(return_X_y=True)
>>>	X.shape,	y.shape
((150,	4),	(150,))

>>>

>>>	X_train,	X_test,	y_train,	y_test	=	train_test_split(
...					X,	y,	test_size=0.4,	random_state=0)

>>>	X_train.shape,	y_train.shape
((90,	4),	(90,))
>>>	X_test.shape,	y_test.shape
((60,	4),	(60,))

>>>	clf	=	svm.SVC(kernel='linear',	C=1).fit(X_train,	y_train)
>>>	clf.score(X_test,	y_test)
0.96...

>>>
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A	model	is	trained	using	 	of	the	folds	as	training	data;
the	resulting	model	is	validated	on	the	remaining	part	of	the	data	(i.e.,	it	is	used	as	a	test	set	to	compute	a	performance	measure
such	as	accuracy).

The	performance	measure	reported	by	k-fold	cross-validation	is	then	the	average	of	the	values	computed	in	the	loop.	This	approach	can
be	computationally	expensive,	but	does	not	waste	too	much	data	(as	is	the	case	when	fixing	an	arbitrary	validation	set),	which	is	a
major	advantage	in	problems	such	as	inverse	inference	where	the	number	of	samples	is	very	small.

3.1.1. Computing cross-validated metrics

The	simplest	way	to	use	cross-validation	is	to	call	the	cross_val_score	helper	function	on	the	estimator	and	the	dataset.

The	following	example	demonstrates	how	to	estimate	the	accuracy	of	a	linear	kernel	support	vector	machine	on	the	iris	dataset	by
splitting	the	data,	fitting	a	model	and	computing	the	score	5	consecutive	times	(with	different	splits	each	time):

The	mean	score	and	the	95%	confidence	interval	of	the	score	estimate	are	hence	given	by:

By	default,	the	score	computed	at	each	CV	iteration	is	the	score 	method	of	the	estimator.	It	is	possible	to	change	this	by	using	the
scoring	parameter:

See	The	scoring	parameter:	defining	model	evaluation	rules	for	details.	In	the	case	of	the	Iris	dataset,	the	samples	are	balanced	across
target	classes	hence	the	accuracy	and	the	F1-score	are	almost	equal.

When	the	cv 	argument	is	an	integer,	cross_val_score	uses	the	KFold	or	StratifiedKFold	strategies	by	default,	the	latter	being	used	if
the	estimator	derives	from	ClassifierMixin.

It	is	also	possible	to	use	other	cross	validation	strategies	by	passing	a	cross	validation	iterator	instead,	for	instance:

Another	option	is	to	use	an	iterable	yielding	(train,	test)	splits	as	arrays	of	indices,	for	example:

>>>	from	sklearn.model_selection	import	cross_val_score
>>>	clf	=	svm.SVC(kernel='linear',	C=1)
>>>	scores	=	cross_val_score(clf,	X,	y,	cv=5)
>>>	scores
array([0.96...,	1.		...,	0.96...,	0.96...,	1.								])

>>>

>>>	print("Accuracy:	%0.2f	(+/-	%0.2f)"	%	(scores.mean(),	scores.std()	*	2))
Accuracy:	0.98	(+/-	0.03)

>>>

>>>	from	sklearn	import	metrics
>>>	scores	=	cross_val_score(
...					clf,	X,	y,	cv=5,	scoring='f1_macro')
>>>	scores
array([0.96...,	1.		...,	0.96...,	0.96...,	1.								])

>>>

>>>	from	sklearn.model_selection	import	ShuffleSplit
>>>	n_samples	=	X.shape[0]
>>>	cv	=	ShuffleSplit(n_splits=5,	test_size=0.3,	random_state=0)
>>>	cross_val_score(clf,	X,	y,	cv=cv)
array([0.977...,	0.977...,	1.		...,	0.955...,	1.								])

>>>
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Data	transformation	with	held	out	data

Just	as	it	is	important	to	test	a	predictor	on	data	held-out	from	training,	preprocessing	(such	as	standardization,	feature	selection,
etc.)	and	similar	data	transformations	similarly	should	be	learnt	from	a	training	set	and	applied	to	held-out	data	for	prediction:

A	Pipeline	makes	it	easier	to	compose	estimators,	providing	this	behavior	under	cross-validation:

See	Pipelines	and	composite	estimators.

3.1.1.1. The cross_validate function and multiple metric evaluation

The	cross_validate	function	differs	from	cross_val_score	in	two	ways:

It	allows	specifying	multiple	metrics	for	evaluation.
It	returns	a	dict	containing	fit-times,	score-times	(and	optionally	training	scores	as	well	as	fitted	estimators)	in	addition	to	the	test
score.

For	single	metric	evaluation,	where	the	scoring	parameter	is	a	string,	callable	or	None,	the	keys	will	be	-
['test_score',	'fit_time',	'score_time']

And	for	multiple	metric	evaluation,	the	return	value	is	a	dict	with	the	following	keys	-
['test_<scorer1_name>',	'test_<scorer2_name>',	'test_<scorer...>',	'fit_time',	'score_time']

return_train_score 	is	set	to	False 	by	default	to	save	computation	time.	To	evaluate	the	scores	on	the	training	set	as	well	you	need
to	be	set	to	True .

You	may	also	retain	the	estimator	fitted	on	each	training	set	by	setting	return_estimator=True .

The	multiple	metrics	can	be	specified	either	as	a	list,	tuple	or	set	of	predefined	scorer	names:

Or	as	a	dict	mapping	scorer	name	to	a	predefined	or	custom	scoring	function:

>>>	def	custom_cv_2folds(X):
...					n	=	X.shape[0]
...					i	=	1
...					while	i	<=	2:
...									idx	=	np.arange(n	*	(i	-	1)	/	2,	n	*	i	/	2,	dtype=int)
...									yield	idx,	idx
...									i	+=	1
...
>>>	custom_cv	=	custom_cv_2folds(X)
>>>	cross_val_score(clf,	X,	y,	cv=custom_cv)
array([1.								,	0.973...])

>>>

>>>	from	sklearn	import	preprocessing
>>>	X_train,	X_test,	y_train,	y_test	=	train_test_split(
...					X,	y,	test_size=0.4,	random_state=0)
>>>	scaler	=	preprocessing.StandardScaler().fit(X_train)
>>>	X_train_transformed	=	scaler.transform(X_train)
>>>	clf	=	svm.SVC(C=1).fit(X_train_transformed,	y_train)
>>>	X_test_transformed	=	scaler.transform(X_test)
>>>	clf.score(X_test_transformed,	y_test)
0.9333...

>>>

>>>	from	sklearn.pipeline	import	make_pipeline
>>>	clf	=	make_pipeline(preprocessing.StandardScaler(),	svm.SVC(C=1))
>>>	cross_val_score(clf,	X,	y,	cv=cv)
array([0.977...,	0.933...,	0.955...,	0.933...,	0.977...])

>>>

>>>	from	sklearn.model_selection	import	cross_validate
>>>	from	sklearn.metrics	import	recall_score
>>>	scoring	=	['precision_macro',	'recall_macro']
>>>	clf	=	svm.SVC(kernel='linear',	C=1,	random_state=0)
>>>	scores	=	cross_validate(clf,	X,	y,	scoring=scoring)
>>>	sorted(scores.keys())
['fit_time',	'score_time',	'test_precision_macro',	'test_recall_macro']
>>>	scores['test_recall_macro']
array([0.96...,	1.		...,	0.96...,	0.96...,	1.								])

>>>
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Here	is	an	example	of	cross_validate 	using	a	single	metric:

3.1.1.2. Obtaining predictions by cross-validation

The	function	cross_val_predict	has	a	similar	interface	to	cross_val_score,	but	returns,	for	each	element	in	the	input,	the	prediction
that	was	obtained	for	that	element	when	it	was	in	the	test	set.	Only	cross-validation	strategies	that	assign	all	elements	to	a	test	set
exactly	once	can	be	used	(otherwise,	an	exception	is	raised).

Warning: 	Note	on	inappropriate	usage	of	cross_val_predict
The	result	of	cross_val_predict	may	be	different	from	those	obtained	using	cross_val_score	as	the	elements	are	grouped	in
different	ways.	The	function	cross_val_score	takes	an	average	over	cross-validation	folds,	whereas	cross_val_predict	simply
returns	the	labels	(or	probabilities)	from	several	distinct	models	undistinguished.	Thus,	cross_val_predict	is	not	an	appropriate
measure	of	generalisation	error.

The	function	cross_val_predict	is	appropriate	for:
Visualization	of	predictions	obtained	from	different	models.
Model	blending:	When	predictions	of	one	supervised	estimator	are	used	to	train	another	estimator	in	ensemble	methods.

The	available	cross	validation	iterators	are	introduced	in	the	following	section.

Examples

Receiver	Operating	Characteristic	(ROC)	with	cross	validation,
Recursive	feature	elimination	with	cross-validation,
Parameter	estimation	using	grid	search	with	cross-validation,
Sample	pipeline	for	text	feature	extraction	and	evaluation,
Plotting	Cross-Validated	Predictions,
Nested	versus	non-nested	cross-validation.

3.1.2. Cross validation iterators

The	following	sections	list	utilities	to	generate	indices	that	can	be	used	to	generate	dataset	splits	according	to	different	cross	validation
strategies.

3.1.2.1. Cross-validation iterators for i.i.d. data

Assuming	that	some	data	is	Independent	and	Identically	Distributed	(i.i.d.)	is	making	the	assumption	that	all	samples	stem	from	the
same	generative	process	and	that	the	generative	process	is	assumed	to	have	no	memory	of	past	generated	samples.

The	following	cross-validators	can	be	used	in	such	cases.

NOTE

While	i.i.d.	data	is	a	common	assumption	in	machine	learning	theory,	it	rarely	holds	in	practice.	If	one	knows	that	the	samples	have	been
generated	using	a	time-dependent	process,	it’s	safer	to	use	a	time-series	aware	cross-validation	scheme	Similarly	if	we	know	that	the
generative	process	has	a	group	structure	(samples	from	collected	from	different	subjects,	experiments,	measurement	devices)	it	safer
to	use	group-wise	cross-validation.

3.1.2.1.1. K-fold

>>>	from	sklearn.metrics	import	make_scorer
>>>	scoring	=	{'prec_macro':	'precision_macro',
...												'rec_macro':	make_scorer(recall_score,	average='macro')}
>>>	scores	=	cross_validate(clf,	X,	y,	scoring=scoring,
...																									cv=5,	return_train_score=True)
>>>	sorted(scores.keys())
['fit_time',	'score_time',	'test_prec_macro',	'test_rec_macro',
	'train_prec_macro',	'train_rec_macro']
>>>	scores['train_rec_macro']
array([0.97...,	0.97...,	0.99...,	0.98...,	0.98...])

>>>

>>>	scores	=	cross_validate(clf,	X,	y,
...																									scoring='precision_macro',	cv=5,
...																									return_estimator=True)
>>>	sorted(scores.keys())
['estimator',	'fit_time',	'score_time',	'test_score']

>>>
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KFold	divides	all	the	samples	in	 	groups	of	samples,	called	folds	(if	 ,	this	is	equivalent	to	the	Leave	One	Out	strategy),	of	equal
sizes	(if	possible).	The	prediction	function	is	learned	using	 	folds,	and	the	fold	left	out	is	used	for	test.

Example	of	2-fold	cross-validation	on	a	dataset	with	4	samples:

Here	is	a	visualization	of	the	cross-validation	behavior.	Note	that	KFold	is	not	affected	by	classes	or	groups.

Each	fold	is	constituted	by	two	arrays:	the	first	one	is	related	to	the	training	set,	and	the	second	one	to	the	test	set.	Thus,	one	can	create
the	training/test	sets	using	numpy	indexing:

3.1.2.1.2. Repeated K-Fold

RepeatedKFold	repeats	K-Fold	n	times.	It	can	be	used	when	one	requires	to	run	KFold	n	times,	producing	different	splits	in	each
repetition.

Example	of	2-fold	K-Fold	repeated	2	times:

Similarly,	RepeatedStratifiedKFold	repeats	Stratified	K-Fold	n	times	with	different	randomization	in	each	repetition.

3.1.2.1.3. Leave One Out (LOO)

LeaveOneOut	(or	LOO)	is	a	simple	cross-validation.	Each	learning	set	is	created	by	taking	all	the	samples	except	one,	the	test	set	being
the	sample	left	out.	Thus,	for	 	samples,	we	have	 	different	training	sets	and	 	different	tests	set.	This	cross-validation	procedure
does	not	waste	much	data	as	only	one	sample	is	removed	from	the	training	set:

>>>	import	numpy	as	np
>>>	from	sklearn.model_selection	import	KFold

>>>	X	=	["a",	"b",	"c",	"d"]
>>>	kf	=	KFold(n_splits=2)
>>>	for	train,	test	in	kf.split(X):
...					print("%s	%s"	%	(train,	test))
[2	3]	[0	1]
[0	1]	[2	3]

>>>

>>>	X	=	np.array([[0.,	0.],	[1.,	1.],	[-1.,	-1.],	[2.,	2.]])
>>>	y	=	np.array([0,	1,	0,	1])
>>>	X_train,	X_test,	y_train,	y_test	=	X[train],	X[test],	y[train],	y[test]

>>>

>>>	import	numpy	as	np
>>>	from	sklearn.model_selection	import	RepeatedKFold
>>>	X	=	np.array([[1,	2],	[3,	4],	[1,	2],	[3,	4]])
>>>	random_state	=	12883823
>>>	rkf	=	RepeatedKFold(n_splits=2,	n_repeats=2,	random_state=random_state)
>>>	for	train,	test	in	rkf.split(X):
...					print("%s	%s"	%	(train,	test))
...
[2	3]	[0	1]
[0	1]	[2	3]
[0	2]	[1	3]
[1	3]	[0	2]

>>>

>>>	from	sklearn.model_selection	import	LeaveOneOut

>>>	X	=	[1,	2,	3,	4]
>>>	loo	=	LeaveOneOut()
>>>	for	train,	test	in	loo.split(X):
...					print("%s	%s"	%	(train,	test))
[1	2	3]	[0]
[0	2	3]	[1]
[0	1	3]	[2]
[0	1	2]	[3]

>>>
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Potential	users	of	LOO	for	model	selection	should	weigh	a	few	known	caveats.	When	compared	with	 -fold	cross	validation,	one	builds	
	models	from	 	samples	instead	of	 	models,	where	 .	Moreover,	each	is	trained	on	 	samples	rather	than	 .	In

both	ways,	assuming	 	is	not	too	large	and	 ,	LOO	is	more	computationally	expensive	than	 -fold	cross	validation.

In	terms	of	accuracy,	LOO	often	results	in	high	variance	as	an	estimator	for	the	test	error.	Intuitively,	since	 	of	the	 	samples	are
used	to	build	each	model,	models	constructed	from	folds	are	virtually	identical	to	each	other	and	to	the	model	built	from	the	entire
training	set.

However,	if	the	learning	curve	is	steep	for	the	training	size	in	question,	then	5-	or	10-	fold	cross	validation	can	overestimate	the
generalization	error.

As	a	general	rule,	most	authors,	and	empirical	evidence,	suggest	that	5-	or	10-	fold	cross	validation	should	be	preferred	to	LOO.

References:

http://www.faqs.org/faqs/ai-faq/neural-nets/part3/section-12.html;
T.	Hastie,	R.	Tibshirani,	J.	Friedman,	The	Elements	of	Statistical	Learning,	Springer	2009
L.	Breiman,	P.	Spector	Submodel	selection	and	evaluation	in	regression:	The	X-random	case,	International	Statistical	Review	1992;
R.	Kohavi,	A	Study	of	Cross-Validation	and	Bootstrap	for	Accuracy	Estimation	and	Model	Selection,	Intl.	Jnt.	Conf.	AI
R.	Bharat	Rao,	G.	Fung,	R.	Rosales,	On	the	Dangers	of	Cross-Validation.	An	Experimental	Evaluation,	SIAM	2008;
G.	James,	D.	Witten,	T.	Hastie,	R	Tibshirani,	An	Introduction	to	Statistical	Learning,	Springer	2013.

3.1.2.1.4. Leave P Out (LPO)

LeavePOut	is	very	similar	to	LeaveOneOut	as	it	creates	all	the	possible	training/test	sets	by	removing	 	samples	from	the	complete	set.
For	 	samples,	this	produces	 	train-test	pairs.	Unlike	LeaveOneOut	and	KFold,	the	test	sets	will	overlap	for	 .

Example	of	Leave-2-Out	on	a	dataset	with	4	samples:

3.1.2.1.5. Random permutations cross-validation a.k.a. Shuffle & Split

ShuffleSplit

The	ShuffleSplit	iterator	will	generate	a	user	defined	number	of	independent	train	/	test	dataset	splits.	Samples	are	first	shuffled	and
then	split	into	a	pair	of	train	and	test	sets.

It	is	possible	to	control	the	randomness	for	reproducibility	of	the	results	by	explicitly	seeding	the	random_state 	pseudo	random
number	generator.

Here	is	a	usage	example:

Here	is	a	visualization	of	the	cross-validation	behavior.	Note	that	ShuffleSplit	is	not	affected	by	classes	or	groups.

>>>	from	sklearn.model_selection	import	LeavePOut

>>>	X	=	np.ones(4)
>>>	lpo	=	LeavePOut(p=2)
>>>	for	train,	test	in	lpo.split(X):
...					print("%s	%s"	%	(train,	test))
[2	3]	[0	1]
[1	3]	[0	2]
[1	2]	[0	3]
[0	3]	[1	2]
[0	2]	[1	3]
[0	1]	[2	3]

>>>

>>>	from	sklearn.model_selection	import	ShuffleSplit
>>>	X	=	np.arange(10)
>>>	ss	=	ShuffleSplit(n_splits=5,	test_size=0.25,	random_state=0)
>>>	for	train_index,	test_index	in	ss.split(X):
...					print("%s	%s"	%	(train_index,	test_index))
[9	1	6	7	3	0	5]	[2	8	4]
[2	9	8	0	6	7	4]	[3	5	1]
[4	5	1	0	6	9	7]	[2	3	8]
[2	7	5	8	0	3	4]	[6	1	9]
[4	1	0	6	8	9	3]	[5	2	7]

>>>
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ShuffleSplit	is	thus	a	good	alternative	to	KFold	cross	validation	that	allows	a	finer	control	on	the	number	of	iterations	and	the
proportion	of	samples	on	each	side	of	the	train	/	test	split.

3.1.2.2. Cross-validation iterators with stratification based on class labels.

Some	classification	problems	can	exhibit	a	large	imbalance	in	the	distribution	of	the	target	classes:	for	instance	there	could	be	several
times	more	negative	samples	than	positive	samples.	In	such	cases	it	is	recommended	to	use	stratified	sampling	as	implemented	in
StratifiedKFold	and	StratifiedShuffleSplit	to	ensure	that	relative	class	frequencies	is	approximately	preserved	in	each	train	and
validation	fold.

3.1.2.2.1. Stratified k-fold

StratifiedKFold	is	a	variation	of	k-fold	which	returns	stratified	folds:	each	set	contains	approximately	the	same	percentage	of
samples	of	each	target	class	as	the	complete	set.

Here	is	an	example	of	stratified	3-fold	cross-validation	on	a	dataset	with	50	samples	from	two	unbalanced	classes.	We	show	the
number	of	samples	in	each	class	and	compare	with	KFold.

We	can	see	that	StratifiedKFold	preserves	the	class	ratios	(approximately	1	/	10)	in	both	train	and	test	dataset.

Here	is	a	visualization	of	the	cross-validation	behavior.

RepeatedStratifiedKFold	can	be	used	to	repeat	Stratified	K-Fold	n	times	with	different	randomization	in	each	repetition.

3.1.2.2.2. Stratified Shuffle Split

StratifiedShuffleSplit	is	a	variation	of	ShuffleSplit,	which	returns	stratified	splits,	i.e	which	creates	splits	by	preserving	the	same
percentage	for	each	target	class	as	in	the	complete	set.

Here	is	a	visualization	of	the	cross-validation	behavior.

>>>	from	sklearn.model_selection	import	StratifiedKFold,	KFold
>>>	import	numpy	as	np
>>>	X,	y	=	np.ones((50,	1)),	np.hstack(([0]	*	45,	[1]	*	5))
>>>	skf	=	StratifiedKFold(n_splits=3)
>>>	for	train,	test	in	skf.split(X,	y):
...					print('train	-		{}			|			test	-		{}'.format(
...									np.bincount(y[train]),	np.bincount(y[test])))
train	-		[30		3]			|			test	-		[15		2]
train	-		[30		3]			|			test	-		[15		2]
train	-		[30		4]			|			test	-		[15		1]
>>>	kf	=	KFold(n_splits=3)
>>>	for	train,	test	in	kf.split(X,	y):
...					print('train	-		{}			|			test	-		{}'.format(
...									np.bincount(y[train]),	np.bincount(y[test])))
train	-		[28		5]			|			test	-		[17]
train	-		[28		5]			|			test	-		[17]
train	-		[34]			|			test	-		[11		5]

>>>
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3.1.2.3. Cross-validation iterators for grouped data.

The	i.i.d.	assumption	is	broken	if	the	underlying	generative	process	yield	groups	of	dependent	samples.

Such	a	grouping	of	data	is	domain	specific.	An	example	would	be	when	there	is	medical	data	collected	from	multiple	patients,	with
multiple	samples	taken	from	each	patient.	And	such	data	is	likely	to	be	dependent	on	the	individual	group.	In	our	example,	the	patient	id
for	each	sample	will	be	its	group	identifier.

In	this	case	we	would	like	to	know	if	a	model	trained	on	a	particular	set	of	groups	generalizes	well	to	the	unseen	groups.	To	measure
this,	we	need	to	ensure	that	all	the	samples	in	the	validation	fold	come	from	groups	that	are	not	represented	at	all	in	the	paired	training
fold.

The	following	cross-validation	splitters	can	be	used	to	do	that.	The	grouping	identifier	for	the	samples	is	specified	via	the	groups
parameter.

3.1.2.3.1. Group k-fold

GroupKFold	is	a	variation	of	k-fold	which	ensures	that	the	same	group	is	not	represented	in	both	testing	and	training	sets.	For	example
if	the	data	is	obtained	from	different	subjects	with	several	samples	per-subject	and	if	the	model	is	flexible	enough	to	learn	from	highly
person	specific	features	it	could	fail	to	generalize	to	new	subjects.	GroupKFold	makes	it	possible	to	detect	this	kind	of	overfitting
situations.

Imagine	you	have	three	subjects,	each	with	an	associated	number	from	1	to	3:

Each	subject	is	in	a	different	testing	fold,	and	the	same	subject	is	never	in	both	testing	and	training.	Notice	that	the	folds	do	not	have
exactly	the	same	size	due	to	the	imbalance	in	the	data.

Here	is	a	visualization	of	the	cross-validation	behavior.

3.1.2.3.2. Leave One Group Out

LeaveOneGroupOut	is	a	cross-validation	scheme	which	holds	out	the	samples	according	to	a	third-party	provided	array	of	integer
groups.	This	group	information	can	be	used	to	encode	arbitrary	domain	specific	pre-defined	cross-validation	folds.

>>>	from	sklearn.model_selection	import	GroupKFold

>>>	X	=	[0.1,	0.2,	2.2,	2.4,	2.3,	4.55,	5.8,	8.8,	9,	10]
>>>	y	=	["a",	"b",	"b",	"b",	"c",	"c",	"c",	"d",	"d",	"d"]
>>>	groups	=	[1,	1,	1,	2,	2,	2,	3,	3,	3,	3]

>>>	gkf	=	GroupKFold(n_splits=3)
>>>	for	train,	test	in	gkf.split(X,	y,	groups=groups):
...					print("%s	%s"	%	(train,	test))
[0	1	2	3	4	5]	[6	7	8	9]
[0	1	2	6	7	8	9]	[3	4	5]
[3	4	5	6	7	8	9]	[0	1	2]

>>>
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Each	training	set	is	thus	constituted	by	all	the	samples	except	the	ones	related	to	a	specific	group.

For	example,	in	the	cases	of	multiple	experiments,	LeaveOneGroupOut	can	be	used	to	create	a	cross-validation	based	on	the	different
experiments:	we	create	a	training	set	using	the	samples	of	all	the	experiments	except	one:

Another	common	application	is	to	use	time	information:	for	instance	the	groups	could	be	the	year	of	collection	of	the	samples	and	thus
allow	for	cross-validation	against	time-based	splits.

3.1.2.3.3. Leave P Groups Out

LeavePGroupsOut	is	similar	as	LeaveOneGroupOut,	but	removes	samples	related	to	 	groups	for	each	training/test	set.

Example	of	Leave-2-Group	Out:

3.1.2.3.4. Group Shuffle Split

The	GroupShuffleSplit	iterator	behaves	as	a	combination	of	ShuffleSplit	and	LeavePGroupsOut,	and	generates	a	sequence	of
randomized	partitions	in	which	a	subset	of	groups	are	held	out	for	each	split.

Here	is	a	usage	example:

Here	is	a	visualization	of	the	cross-validation	behavior.

This	class	is	useful	when	the	behavior	of	LeavePGroupsOut	is	desired,	but	the	number	of	groups	is	large	enough	that	generating	all
possible	partitions	with	 	groups	withheld	would	be	prohibitively	expensive.	In	such	a	scenario,	GroupShuffleSplit	provides	a	random
sample	(with	replacement)	of	the	train	/	test	splits	generated	by	LeavePGroupsOut.

>>>	from	sklearn.model_selection	import	LeaveOneGroupOut

>>>	X	=	[1,	5,	10,	50,	60,	70,	80]
>>>	y	=	[0,	1,	1,	2,	2,	2,	2]
>>>	groups	=	[1,	1,	2,	2,	3,	3,	3]
>>>	logo	=	LeaveOneGroupOut()
>>>	for	train,	test	in	logo.split(X,	y,	groups=groups):
...					print("%s	%s"	%	(train,	test))
[2	3	4	5	6]	[0	1]
[0	1	4	5	6]	[2	3]
[0	1	2	3]	[4	5	6]

>>>

>>>	from	sklearn.model_selection	import	LeavePGroupsOut

>>>	X	=	np.arange(6)
>>>	y	=	[1,	1,	1,	2,	2,	2]
>>>	groups	=	[1,	1,	2,	2,	3,	3]
>>>	lpgo	=	LeavePGroupsOut(n_groups=2)
>>>	for	train,	test	in	lpgo.split(X,	y,	groups=groups):
...					print("%s	%s"	%	(train,	test))
[4	5]	[0	1	2	3]
[2	3]	[0	1	4	5]
[0	1]	[2	3	4	5]

>>>

>>>	from	sklearn.model_selection	import	GroupShuffleSplit

>>>	X	=	[0.1,	0.2,	2.2,	2.4,	2.3,	4.55,	5.8,	0.001]
>>>	y	=	["a",	"b",	"b",	"b",	"c",	"c",	"c",	"a"]
>>>	groups	=	[1,	1,	2,	2,	3,	3,	4,	4]
>>>	gss	=	GroupShuffleSplit(n_splits=4,	test_size=0.5,	random_state=0)
>>>	for	train,	test	in	gss.split(X,	y,	groups=groups):
...					print("%s	%s"	%	(train,	test))
...
[0	1	2	3]	[4	5	6	7]
[2	3	6	7]	[0	1	4	5]
[2	3	4	5]	[0	1	6	7]
[4	5	6	7]	[0	1	2	3]

>>>

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeaveOneGroupOut.html#sklearn.model_selection.LeaveOneGroupOut
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeavePGroupsOut.html#sklearn.model_selection.LeavePGroupsOut
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeaveOneGroupOut.html#sklearn.model_selection.LeaveOneGroupOut
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GroupShuffleSplit.html#sklearn.model_selection.GroupShuffleSplit
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html#sklearn.model_selection.ShuffleSplit
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeavePGroupsOut.html#sklearn.model_selection.LeavePGroupsOut
https://scikit-learn.org/stable/auto_examples/model_selection/plot_cv_indices.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeavePGroupsOut.html#sklearn.model_selection.LeavePGroupsOut
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GroupShuffleSplit.html#sklearn.model_selection.GroupShuffleSplit
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeavePGroupsOut.html#sklearn.model_selection.LeavePGroupsOut


3.1.2.4. Predefined Fold-Splits / Validation-Sets

For	some	datasets,	a	pre-defined	split	of	the	data	into	training-	and	validation	fold	or	into	several	cross-validation	folds	already	exists.
Using	PredefinedSplit	it	is	possible	to	use	these	folds	e.g.	when	searching	for	hyperparameters.

For	example,	when	using	a	validation	set,	set	the	test_fold 	to	0	for	all	samples	that	are	part	of	the	validation	set,	and	to	-1	for	all	other
samples.

3.1.2.5. Cross validation of time series data

Time	series	data	is	characterised	by	the	correlation	between	observations	that	are	near	in	time	(autocorrelation).	However,	classical
cross-validation	techniques	such	as	KFold	and	ShuffleSplit	assume	the	samples	are	independent	and	identically	distributed,	and
would	result	in	unreasonable	correlation	between	training	and	testing	instances	(yielding	poor	estimates	of	generalisation	error)	on	time
series	data.	Therefore,	it	is	very	important	to	evaluate	our	model	for	time	series	data	on	the	“future”	observations	least	like	those	that
are	used	to	train	the	model.	To	achieve	this,	one	solution	is	provided	by	TimeSeriesSplit.

3.1.2.5.1. Time Series Split

TimeSeriesSplit	is	a	variation	of	k-fold	which	returns	first	 	folds	as	train	set	and	the	 	th	fold	as	test	set.	Note	that	unlike
standard	cross-validation	methods,	successive	training	sets	are	supersets	of	those	that	come	before	them.	Also,	it	adds	all	surplus	data
to	the	first	training	partition,	which	is	always	used	to	train	the	model.

This	class	can	be	used	to	cross-validate	time	series	data	samples	that	are	observed	at	fixed	time	intervals.

Example	of	3-split	time	series	cross-validation	on	a	dataset	with	6	samples:

Here	is	a	visualization	of	the	cross-validation	behavior.

3.1.3. A note on shuffling

If	the	data	ordering	is	not	arbitrary	(e.g.	samples	with	the	same	class	label	are	contiguous),	shuffling	it	first	may	be	essential	to	get	a
meaningful	cross-	validation	result.	However,	the	opposite	may	be	true	if	the	samples	are	not	independently	and	identically	distributed.
For	example,	if	samples	correspond	to	news	articles,	and	are	ordered	by	their	time	of	publication,	then	shuffling	the	data	will	likely	lead
to	a	model	that	is	overfit	and	an	inflated	validation	score:	it	will	be	tested	on	samples	that	are	artificially	similar	(close	in	time)	to
training	samples.

Some	cross	validation	iterators,	such	as	KFold,	have	an	inbuilt	option	to	shuffle	the	data	indices	before	splitting	them.	Note	that:

This	consumes	less	memory	than	shuffling	the	data	directly.
By	default	no	shuffling	occurs,	including	for	the	(stratified)	K	fold	cross-	validation	performed	by	specifying	cv=some_integer 	to
cross_val_score,	grid	search,	etc.	Keep	in	mind	that	train_test_split	still	returns	a	random	split.

>>>	from	sklearn.model_selection	import	TimeSeriesSplit

>>>	X	=	np.array([[1,	2],	[3,	4],	[1,	2],	[3,	4],	[1,	2],	[3,	4]])
>>>	y	=	np.array([1,	2,	3,	4,	5,	6])
>>>	tscv	=	TimeSeriesSplit(n_splits=3)
>>>	print(tscv)
TimeSeriesSplit(max_train_size=None,	n_splits=3)
>>>	for	train,	test	in	tscv.split(X):
...					print("%s	%s"	%	(train,	test))
[0	1	2]	[3]
[0	1	2	3]	[4]
[0	1	2	3	4]	[5]

>>>
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The	random_state 	parameter	defaults	to	None ,	meaning	that	the	shuffling	will	be	different	every	time	KFold(...,	shuffle=True)
is	iterated.	However,	GridSearchCV 	will	use	the	same	shuffling	for	each	set	of	parameters	validated	by	a	single	call	to	its	fit
method.
To	get	identical	results	for	each	split,	set	random_state 	to	an	integer.

3.1.4. Cross validation and model selection

Cross	validation	iterators	can	also	be	used	to	directly	perform	model	selection	using	Grid	Search	for	the	optimal	hyperparameters	of	the
model.	This	is	the	topic	of	the	next	section:	Tuning	the	hyper-parameters	of	an	estimator.
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