
7. Dataset loading utilities
The	sklearn.datasets 	package	embeds	some	small	toy	datasets	as	introduced	in	the	Getting	Started	section.

This	package	also	features	helpers	to	fetch	larger	datasets	commonly	used	by	the	machine	learning	community	to	benchmark
algorithms	on	data	that	comes	from	the	‘real	world’.

To	evaluate	the	impact	of	the	scale	of	the	dataset	(n_samples 	and	n_features )	while	controlling	the	statistical	properties	of	the	data
(typically	the	correlation	and	informativeness	of	the	features),	it	is	also	possible	to	generate	synthetic	data.

7.1. General dataset API

There	are	three	main	kinds	of	dataset	interfaces	that	can	be	used	to	get	datasets	depending	on	the	desired	type	of	dataset.

The	dataset	loaders.	They	can	be	used	to	load	small	standard	datasets,	described	in	the	Toy	datasets	section.

The	dataset	fetchers.	They	can	be	used	to	download	and	load	larger	datasets,	described	in	the	Real	world	datasets	section.

Both	loaders	and	fetchers	functions	return	a	dictionary-like	object	holding	at	least	two	items:	an	array	of	shape	n_samples 	*
n_features 	with	key	data 	(except	for	20newsgroups)	and	a	numpy	array	of	length	n_samples ,	containing	the	target	values,	with	key
target .

It’s	also	possible	for	almost	all	of	these	function	to	constrain	the	output	to	be	a	tuple	containing	only	the	data	and	the	target,	by	setting
the	return_X_y 	parameter	to	True .

The	datasets	also	contain	a	full	description	in	their	DESCR 	attribute	and	some	contain	feature_names 	and	target_names .	See	the
dataset	descriptions	below	for	details.

The	dataset	generation	functions.	They	can	be	used	to	generate	controlled	synthetic	datasets,	described	in	the	Generated	datasets
section.

These	functions	return	a	tuple	(X,	y) 	consisting	of	a	n_samples 	*	n_features 	numpy	array	X 	and	an	array	of	length	n_samples
containing	the	targets	y .

In	addition,	there	are	also	miscellaneous	tools	to	load	datasets	of	other	formats	or	from	other	locations,	described	in	the	Loading	other
datasets	section.

7.2. Toy datasets

scikit-learn	comes	with	a	few	small	standard	datasets	that	do	not	require	to	download	any	file	from	some	external	website.

They	can	be	loaded	using	the	following	functions:

load_boston([return_X_y]) Load	and	return	the	boston	house-prices	dataset	(regression).
load_iris([return_X_y]) Load	and	return	the	iris	dataset	(classification).
load_diabetes([return_X_y]) Load	and	return	the	diabetes	dataset	(regression).
load_digits([n_class,	return_X_y]) Load	and	return	the	digits	dataset	(classification).
load_linnerud([return_X_y]) Load	and	return	the	linnerud	dataset	(multivariate	regression).
load_wine([return_X_y]) Load	and	return	the	wine	dataset	(classification).
load_breast_cancer([return_X_y]) Load	and	return	the	breast	cancer	wisconsin	dataset	(classification).

These	datasets	are	useful	to	quickly	illustrate	the	behavior	of	the	various	algorithms	implemented	in	scikit-learn.	They	are	however
often	too	small	to	be	representative	of	real	world	machine	learning	tasks.

7.2.1. Boston house prices dataset

Data	Set	Characteristics:

https://scikit-learn.org/stable/tutorial/basic/tutorial.html#loading-example-dataset
https://scikit-learn.org/stable/datasets/index.html#toy-datasets
https://scikit-learn.org/stable/datasets/index.html#real-world-datasets
https://scikit-learn.org/stable/datasets/index.html#sample-generators
https://scikit-learn.org/stable/datasets/index.html#loading-other-datasets
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html#sklearn.datasets.load_boston
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html#sklearn.datasets.load_iris
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html#sklearn.datasets.load_diabetes
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_linnerud.html#sklearn.datasets.load_linnerud
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_wine.html#sklearn.datasets.load_wine
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html#sklearn.datasets.load_breast_cancer


Number	of	Instances:
506

Number	of	Attributes:
13	numeric/categorical	predictive.	Median	Value	(attribute	14)	is	usually	the	target.

Attribute	Information	(in	order):
CRIM	per	capita	crime	rate	by	town
ZN	proportion	of	residential	land	zoned	for	lots	over	25,000	sq.ft.
INDUS	proportion	of	non-retail	business	acres	per	town
CHAS	Charles	River	dummy	variable	(=	1	if	tract	bounds	river;	0	otherwise)
NOX	nitric	oxides	concentration	(parts	per	10	million)
RM	average	number	of	rooms	per	dwelling
AGE	proportion	of	owner-occupied	units	built	prior	to	1940
DIS	weighted	distances	to	five	Boston	employment	centres
RAD	index	of	accessibility	to	radial	highways
TAX	full-value	property-tax	rate	per	$10,000
PTRATIO	pupil-teacher	ratio	by	town
B	1000(Bk	-	0.63)^2	where	Bk	is	the	proportion	of	blacks	by	town
LSTAT	%	lower	status	of	the	population
MEDV	Median	value	of	owner-occupied	homes	in	$1000’s

Missing	Attribute	Values:
None

Creator:
Harrison,	D.	and	Rubinfeld,	D.L.

This	is	a	copy	of	UCI	ML	housing	dataset.	https://archive.ics.uci.edu/ml/machine-learning-databases/housing/

This	dataset	was	taken	from	the	StatLib	library	which	is	maintained	at	Carnegie	Mellon	University.

The	Boston	house-price	data	of	Harrison,	D.	and	Rubinfeld,	D.L.	‘Hedonic	prices	and	the	demand	for	clean	air’,	J.	Environ.	Economics	&
Management,	vol.5,	81-102,	1978.	Used	in	Belsley,	Kuh	&	Welsch,	‘Regression	diagnostics	…’,	Wiley,	1980.	N.B.	Various	transformations
are	used	in	the	table	on	pages	244-261	of	the	latter.

The	Boston	house-price	data	has	been	used	in	many	machine	learning	papers	that	address	regression	problems.

References

Belsley,	Kuh	&	Welsch,	‘Regression	diagnostics:	Identifying	Influential	Data	and	Sources	of	Collinearity’,	Wiley,	1980.	244-261.
Quinlan,R.	(1993).	Combining	Instance-Based	and	Model-Based	Learning.	In	Proceedings	on	the	Tenth	International	Conference	of
Machine	Learning,	236-243,	University	of	Massachusetts,	Amherst.	Morgan	Kaufmann.

7.2.2. Iris plants dataset

Data	Set	Characteristics:

https://archive.ics.uci.edu/ml/machine-learning-databases/housing/


Number	of	Instances:
150	(50	in	each	of	three	classes)

Number	of	Attributes:
4	numeric,	predictive	attributes	and	the	class

Attribute	Information:
sepal	length	in	cm
sepal	width	in	cm
petal	length	in	cm
petal	width	in	cm
class:

Iris-Setosa
Iris-Versicolour
Iris-Virginica

Summary	Statistics:

sepal	length: 4.3 7.9 5.84 0.83 0.7826
sepal	width: 2.0 4.4 3.05 0.43 -0.4194
petal	length: 1.0 6.9 3.76 1.76 0.9490		(high!)
petal	width: 0.1 2.5 1.20 0.76 0.9565		(high!)

Missing	Attribute	Values:
None

Class	Distribution:
33.3%	for	each	of	3	classes.

Creator:
R.A.	Fisher

Donor:
Michael	Marshall	(MARSHALL%PLU@io.arc.nasa.gov)

Date:
July,	1988

The	famous	Iris	database,	first	used	by	Sir	R.A.	Fisher.	The	dataset	is	taken	from	Fisher’s	paper.	Note	that	it’s	the	same	as	in	R,	but	not
as	in	the	UCI	Machine	Learning	Repository,	which	has	two	wrong	data	points.

This	is	perhaps	the	best	known	database	to	be	found	in	the	pattern	recognition	literature.	Fisher’s	paper	is	a	classic	in	the	field	and	is
referenced	frequently	to	this	day.	(See	Duda	&	Hart,	for	example.)	The	data	set	contains	3	classes	of	50	instances	each,	where	each
class	refers	to	a	type	of	iris	plant.	One	class	is	linearly	separable	from	the	other	2;	the	latter	are	NOT	linearly	separable	from	each	other.

References

Fisher,	R.A.	“The	use	of	multiple	measurements	in	taxonomic	problems”	Annual	Eugenics,	7,	Part	II,	179-188	(1936);	also	in
“Contributions	to	Mathematical	Statistics”	(John	Wiley,	NY,	1950).
Duda,	R.O.,	&	Hart,	P.E.	(1973)	Pattern	Classification	and	Scene	Analysis.	(Q327.D83)	John	Wiley	&	Sons.	ISBN	0-471-22361-1.	See
page	218.
Dasarathy,	B.V.	(1980)	“Nosing	Around	the	Neighborhood:	A	New	System	Structure	and	Classification	Rule	for	Recognition	in
Partially	Exposed	Environments”.	IEEE	Transactions	on	Pattern	Analysis	and	Machine	Intelligence,	Vol.	PAMI-2,	No.	1,	67-71.
Gates,	G.W.	(1972)	“The	Reduced	Nearest	Neighbor	Rule”.	IEEE	Transactions	on	Information	Theory,	May	1972,	431-433.
See	also:	1988	MLC	Proceedings,	54-64.	Cheeseman	et	al”s	AUTOCLASS	II	conceptual	clustering	system	finds	3	classes	in	the
data.
Many,	many	more	…

7.2.3. Diabetes dataset

mailto:MARSHALL%25PLU%2540io.arc.nasa.gov


Ten	baseline	variables,	age,	sex,	body	mass	index,	average	blood	pressure,	and	six	blood	serum	measurements	were	obtained	for	each
of	n	=	442	diabetes	patients,	as	well	as	the	response	of	interest,	a	quantitative	measure	of	disease	progression	one	year	after	baseline.

Data	Set	Characteristics:

Number	of	Instances:
442

Number	of	Attributes:
First	10	columns	are	numeric	predictive	values

Target:
Column	11	is	a	quantitative	measure	of	disease	progression	one	year	after	baseline

Attribute	Information:
Age
Sex
Body	mass	index
Average	blood	pressure
S1
S2
S3
S4
S5
S6

Note:	Each	of	these	10	feature	variables	have	been	mean	centered	and	scaled	by	the	standard	deviation	times	n_samples 	(i.e.	the	sum
of	squares	of	each	column	totals	1).

Source	URL:	https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html

For	more	information	see:	Bradley	Efron,	Trevor	Hastie,	Iain	Johnstone	and	Robert	Tibshirani	(2004)	“Least	Angle	Regression,”	Annals	of
Statistics	(with	discussion),	407-499.	(https://web.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf)

7.2.4. Optical recognition of handwritten digits dataset

Data	Set	Characteristics:

Number	of	Instances:
5620

Number	of	Attributes:
64

Attribute	Information:
8x8	image	of	integer	pixels	in	the	range	0..16.

Missing	Attribute	Values:
None

Creator:
5.	 Alpaydin	(alpaydin	‘@’	boun.edu.tr)

Date:
July;	1998

This	is	a	copy	of	the	test	set	of	the	UCI	ML	hand-written	digits	datasets
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits

The	data	set	contains	images	of	hand-written	digits:	10	classes	where	each	class	refers	to	a	digit.

https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html
https://web.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits


Preprocessing	programs	made	available	by	NIST	were	used	to	extract	normalized	bitmaps	of	handwritten	digits	from	a	preprinted	form.
From	a	total	of	43	people,	30	contributed	to	the	training	set	and	different	13	to	the	test	set.	32x32	bitmaps	are	divided	into
nonoverlapping	blocks	of	4x4	and	the	number	of	on	pixels	are	counted	in	each	block.	This	generates	an	input	matrix	of	8x8	where	each
element	is	an	integer	in	the	range	0..16.	This	reduces	dimensionality	and	gives	invariance	to	small	distortions.

For	info	on	NIST	preprocessing	routines,	see	M.	D.	Garris,	J.	L.	Blue,	G.	T.	Candela,	D.	L.	Dimmick,	J.	Geist,	P.	J.	Grother,	S.	A.	Janet,	and
C.	L.	Wilson,	NIST	Form-Based	Handprint	Recognition	System,	NISTIR	5469,	1994.

References

C.	Kaynak	(1995)	Methods	of	Combining	Multiple	Classifiers	and	Their	Applications	to	Handwritten	Digit	Recognition,	MSc	Thesis,
Institute	of	Graduate	Studies	in	Science	and	Engineering,	Bogazici	University.

5.	 Alpaydin,	C.	Kaynak	(1998)	Cascading	Classifiers,	Kybernetika.
Ken	Tang	and	Ponnuthurai	N.	Suganthan	and	Xi	Yao	and	A.	Kai	Qin.	Linear	dimensionalityreduction	using	relevance	weighted	LDA.
School	of	Electrical	and	Electronic	Engineering	Nanyang	Technological	University.	2005.
Claudio	Gentile.	A	New	Approximate	Maximal	Margin	Classification	Algorithm.	NIPS.	2000.

7.2.5. Linnerrud dataset

Data	Set	Characteristics:

Number	of	Instances:
20

Number	of	Attributes:
3

Missing	Attribute	Values:
None

The	Linnerud	dataset	constains	two	small	dataset:

physiological	-	CSV	containing	20	observations	on	3	exercise	variables:
Weight,	Waist	and	Pulse.

exercise	-	CSV	containing	20	observations	on	3	physiological	variables:
Chins,	Situps	and	Jumps.

References

Tenenhaus,	M.	(1998).	La	regression	PLS:	theorie	et	pratique.	Paris:	Editions	Technic.

7.2.6. Wine recognition dataset

Data	Set	Characteristics:



Number	of	Instances:
178	(50	in	each	of	three	classes)

Number	of	Attributes:
13	numeric,	predictive	attributes	and	the	class

Attribute	Information:
Alcohol
Malic	acid
Ash
Alcalinity	of	ash
Magnesium
Total	phenols
Flavanoids
Nonflavanoid	phenols
Proanthocyanins
Color	intensity
Hue
OD280/OD315	of	diluted	wines
Proline

class:
class_0
class_1
class_2

Summary	Statistics:

Alcohol: 11.0 14.8 13.0 0.8
Malic	Acid: 0.74 5.80 2.34 1.12
Ash: 1.36 3.23 2.36 0.27
Alcalinity	of	Ash: 10.6 30.0 19.5 3.3
Magnesium: 70.0 162.0 99.7 14.3
Total	Phenols: 0.98 3.88 2.29 0.63
Flavanoids: 0.34 5.08 2.03 1.00
Nonflavanoid	Phenols: 0.13 0.66 0.36 0.12
Proanthocyanins: 0.41 3.58 1.59 0.57
Colour	Intensity: 1.3 13.0 5.1 2.3
Hue: 0.48 1.71 0.96 0.23
OD280/OD315	of	diluted	wines: 1.27 4.00 2.61 0.71
Proline: 278 1680 746 315

Missing	Attribute	Values:
None

Class	Distribution:
class_0	(59),	class_1	(71),	class_2	(48)

Creator:
R.A.	Fisher

Donor:
Michael	Marshall	(MARSHALL%PLU@io.arc.nasa.gov)

Date:
July,	1988

This	is	a	copy	of	UCI	ML	Wine	recognition	datasets.	https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data

mailto:MARSHALL%25PLU%2540io.arc.nasa.gov
https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data


The	data	is	the	results	of	a	chemical	analysis	of	wines	grown	in	the	same	region	in	Italy	by	three	different	cultivators.	There	are	thirteen
different	measurements	taken	for	different	constituents	found	in	the	three	types	of	wine.

Original	Owners:

Forina,	M.	et	al,	PARVUS	-	An	Extendible	Package	for	Data	Exploration,	Classification	and	Correlation.	Institute	of	Pharmaceutical	and
Food	Analysis	and	Technologies,	Via	Brigata	Salerno,	16147	Genoa,	Italy.

Citation:

Lichman,	M.	(2013).	UCI	Machine	Learning	Repository	[https://archive.ics.uci.edu/ml].	Irvine,	CA:	University	of	California,	School	of
Information	and	Computer	Science.

References

(1)	S.	Aeberhard,	D.	Coomans	and	O.	de	Vel,	Comparison	of	Classifiers	in	High	Dimensional	Settings,	Tech.	Rep.	no.	92-02,	(1992),
Dept.	of	Computer	Science	and	Dept.	of	Mathematics	and	Statistics,	James	Cook	University	of	North	Queensland.	(Also	submitted	to
Technometrics).

The	data	was	used	with	many	others	for	comparing	various	classifiers.	The	classes	are	separable,	though	only	RDA	has	achieved
100%	correct	classification.	(RDA	:	100%,	QDA	99.4%,	LDA	98.9%,	1NN	96.1%	(z-transformed	data))	(All	results	using	the	leave-one-
out	technique)

(2)	S.	Aeberhard,	D.	Coomans	and	O.	de	Vel,	“THE	CLASSIFICATION	PERFORMANCE	OF	RDA”	Tech.	Rep.	no.	92-01,	(1992),	Dept.	of
Computer	Science	and	Dept.	of	Mathematics	and	Statistics,	James	Cook	University	of	North	Queensland.	(Also	submitted	to	Journal
of	Chemometrics).

7.2.7. Breast cancer wisconsin (diagnostic) dataset

Data	Set	Characteristics:

Number	of	Instances:
569

Number	of	Attributes:
30	numeric,	predictive	attributes	and	the	class

Attribute	Information:
radius	(mean	of	distances	from	center	to	points	on	the	perimeter)
texture	(standard	deviation	of	gray-scale	values)
perimeter
area
smoothness	(local	variation	in	radius	lengths)
compactness	(perimeter^2	/	area	-	1.0)
concavity	(severity	of	concave	portions	of	the	contour)
concave	points	(number	of	concave	portions	of	the	contour)
symmetry
fractal	dimension	(“coastline	approximation”	-	1)

The	mean,	standard	error,	and	“worst”	or	largest	(mean	of	the	three	largest	values)	of	these	features	were	computed	for	each	image,
resulting	in	30	features.	For	instance,	field	3	is	Mean	Radius,	field	13	is	Radius	SE,	field	23	is	Worst	Radius.

class:
WDBC-Malignant
WDBC-Benign

Summary	Statistics:

radius	(mean): 6.981 28.11
texture	(mean): 9.71 39.28
perimeter	(mean): 43.79 188.5
area	(mean): 143.5 2501.0
smoothness	(mean): 0.053 0.163
compactness	(mean): 0.019 0.345

https://archive.ics.uci.edu/ml


concavity	(mean): 0.0 0.427
concave	points	(mean): 0.0 0.201
symmetry	(mean): 0.106 0.304
fractal	dimension	(mean): 0.05 0.097
radius	(standard	error): 0.112 2.873
texture	(standard	error): 0.36 4.885
perimeter	(standard	error): 0.757 21.98
area	(standard	error): 6.802 542.2
smoothness	(standard	error): 0.002 0.031
compactness	(standard	error): 0.002 0.135
concavity	(standard	error): 0.0 0.396
concave	points	(standard	error): 0.0 0.053
symmetry	(standard	error): 0.008 0.079
fractal	dimension	(standard	error): 0.001 0.03
radius	(worst): 7.93 36.04
texture	(worst): 12.02 49.54
perimeter	(worst): 50.41 251.2
area	(worst): 185.2 4254.0
smoothness	(worst): 0.071 0.223
compactness	(worst): 0.027 1.058
concavity	(worst): 0.0 1.252
concave	points	(worst): 0.0 0.291
symmetry	(worst): 0.156 0.664
fractal	dimension	(worst): 0.055 0.208

Missing	Attribute	Values:
None

Class	Distribution:
212	-	Malignant,	357	-	Benign

Creator:
Dr.	William	H.	Wolberg,	W.	Nick	Street,	Olvi	L.	Mangasarian

Donor:
Nick	Street

Date:
November,	1995

This	is	a	copy	of	UCI	ML	Breast	Cancer	Wisconsin	(Diagnostic)	datasets.	https://goo.gl/U2Uwz2

Features	are	computed	from	a	digitized	image	of	a	fine	needle	aspirate	(FNA)	of	a	breast	mass.	They	describe	characteristics	of	the	cell
nuclei	present	in	the	image.

Separating	plane	described	above	was	obtained	using	Multisurface	Method-Tree	(MSM-T)	[K.	P.	Bennett,	“Decision	Tree	Construction
Via	Linear	Programming.”	Proceedings	of	the	4th	Midwest	Artificial	Intelligence	and	Cognitive	Science	Society,	pp.	97-101,	1992],	a
classification	method	which	uses	linear	programming	to	construct	a	decision	tree.	Relevant	features	were	selected	using	an	exhaustive
search	in	the	space	of	1-4	features	and	1-3	separating	planes.

The	actual	linear	program	used	to	obtain	the	separating	plane	in	the	3-dimensional	space	is	that	described	in:	[K.	P.	Bennett	and	O.	L.
Mangasarian:	“Robust	Linear	Programming	Discrimination	of	Two	Linearly	Inseparable	Sets”,	Optimization	Methods	and	Software	1,
1992,	23-34].

This	database	is	also	available	through	the	UW	CS	ftp	server:

ftp	ftp.cs.wisc.edu	cd	math-prog/cpo-dataset/machine-learn/WDBC/

References

W.N.	Street,	W.H.	Wolberg	and	O.L.	Mangasarian.	Nuclear	feature	extraction	for	breast	tumor	diagnosis.	IS&T/SPIE	1993
International	Symposium	on	Electronic	Imaging:	Science	and	Technology,	volume	1905,	pages	861-870,	San	Jose,	CA,	1993.
O.L.	Mangasarian,	W.N.	Street	and	W.H.	Wolberg.	Breast	cancer	diagnosis	and	prognosis	via	linear	programming.	Operations
Research,	43(4),	pages	570-577,	July-August	1995.

https://goo.gl/U2Uwz2


W.H.	Wolberg,	W.N.	Street,	and	O.L.	Mangasarian.	Machine	learning	techniques	to	diagnose	breast	cancer	from	fine-needle
aspirates.	Cancer	Letters	77	(1994)	163-171.

7.3. Real world datasets

scikit-learn	provides	tools	to	load	larger	datasets,	downloading	them	if	necessary.

They	can	be	loaded	using	the	following	functions:

fetch_olivetti_faces([data_home,	shuffle,	…]) Load	the	Olivetti	faces	data-set	from	AT&T	(classification).
fetch_20newsgroups([data_home,	subset,	…]) Load	the	filenames	and	data	from	the	20	newsgroups	dataset	(classification).
fetch_20newsgroups_vectorized([subset,	…]) Load	the	20	newsgroups	dataset	and	vectorize	it	into	token	counts	(classification).
fetch_lfw_people([data_home,	funneled,	…]) Load	the	Labeled	Faces	in	the	Wild	(LFW)	people	dataset	(classification).
fetch_lfw_pairs([subset,	data_home,	…]) Load	the	Labeled	Faces	in	the	Wild	(LFW)	pairs	dataset	(classification).
fetch_covtype([data_home,	…]) Load	the	covertype	dataset	(classification).
fetch_rcv1([data_home,	subset,	…]) Load	the	RCV1	multilabel	dataset	(classification).
fetch_kddcup99([subset,	data_home,	shuffle,	…]) Load	the	kddcup99	dataset	(classification).
fetch_california_housing([data_home,	…]) Load	the	California	housing	dataset	(regression).

7.3.1. The Olivetti faces dataset

This	dataset	contains	a	set	of	face	images	taken	between	April	1992	and	April	1994	at	AT&T	Laboratories	Cambridge.	The
sklearn.datasets.fetch_olivetti_faces	function	is	the	data	fetching	/	caching	function	that	downloads	the	data	archive	from
AT&T.

As	described	on	the	original	website:

There	are	ten	different	images	of	each	of	40	distinct	subjects.	For	some	subjects,	the	images	were	taken	at	different	times,	varying	the
lighting,	facial	expressions	(open	/	closed	eyes,	smiling	/	not	smiling)	and	facial	details	(glasses	/	no	glasses).	All	the	images	were
taken	against	a	dark	homogeneous	background	with	the	subjects	in	an	upright,	frontal	position	(with	tolerance	for	some	side
movement).

Data	Set	Characteristics:

Classes 40
Samples	total 400
Dimensionality 4096
Features real,	between	0	and	1

The	image	is	quantized	to	256	grey	levels	and	stored	as	unsigned	8-bit	integers;	the	loader	will	convert	these	to	floating	point	values	on
the	interval	[0,	1],	which	are	easier	to	work	with	for	many	algorithms.

The	“target”	for	this	database	is	an	integer	from	0	to	39	indicating	the	identity	of	the	person	pictured;	however,	with	only	10	examples
per	class,	this	relatively	small	dataset	is	more	interesting	from	an	unsupervised	or	semi-supervised	perspective.

The	original	dataset	consisted	of	92	x	112,	while	the	version	available	here	consists	of	64x64	images.

When	using	these	images,	please	give	credit	to	AT&T	Laboratories	Cambridge.

7.3.2. The 20 newsgroups text dataset

The	20	newsgroups	dataset	comprises	around	18000	newsgroups	posts	on	20	topics	split	in	two	subsets:	one	for	training	(or
development)	and	the	other	one	for	testing	(or	for	performance	evaluation).	The	split	between	the	train	and	test	set	is	based	upon	a
messages	posted	before	and	after	a	specific	date.

This	module	contains	two	loaders.	The	first	one,	sklearn.datasets.fetch_20newsgroups,	returns	a	list	of	the	raw	texts	that	can	be	fed
to	text	feature	extractors	such	as	sklearn.feature_extraction.text.CountVectorizer	with	custom	parameters	so	as	to	extract
feature	vectors.	The	second	one,	sklearn.datasets.fetch_20newsgroups_vectorized,	returns	ready-to-use	features,	i.e.,	it	is	not
necessary	to	use	a	feature	extractor.

Data	Set	Characteristics:

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_olivetti_faces.html#sklearn.datasets.fetch_olivetti_faces
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html#sklearn.datasets.fetch_20newsgroups
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups_vectorized.html#sklearn.datasets.fetch_20newsgroups_vectorized
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_lfw_people.html#sklearn.datasets.fetch_lfw_people
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_lfw_pairs.html#sklearn.datasets.fetch_lfw_pairs
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_covtype.html#sklearn.datasets.fetch_covtype
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_rcv1.html#sklearn.datasets.fetch_rcv1
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_kddcup99.html#sklearn.datasets.fetch_kddcup99
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html#sklearn.datasets.fetch_california_housing
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_olivetti_faces.html#sklearn.datasets.fetch_olivetti_faces
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html#sklearn.datasets.fetch_20newsgroups
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups_vectorized.html#sklearn.datasets.fetch_20newsgroups_vectorized


Classes 20
Samples	total 18846
Dimensionality 1
Features text

7.3.2.1. Usage

The	sklearn.datasets.fetch_20newsgroups	function	is	a	data	fetching	/	caching	functions	that	downloads	the	data	archive	from	the
original	20	newsgroups	website,	extracts	the	archive	contents	in	the	~/scikit_learn_data/20news_home 	folder	and	calls	the
sklearn.datasets.load_files	on	either	the	training	or	testing	set	folder,	or	both	of	them:

The	real	data	lies	in	the	filenames 	and	target 	attributes.	The	target	attribute	is	the	integer	index	of	the	category:

It	is	possible	to	load	only	a	sub-selection	of	the	categories	by	passing	the	list	of	the	categories	to	load	to	the
sklearn.datasets.fetch_20newsgroups	function:

7.3.2.2. Converting text to vectors

In	order	to	feed	predictive	or	clustering	models	with	the	text	data,	one	first	need	to	turn	the	text	into	vectors	of	numerical	values	suitable
for	statistical	analysis.	This	can	be	achieved	with	the	utilities	of	the	sklearn.feature_extraction.text 	as	demonstrated	in	the
following	example	that	extract	TF-IDF	vectors	of	unigram	tokens	from	a	subset	of	20news:

>>>	from	sklearn.datasets	import	fetch_20newsgroups
>>>	newsgroups_train	=	fetch_20newsgroups(subset='train')

>>>	from	pprint	import	pprint
>>>	pprint(list(newsgroups_train.target_names))
['alt.atheism',
	'comp.graphics',
	'comp.os.ms-windows.misc',
	'comp.sys.ibm.pc.hardware',
	'comp.sys.mac.hardware',
	'comp.windows.x',
	'misc.forsale',
	'rec.autos',
	'rec.motorcycles',
	'rec.sport.baseball',
	'rec.sport.hockey',
	'sci.crypt',
	'sci.electronics',
	'sci.med',
	'sci.space',
	'soc.religion.christian',
	'talk.politics.guns',
	'talk.politics.mideast',
	'talk.politics.misc',
	'talk.religion.misc']

>>>

>>>	newsgroups_train.filenames.shape
(11314,)
>>>	newsgroups_train.target.shape
(11314,)
>>>	newsgroups_train.target[:10]
array([	7,		4,		4,		1,	14,	16,	13,		3,		2,		4])

>>>

>>>	cats	=	['alt.atheism',	'sci.space']
>>>	newsgroups_train	=	fetch_20newsgroups(subset='train',	categories=cats)

>>>	list(newsgroups_train.target_names)
['alt.atheism',	'sci.space']
>>>	newsgroups_train.filenames.shape
(1073,)
>>>	newsgroups_train.target.shape
(1073,)
>>>	newsgroups_train.target[:10]
array([0,	1,	1,	1,	0,	1,	1,	0,	0,	0])

>>>

>>>	from	sklearn.feature_extraction.text	import	TfidfVectorizer
>>>	categories	=	['alt.atheism',	'talk.religion.misc',
...															'comp.graphics',	'sci.space']
>>>	newsgroups_train	=	fetch_20newsgroups(subset='train',
...																																							categories=categories)
>>>	vectorizer	=	TfidfVectorizer()
>>>	vectors	=	vectorizer.fit_transform(newsgroups_train.data)
>>>	vectors.shape
(2034,	34118)

>>>

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html#sklearn.datasets.fetch_20newsgroups
http://people.csail.mit.edu/jrennie/20Newsgroups/
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_files.html#sklearn.datasets.load_files
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html#sklearn.datasets.fetch_20newsgroups
https://en.wikipedia.org/wiki/Tf-idf


The	extracted	TF-IDF	vectors	are	very	sparse,	with	an	average	of	159	non-zero	components	by	sample	in	a	more	than	30000-
dimensional	space	(less	than	.5%	non-zero	features):

sklearn.datasets.fetch_20newsgroups_vectorized	is	a	function	which	returns	ready-to-use	token	counts	features	instead	of	file
names.

7.3.2.3. Filtering text for more realistic training

It	is	easy	for	a	classifier	to	overfit	on	particular	things	that	appear	in	the	20	Newsgroups	data,	such	as	newsgroup	headers.	Many
classifiers	achieve	very	high	F-scores,	but	their	results	would	not	generalize	to	other	documents	that	aren’t	from	this	window	of	time.

For	example,	let’s	look	at	the	results	of	a	multinomial	Naive	Bayes	classifier,	which	is	fast	to	train	and	achieves	a	decent	F-score:

(The	example	Classification	of	text	documents	using	sparse	features	shuffles	the	training	and	test	data,	instead	of	segmenting	by	time,
and	in	that	case	multinomial	Naive	Bayes	gets	a	much	higher	F-score	of	0.88.	Are	you	suspicious	yet	of	what’s	going	on	inside	this
classifier?)

Let’s	take	a	look	at	what	the	most	informative	features	are:

You	can	now	see	many	things	that	these	features	have	overfit	to:

Almost	every	group	is	distinguished	by	whether	headers	such	as	NNTP-Posting-Host: 	and	Distribution: 	appear	more	or	less
often.
Another	significant	feature	involves	whether	the	sender	is	affiliated	with	a	university,	as	indicated	either	by	their	headers	or	their
signature.
The	word	“article”	is	a	significant	feature,	based	on	how	often	people	quote	previous	posts	like	this:	“In	article	[article	ID],	[name]	<[e-
mail	address]>	wrote:”
Other	features	match	the	names	and	e-mail	addresses	of	particular	people	who	were	posting	at	the	time.

With	such	an	abundance	of	clues	that	distinguish	newsgroups,	the	classifiers	barely	have	to	identify	topics	from	text	at	all,	and	they	all
perform	at	the	same	high	level.

For	this	reason,	the	functions	that	load	20	Newsgroups	data	provide	a	parameter	called	remove,	telling	it	what	kinds	of	information	to
strip	out	of	each	file.	remove	should	be	a	tuple	containing	any	subset	of	('headers',	'footers',	'quotes') ,	telling	it	to	remove
headers,	signature	blocks,	and	quotation	blocks	respectively.

>>>	vectors.nnz	/	float(vectors.shape[0])
159.01327...

>>>

>>>	from	sklearn.naive_bayes	import	MultinomialNB
>>>	from	sklearn	import	metrics
>>>	newsgroups_test	=	fetch_20newsgroups(subset='test',
...																																						categories=categories)
>>>	vectors_test	=	vectorizer.transform(newsgroups_test.data)
>>>	clf	=	MultinomialNB(alpha=.01)
>>>	clf.fit(vectors,	newsgroups_train.target)
MultinomialNB(alpha=0.01,	class_prior=None,	fit_prior=True)

>>>	pred	=	clf.predict(vectors_test)
>>>	metrics.f1_score(newsgroups_test.target,	pred,	average='macro')
0.88213...

>>>

>>>	import	numpy	as	np
>>>	def	show_top10(classifier,	vectorizer,	categories):
...					feature_names	=	np.asarray(vectorizer.get_feature_names())
...					for	i,	category	in	enumerate(categories):
...									top10	=	np.argsort(classifier.coef_[i])[-10:]
...									print("%s:	%s"	%	(category,	"	".join(feature_names[top10])))
...
>>>	show_top10(clf,	vectorizer,	newsgroups_train.target_names)
alt.atheism:	edu	it	and	in	you	that	is	of	to	the
comp.graphics:	edu	in	graphics	it	is	for	and	of	to	the
sci.space:	edu	it	that	is	in	and	space	to	of	the
talk.religion.misc:	not	it	you	in	is	that	and	to	of	the

>>>

>>>	newsgroups_test	=	fetch_20newsgroups(subset='test',
...																																						remove=('headers',	'footers',	'quotes'),
...																																						categories=categories)
>>>	vectors_test	=	vectorizer.transform(newsgroups_test.data)
>>>	pred	=	clf.predict(vectors_test)
>>>	metrics.f1_score(pred,	newsgroups_test.target,	average='macro')
0.77310...

>>>

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups_vectorized.html#sklearn.datasets.fetch_20newsgroups_vectorized
https://scikit-learn.org/stable/auto_examples/text/plot_document_classification_20newsgroups.html#sphx-glr-auto-examples-text-plot-document-classification-20newsgroups-py


This	classifier	lost	over	a	lot	of	its	F-score,	just	because	we	removed	metadata	that	has	little	to	do	with	topic	classification.	It	loses	even
more	if	we	also	strip	this	metadata	from	the	training	data:

Some	other	classifiers	cope	better	with	this	harder	version	of	the	task.	Try	running	Sample	pipeline	for	text	feature	extraction	and
evaluation	with	and	without	the	--filter 	option	to	compare	the	results.

Recommendation

When	evaluating	text	classifiers	on	the	20	Newsgroups	data,	you	should	strip	newsgroup-related	metadata.	In	scikit-learn,	you	can	do
this	by	setting	remove=('headers',	'footers',	'quotes') .	The	F-score	will	be	lower	because	it	is	more	realistic.

Examples

Sample	pipeline	for	text	feature	extraction	and	evaluation
Classification	of	text	documents	using	sparse	features

7.3.3. The Labeled Faces in the Wild face recognition dataset

This	dataset	is	a	collection	of	JPEG	pictures	of	famous	people	collected	over	the	internet,	all	details	are	available	on	the	official
website:

http://vis-www.cs.umass.edu/lfw/

Each	picture	is	centered	on	a	single	face.	The	typical	task	is	called	Face	Verification:	given	a	pair	of	two	pictures,	a	binary	classifier
must	predict	whether	the	two	images	are	from	the	same	person.

An	alternative	task,	Face	Recognition	or	Face	Identification	is:	given	the	picture	of	the	face	of	an	unknown	person,	identify	the	name	of
the	person	by	referring	to	a	gallery	of	previously	seen	pictures	of	identified	persons.

Both	Face	Verification	and	Face	Recognition	are	tasks	that	are	typically	performed	on	the	output	of	a	model	trained	to	perform	Face
Detection.	The	most	popular	model	for	Face	Detection	is	called	Viola-Jones	and	is	implemented	in	the	OpenCV	library.	The	LFW	faces
were	extracted	by	this	face	detector	from	various	online	websites.

Data	Set	Characteristics:

Classes 5749
Samples	total 13233
Dimensionality 5828
Features real,	between	0	and	255

7.3.3.1. Usage

scikit-learn 	provides	two	loaders	that	will	automatically	download,	cache,	parse	the	metadata	files,	decode	the	jpeg	and	convert	the
interesting	slices	into	memmapped	numpy	arrays.	This	dataset	size	is	more	than	200	MB.	The	first	load	typically	takes	more	than	a
couple	of	minutes	to	fully	decode	the	relevant	part	of	the	JPEG	files	into	numpy	arrays.	If	the	dataset	has	been	loaded	once,	the
following	times	the	loading	times	less	than	200ms	by	using	a	memmapped	version	memoized	on	the	disk	in	the
~/scikit_learn_data/lfw_home/ 	folder	using	joblib .

The	first	loader	is	used	for	the	Face	Identification	task:	a	multi-class	classification	task	(hence	supervised	learning):

>>>	newsgroups_train	=	fetch_20newsgroups(subset='train',
...																																							remove=('headers',	'footers',	'quotes'),
...																																							categories=categories)
>>>	vectors	=	vectorizer.fit_transform(newsgroups_train.data)
>>>	clf	=	MultinomialNB(alpha=.01)
>>>	clf.fit(vectors,	newsgroups_train.target)
MultinomialNB(alpha=0.01,	class_prior=None,	fit_prior=True)

>>>

>>>	vectors_test	=	vectorizer.transform(newsgroups_test.data)
>>>	pred	=	clf.predict(vectors_test)
>>>	metrics.f1_score(newsgroups_test.target,	pred,	average='macro')
0.76995...

>>>

https://scikit-learn.org/stable/auto_examples/model_selection/grid_search_text_feature_extraction.html#sphx-glr-auto-examples-model-selection-grid-search-text-feature-extraction-py
https://scikit-learn.org/stable/auto_examples/model_selection/grid_search_text_feature_extraction.html#sphx-glr-auto-examples-model-selection-grid-search-text-feature-extraction-py
https://scikit-learn.org/stable/auto_examples/text/plot_document_classification_20newsgroups.html#sphx-glr-auto-examples-text-plot-document-classification-20newsgroups-py
http://vis-www.cs.umass.edu/lfw/


The	default	slice	is	a	rectangular	shape	around	the	face,	removing	most	of	the	background:

Each	of	the	1140 	faces	is	assigned	to	a	single	person	id	in	the	target 	array:

The	second	loader	is	typically	used	for	the	face	verification	task:	each	sample	is	a	pair	of	two	picture	belonging	or	not	to	the	same
person:

Both	for	the	sklearn.datasets.fetch_lfw_people	and	sklearn.datasets.fetch_lfw_pairs	function	it	is	possible	to	get	an
additional	dimension	with	the	RGB	color	channels	by	passing	color=True ,	in	that	case	the	shape	will	be	(2200,	2,	62,	47,	3) .

The	sklearn.datasets.fetch_lfw_pairs	datasets	is	subdivided	into	3	subsets:	the	development	train 	set,	the	development	test
set	and	an	evaluation	10_folds 	set	meant	to	compute	performance	metrics	using	a	10-folds	cross	validation	scheme.

References:

Labeled	Faces	in	the	Wild:	A	Database	for	Studying	Face	Recognition	in	Unconstrained	Environments.	Gary	B.	Huang,	Manu
Ramesh,	Tamara	Berg,	and	Erik	Learned-Miller.	University	of	Massachusetts,	Amherst,	Technical	Report	07-49,	October,	2007.

7.3.3.2. Examples

Faces	recognition	example	using	eigenfaces	and	SVMs

7.3.4. Forest covertypes

The	samples	in	this	dataset	correspond	to	30×30m	patches	of	forest	in	the	US,	collected	for	the	task	of	predicting	each	patch’s	cover
type,	i.e.	the	dominant	species	of	tree.	There	are	seven	covertypes,	making	this	a	multiclass	classification	problem.	Each	sample	has	54
features,	described	on	the	dataset’s	homepage.	Some	of	the	features	are	boolean	indicators,	while	others	are	discrete	or	continuous
measurements.

Data	Set	Characteristics:

>>>	from	sklearn.datasets	import	fetch_lfw_people
>>>	lfw_people	=	fetch_lfw_people(min_faces_per_person=70,	resize=0.4)

>>>	for	name	in	lfw_people.target_names:
...					print(name)
...
Ariel	Sharon
Colin	Powell
Donald	Rumsfeld
George	W	Bush
Gerhard	Schroeder
Hugo	Chavez
Tony	Blair

>>>

>>>	lfw_people.data.dtype
dtype('float32')

>>>	lfw_people.data.shape
(1288,	1850)

>>>	lfw_people.images.shape
(1288,	50,	37)

>>>

>>>	lfw_people.target.shape
(1288,)

>>>	list(lfw_people.target[:10])
[5,	6,	3,	1,	0,	1,	3,	4,	3,	0]

>>>

>>>	from	sklearn.datasets	import	fetch_lfw_pairs
>>>	lfw_pairs_train	=	fetch_lfw_pairs(subset='train')

>>>	list(lfw_pairs_train.target_names)
['Different	persons',	'Same	person']

>>>	lfw_pairs_train.pairs.shape
(2200,	2,	62,	47)

>>>	lfw_pairs_train.data.shape
(2200,	5828)

>>>	lfw_pairs_train.target.shape
(2200,)

>>>

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_lfw_people.html#sklearn.datasets.fetch_lfw_people
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_lfw_pairs.html#sklearn.datasets.fetch_lfw_pairs
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_lfw_pairs.html#sklearn.datasets.fetch_lfw_pairs
http://vis-www.cs.umass.edu/lfw/lfw.pdf
https://scikit-learn.org/stable/auto_examples/applications/plot_face_recognition.html#sphx-glr-auto-examples-applications-plot-face-recognition-py
https://archive.ics.uci.edu/ml/datasets/Covertype


1(1,2)

Classes 7
Samples	total 581012
Dimensionality 54
Features int

sklearn.datasets.fetch_covtype	will	load	the	covertype	dataset;	it	returns	a	dictionary-like	object	with	the	feature	matrix	in	the	data
member	and	the	target	values	in	target .	The	dataset	will	be	downloaded	from	the	web	if	necessary.

7.3.5. RCV1 dataset

Reuters	Corpus	Volume	I	(RCV1)	is	an	archive	of	over	800,000	manually	categorized	newswire	stories	made	available	by	Reuters,	Ltd.
for	research	purposes.	The	dataset	is	extensively	described	in	[1].

Data	Set	Characteristics:

Classes 103
Samples	total 804414
Dimensionality 47236
Features real,	between	0	and	1

sklearn.datasets.fetch_rcv1	will	load	the	following	version:	RCV1-v2,	vectors,	full	sets,	topics	multilabels:

It	returns	a	dictionary-like	object,	with	the	following	attributes:

data :	The	feature	matrix	is	a	scipy	CSR	sparse	matrix,	with	804414	samples	and	47236	features.	Non-zero	values	contains	cosine-
normalized,	log	TF-IDF	vectors.	A	nearly	chronological	split	is	proposed	in	[1]:	The	first	23149	samples	are	the	training	set.	The	last
781265	samples	are	the	testing	set.	This	follows	the	official	LYRL2004	chronological	split.	The	array	has	0.16%	of	non	zero	values:

target :	The	target	values	are	stored	in	a	scipy	CSR	sparse	matrix,	with	804414	samples	and	103	categories.	Each	sample	has	a	value
of	1	in	its	categories,	and	0	in	others.	The	array	has	3.15%	of	non	zero	values:

sample_id :	Each	sample	can	be	identified	by	its	ID,	ranging	(with	gaps)	from	2286	to	810596:

target_names :	The	target	values	are	the	topics	of	each	sample.	Each	sample	belongs	to	at	least	one	topic,	and	to	up	to	17	topics.
There	are	103	topics,	each	represented	by	a	string.	Their	corpus	frequencies	span	five	orders	of	magnitude,	from	5	occurrences	for
‘GMIL’,	to	381327	for	‘CCAT’:

The	dataset	will	be	downloaded	from	the	rcv1	homepage	if	necessary.	The	compressed	size	is	about	656	MB.

References

Lewis,	D.	D.,	Yang,	Y.,	Rose,	T.	G.,	&	Li,	F.	(2004).	RCV1:	A	new	benchmark	collection	for	text	categorization	research.	The
Journal	of	Machine	Learning	Research,	5,	361-397.

7.3.6. Kddcup 99 dataset

The	KDD	Cup	‘99	dataset	was	created	by	processing	the	tcpdump	portions	of	the	1998	DARPA	Intrusion	Detection	System	(IDS)
Evaluation	dataset,	created	by	MIT	Lincoln	Lab	[1].	The	artificial	data	(described	on	the	dataset’s	homepage)	was	generated	using	a
closed	network	and	hand-injected	attacks	to	produce	a	large	number	of	different	types	of	attack	with	normal	activity	in	the	background.

>>>	from	sklearn.datasets	import	fetch_rcv1
>>>	rcv1	=	fetch_rcv1()

>>>

>>>	rcv1.data.shape
(804414,	47236)

>>>

>>>	rcv1.target.shape
(804414,	103)

>>>

>>>	rcv1.sample_id[:3]
array([2286,	2287,	2288],	dtype=uint32)

>>>

>>>	rcv1.target_names[:3].tolist()		
['E11',	'ECAT',	'M11']

>>>

https://scikit-learn.org/stable/datasets/index.html#id7
https://scikit-learn.org/stable/datasets/index.html#id8
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_covtype.html#sklearn.datasets.fetch_covtype
https://scikit-learn.org/stable/datasets/index.html#id9
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_rcv1.html#sklearn.datasets.fetch_rcv1
https://scikit-learn.org/stable/datasets/index.html#id9
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/
https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html


As	the	initial	goal	was	to	produce	a	large	training	set	for	supervised	learning	algorithms,	there	is	a	large	proportion	(80.1%)	of	abnormal
data	which	is	unrealistic	in	real	world,	and	inappropriate	for	unsupervised	anomaly	detection	which	aims	at	detecting	‘abnormal’	data,	ie

1.	 qualitatively	different	from	normal	data

2.	 in	large	minority	among	the	observations.

We	thus	transform	the	KDD	Data	set	into	two	different	data	sets:	SA	and	SF.

-SA	is	obtained	by	simply	selecting	all	the	normal	data,	and	a	small	proportion	of	abnormal	data	to	gives	an	anomaly	proportion	of	1%.

-SF	is	obtained	as	in	[2]	by	simply	picking	up	the	data	whose	attribute	logged_in	is	positive,	thus	focusing	on	the	intrusion	attack,	which
gives	a	proportion	of	0.3%	of	attack.

-http	and	smtp	are	two	subsets	of	SF	corresponding	with	third	feature	equal	to	‘http’	(resp.	to	‘smtp’)

General	KDD	structure	:

Samples	total 4898431
Dimensionality 41
Features discrete	(int)	or	continuous	(float)
Targets str,	‘normal.’	or	name	of	the	anomaly	type

SA	structure	:

Samples	total 976158
Dimensionality 41
Features discrete	(int)	or	continuous	(float)
Targets str,	‘normal.’	or	name	of	the	anomaly	type

SF	structure	:

Samples	total 699691
Dimensionality 4
Features discrete	(int)	or	continuous	(float)
Targets str,	‘normal.’	or	name	of	the	anomaly	type

http	structure	:

Samples	total 619052
Dimensionality 3
Features discrete	(int)	or	continuous	(float)
Targets str,	‘normal.’	or	name	of	the	anomaly	type

smtp	structure	:

Samples	total 95373
Dimensionality 3
Features discrete	(int)	or	continuous	(float)
Targets str,	‘normal.’	or	name	of	the	anomaly	type

sklearn.datasets.fetch_kddcup99	will	load	the	kddcup99	dataset;	it	returns	a	dictionary-like	object	with	the	feature	matrix	in	the
data 	member	and	the	target	values	in	target .	The	dataset	will	be	downloaded	from	the	web	if	necessary.

7.3.7. California Housing dataset

Data	Set	Characteristics:

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_kddcup99.html#sklearn.datasets.fetch_kddcup99


Number	of	Instances:
20640

Number	of	Attributes:
8	numeric,	predictive	attributes	and	the	target

Attribute	Information:
MedInc	median	income	in	block
HouseAge	median	house	age	in	block
AveRooms	average	number	of	rooms
AveBedrms	average	number	of	bedrooms
Population	block	population
AveOccup	average	house	occupancy
Latitude	house	block	latitude
Longitude	house	block	longitude

Missing	Attribute	Values:
None

This	dataset	was	obtained	from	the	StatLib	repository.	http://lib.stat.cmu.edu/datasets/

The	target	variable	is	the	median	house	value	for	California	districts.

This	dataset	was	derived	from	the	1990	U.S.	census,	using	one	row	per	census	block	group.	A	block	group	is	the	smallest	geographical
unit	for	which	the	U.S.	Census	Bureau	publishes	sample	data	(a	block	group	typically	has	a	population	of	600	to	3,000	people).

It	can	be	downloaded/loaded	using	the	sklearn.datasets.fetch_california_housing	function.

References

Pace,	R.	Kelley	and	Ronald	Barry,	Sparse	Spatial	Autoregressions,	Statistics	and	Probability	Letters,	33	(1997)	291-297

7.4. Generated datasets

In	addition,	scikit-learn	includes	various	random	sample	generators	that	can	be	used	to	build	artificial	datasets	of	controlled	size	and
complexity.

7.4.1. Generators for classification and clustering

These	generators	produce	a	matrix	of	features	and	corresponding	discrete	targets.

7.4.1.1. Single label

Both	make_blobs	and	make_classification	create	multiclass	datasets	by	allocating	each	class	one	or	more	normally-distributed
clusters	of	points.	make_blobs	provides	greater	control	regarding	the	centers	and	standard	deviations	of	each	cluster,	and	is	used	to
demonstrate	clustering.	make_classification	specialises	in	introducing	noise	by	way	of:	correlated,	redundant	and	uninformative
features;	multiple	Gaussian	clusters	per	class;	and	linear	transformations	of	the	feature	space.

make_gaussian_quantiles	divides	a	single	Gaussian	cluster	into	near-equal-size	classes	separated	by	concentric	hyperspheres.
make_hastie_10_2	generates	a	similar	binary,	10-dimensional	problem.

http://lib.stat.cmu.edu/datasets/
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html#sklearn.datasets.fetch_california_housing
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html#sklearn.datasets.make_blobs
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html#sklearn.datasets.make_classification
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html#sklearn.datasets.make_blobs
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html#sklearn.datasets.make_classification
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_gaussian_quantiles.html#sklearn.datasets.make_gaussian_quantiles
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_hastie_10_2.html#sklearn.datasets.make_hastie_10_2


make_circles	and	make_moons	generate	2d	binary	classification	datasets	that	are	challenging	to	certain	algorithms	(e.g.	centroid-based
clustering	or	linear	classification),	including	optional	Gaussian	noise.	They	are	useful	for	visualisation.	make_circles	produces
Gaussian	data	with	a	spherical	decision	boundary	for	binary	classification,	while	make_moons	produces	two	interleaving	half	circles.

7.4.1.2. Multilabel

make_multilabel_classification	generates	random	samples	with	multiple	labels,	reflecting	a	bag	of	words	drawn	from	a	mixture	of
topics.	The	number	of	topics	for	each	document	is	drawn	from	a	Poisson	distribution,	and	the	topics	themselves	are	drawn	from	a	fixed
random	distribution.	Similarly,	the	number	of	words	is	drawn	from	Poisson,	with	words	drawn	from	a	multinomial,	where	each	topic
defines	a	probability	distribution	over	words.	Simplifications	with	respect	to	true	bag-of-words	mixtures	include:

Per-topic	word	distributions	are	independently	drawn,	where	in	reality	all	would	be	affected	by	a	sparse	base	distribution,	and	would
be	correlated.
For	a	document	generated	from	multiple	topics,	all	topics	are	weighted	equally	in	generating	its	bag	of	words.
Documents	without	labels	words	at	random,	rather	than	from	a	base	distribution.

7.4.1.3. Biclustering

make_biclusters(shape,	n_clusters[,	noise,	…]) Generate	an	array	with	constant	block	diagonal	structure	for	biclustering.
make_checkerboard(shape,	n_clusters[,	…]) Generate	an	array	with	block	checkerboard	structure	for	biclustering.

7.4.2. Generators for regression

make_regression	produces	regression	targets	as	an	optionally-sparse	random	linear	combination	of	random	features,	with	noise.	Its
informative	features	may	be	uncorrelated,	or	low	rank	(few	features	account	for	most	of	the	variance).

Other	regression	generators	generate	functions	deterministically	from	randomized	features.	make_sparse_uncorrelated	produces	a
target	as	a	linear	combination	of	four	features	with	fixed	coefficients.	Others	encode	explicitly	non-linear	relations:	make_friedman1	is
related	by	polynomial	and	sine	transforms;	make_friedman2	includes	feature	multiplication	and	reciprocation;	and	make_friedman3	is
similar	with	an	arctan	transformation	on	the	target.

7.4.3. Generators for manifold learning

make_s_curve([n_samples,	noise,	random_state]) Generate	an	S	curve	dataset.
make_swiss_roll([n_samples,	noise,	random_state]) Generate	a	swiss	roll	dataset.

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html#sklearn.datasets.make_circles
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html#sklearn.datasets.make_moons
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html#sklearn.datasets.make_circles
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html#sklearn.datasets.make_moons
https://scikit-learn.org/stable/auto_examples/datasets/plot_random_dataset.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_multilabel_classification.html#sklearn.datasets.make_multilabel_classification
https://scikit-learn.org/stable/auto_examples/datasets/plot_random_multilabel_dataset.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_biclusters.html#sklearn.datasets.make_biclusters
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_checkerboard.html#sklearn.datasets.make_checkerboard
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html#sklearn.datasets.make_regression
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_sparse_uncorrelated.html#sklearn.datasets.make_sparse_uncorrelated
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_friedman1.html#sklearn.datasets.make_friedman1
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_friedman2.html#sklearn.datasets.make_friedman2
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_friedman3.html#sklearn.datasets.make_friedman3
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_s_curve.html#sklearn.datasets.make_s_curve
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_swiss_roll.html#sklearn.datasets.make_swiss_roll


7.4.4. Generators for decomposition

make_low_rank_matrix([n_samples,	…]) Generate	a	mostly	low	rank	matrix	with	bell-shaped	singular	values
make_sparse_coded_signal(n_samples,	…
[,	…]) Generate	a	signal	as	a	sparse	combination	of	dictionary	elements.

make_spd_matrix(n_dim[,	random_state]) Generate	a	random	symmetric,	positive-definite	matrix.
make_sparse_spd_matrix([dim,	alpha,	…]) Generate	a	sparse	symmetric	definite	positive	matrix.

7.5. Loading other datasets

7.5.1. Sample images

Scikit-learn	also	embed	a	couple	of	sample	JPEG	images	published	under	Creative	Commons	license	by	their	authors.	Those	images
can	be	useful	to	test	algorithms	and	pipeline	on	2D	data.

load_sample_images() Load	sample	images	for	image	manipulation.
load_sample_image(image_name) Load	the	numpy	array	of	a	single	sample	image

Warning: 	The	default	coding	of	images	is	based	on	the	uint8 	dtype	to	spare	memory.	Often	machine
learning	algorithms	work	best	if	the	input	is	converted	to	a	floating	point	representation	first.	Also,	if	you
plan	to	use	matplotlib.pyplpt.imshow 	don’t	forget	to	scale	to	the	range	0	-	1	as	done	in	the	following
example.

Examples:

Color	Quantization	using	K-Means

7.5.2. Datasets in svmlight / libsvm format

scikit-learn	includes	utility	functions	for	loading	datasets	in	the	svmlight	/	libsvm	format.	In	this	format,	each	line	takes	the	form
<label>	<feature-id>:<feature-value>	<feature-id>:<feature-value>	... .	This	format	is	especially	suitable	for	sparse
datasets.	In	this	module,	scipy	sparse	CSR	matrices	are	used	for	X 	and	numpy	arrays	are	used	for	y .

You	may	load	a	dataset	like	as	follows:

You	may	also	load	two	(or	more)	datasets	at	once:

In	this	case,	X_train 	and	X_test 	are	guaranteed	to	have	the	same	number	of	features.	Another	way	to	achieve	the	same	result	is	to	fix
the	number	of	features:

Related	links:

Public	datasets	in	svmlight	/	libsvm	format:	https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

Faster	API-compatible	implementation:	https://github.com/mblondel/svmlight-loader

7.5.3. Downloading datasets from the openml.org repository

openml.org	is	a	public	repository	for	machine	learning	data	and	experiments,	that	allows	everybody	to	upload	open	datasets.

The	sklearn.datasets 	package	is	able	to	download	datasets	from	the	repository	using	the	function
sklearn.datasets.fetch_openml.

For	example,	to	download	a	dataset	of	gene	expressions	in	mice	brains:

>>>	from	sklearn.datasets	import	load_svmlight_file
>>>	X_train,	y_train	=	load_svmlight_file("/path/to/train_dataset.txt")
...																																																									

>>>

>>>	X_train,	y_train,	X_test,	y_test	=	load_svmlight_files(
...					("/path/to/train_dataset.txt",	"/path/to/test_dataset.txt"))
...																																																									

>>>

>>>	X_test,	y_test	=	load_svmlight_file(
...					"/path/to/test_dataset.txt",	n_features=X_train.shape[1])
...																																																									

>>>

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_low_rank_matrix.html#sklearn.datasets.make_low_rank_matrix
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_sparse_coded_signal.html#sklearn.datasets.make_sparse_coded_signal
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_spd_matrix.html#sklearn.datasets.make_spd_matrix
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_sparse_spd_matrix.html#sklearn.datasets.make_sparse_spd_matrix
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_sample_images.html#sklearn.datasets.load_sample_images
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_sample_image.html#sklearn.datasets.load_sample_image
https://scikit-learn.org/stable/auto_examples/cluster/plot_color_quantization.html#sphx-glr-auto-examples-cluster-plot-color-quantization-py
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
https://github.com/mblondel/svmlight-loader
https://openml.org/
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_openml.html#sklearn.datasets.fetch_openml


To	fully	specify	a	dataset,	you	need	to	provide	a	name	and	a	version,	though	the	version	is	optional,	see	Dataset	Versions	below.	The
dataset	contains	a	total	of	1080	examples	belonging	to	8	different	classes:

You	can	get	more	information	on	the	dataset	by	looking	at	the	DESCR 	and	details 	attributes:

The	DESCR 	contains	a	free-text	description	of	the	data,	while	details 	contains	a	dictionary	of	meta-data	stored	by	openml,	like	the
dataset	id.	For	more	details,	see	the	OpenML	documentation	The	data_id 	of	the	mice	protein	dataset	is	40966,	and	you	can	use	this
(or	the	name)	to	get	more	information	on	the	dataset	on	the	openml	website:

The	data_id 	also	uniquely	identifies	a	dataset	from	OpenML:

7.5.3.1. Dataset Versions

A	dataset	is	uniquely	specified	by	its	data_id ,	but	not	necessarily	by	its	name.	Several	different	“versions”	of	a	dataset	with	the	same
name	can	exist	which	can	contain	entirely	different	datasets.	If	a	particular	version	of	a	dataset	has	been	found	to	contain	significant
issues,	it	might	be	deactivated.	Using	a	name	to	specify	a	dataset	will	yield	the	earliest	version	of	a	dataset	that	is	still	active.	That
means	that	fetch_openml(name="miceprotein") 	can	yield	different	results	at	different	times	if	earlier	versions	become	inactive.	You
can	see	that	the	dataset	with	data_id 	40966	that	we	fetched	above	is	the	version	1	of	the	“miceprotein”	dataset:

In	fact,	this	dataset	only	has	one	version.	The	iris	dataset	on	the	other	hand	has	multiple	versions:

>>>	from	sklearn.datasets	import	fetch_openml
>>>	mice	=	fetch_openml(name='miceprotein',	version=4)

>>>

>>>	mice.data.shape
(1080,	77)
>>>	mice.target.shape
(1080,)
>>>	np.unique(mice.target)
array(['c-CS-m',	'c-CS-s',	'c-SC-m',	'c-SC-s',	't-CS-m',	't-CS-s',	't-SC-m',	't-SC-s'],	dtype=object)

>>>

>>>	print(mice.DESCR)	
**Author**:	Clara	Higuera,	Katheleen	J.	Gardiner,	Krzysztof	J.	Cios
**Source**:	[UCI](https://archive.ics.uci.edu/ml/datasets/Mice+Protein+Expression)	-	2015
**Please	cite**:	Higuera	C,	Gardiner	KJ,	Cios	KJ	(2015)	Self-Organizing
Feature	Maps	Identify	Proteins	Critical	to	Learning	in	a	Mouse	Model	of	Down
Syndrome.	PLoS	ONE	10(6):	e0129126...

>>>	mice.details	
{'id':	'40966',	'name':	'MiceProtein',	'version':	'4',	'format':	'ARFF',
'upload_date':	'2017-11-08T16:00:15',	'licence':	'Public',
'url':	'https://www.openml.org/data/v1/download/17928620/MiceProtein.arff',
'file_id':	'17928620',	'default_target_attribute':	'class',
'row_id_attribute':	'MouseID',
'ignore_attribute':	['Genotype',	'Treatment',	'Behavior'],
'tag':	['OpenML-CC18',	'study_135',	'study_98',	'study_99'],
'visibility':	'public',	'status':	'active',
'md5_checksum':	'3c479a6885bfa0438971388283a1ce32'}

>>>

>>>	mice.url
'https://www.openml.org/d/40966'

>>>

>>>	mice	=	fetch_openml(data_id=40966)
>>>	mice.details	
{'id':	'4550',	'name':	'MiceProtein',	'version':	'1',	'format':	'ARFF',
'creator':	...,
'upload_date':	'2016-02-17T14:32:49',	'licence':	'Public',	'url':
'https://www.openml.org/data/v1/download/1804243/MiceProtein.ARFF',	'file_id':
'1804243',	'default_target_attribute':	'class',	'citation':	'Higuera	C,
Gardiner	KJ,	Cios	KJ	(2015)	Self-Organizing	Feature	Maps	Identify	Proteins
Critical	to	Learning	in	a	Mouse	Model	of	Down	Syndrome.	PLoS	ONE	10(6):
e0129126.	[Web	Link]	journal.pone.0129126',	'tag':	['OpenML100',	'study_14',
'study_34'],	'visibility':	'public',	'status':	'active',	'md5_checksum':
'3c479a6885bfa0438971388283a1ce32'}

>>>

>>>	mice.details['version']		
'1'

>>>

https://scikit-learn.org/stable/datasets/index.html#openml-versions
https://docs.openml.org/#data


©	2007	-	2019,	scikit-learn	developers	(BSD	License).	Show	this	page	source

Specifying	the	dataset	by	the	name	“iris”	yields	the	lowest	version,	version	1,	with	the	data_id 	61.	To	make	sure	you	always	get	this
exact	dataset,	it	is	safest	to	specify	it	by	the	dataset	data_id .	The	other	dataset,	with	data_id 	969,	is	version	3	(version	2	has	become
inactive),	and	contains	a	binarized	version	of	the	data:

You	can	also	specify	both	the	name	and	the	version,	which	also	uniquely	identifies	the	dataset:

References:

Vanschoren,	van	Rijn,	Bischl	and	Torgo	“OpenML:	networked	science	in	machine	learning”,	ACM	SIGKDD	Explorations	Newsletter,
15(2),	49-60,	2014.

7.5.4. Loading from external datasets

scikit-learn	works	on	any	numeric	data	stored	as	numpy	arrays	or	scipy	sparse	matrices.	Other	types	that	are	convertible	to	numeric
arrays	such	as	pandas	DataFrame	are	also	acceptable.

Here	are	some	recommended	ways	to	load	standard	columnar	data	into	a	format	usable	by	scikit-learn:

pandas.io	provides	tools	to	read	data	from	common	formats	including	CSV,	Excel,	JSON	and	SQL.	DataFrames	may	also	be
constructed	from	lists	of	tuples	or	dicts.	Pandas	handles	heterogeneous	data	smoothly	and	provides	tools	for	manipulation	and
conversion	into	a	numeric	array	suitable	for	scikit-learn.
scipy.io	specializes	in	binary	formats	often	used	in	scientific	computing	context	such	as	.mat	and	.arff
numpy/routines.io	for	standard	loading	of	columnar	data	into	numpy	arrays
scikit-learn’s	datasets.load_svmlight_file 	for	the	svmlight	or	libSVM	sparse	format
scikit-learn’s	datasets.load_files 	for	directories	of	text	files	where	the	name	of	each	directory	is	the	name	of	each	category	and
each	file	inside	of	each	directory	corresponds	to	one	sample	from	that	category

For	some	miscellaneous	data	such	as	images,	videos,	and	audio,	you	may	wish	to	refer	to:

skimage.io	or	Imageio	for	loading	images	and	videos	into	numpy	arrays
scipy.io.wavfile.read	for	reading	WAV	files	into	a	numpy	array

Categorical	(or	nominal)	features	stored	as	strings	(common	in	pandas	DataFrames)	will	need	converting	to	numerical	features	using
sklearn.preprocessing.OneHotEncoder	or	sklearn.preprocessing.OrdinalEncoder	or	similar.	See	Preprocessing	data.

Note:	if	you	manage	your	own	numerical	data	it	is	recommended	to	use	an	optimized	file	format	such	as	HDF5	to	reduce	data	load
times.	Various	libraries	such	as	H5Py,	PyTables	and	pandas	provides	a	Python	interface	for	reading	and	writing	data	in	that	format.

>>>	iris	=	fetch_openml(name="iris")
>>>	iris.details['version']		
'1'
>>>	iris.details['id']		
'61'

>>>	iris_61	=	fetch_openml(data_id=61)
>>>	iris_61.details['version']
'1'
>>>	iris_61.details['id']
'61'

>>>	iris_969	=	fetch_openml(data_id=969)
>>>	iris_969.details['version']
'3'
>>>	iris_969.details['id']
'969'

>>>

>>>	np.unique(iris_969.target)
array(['N',	'P'],	dtype=object)

>>>

>>>	iris_version_3	=	fetch_openml(name="iris",	version=3)
>>>	iris_version_3.details['version']
'3'
>>>	iris_version_3.details['id']
'969'

>>>

Toggle	Menu

https://scikit-learn.org/stable/_sources/datasets/index.rst.txt
https://arxiv.org/pdf/1407.7722.pdf
https://pandas.pydata.org/pandas-docs/stable/io.html
https://docs.scipy.org/doc/scipy/reference/io.html
https://docs.scipy.org/doc/numpy/reference/routines.io.html
https://scikit-image.org/docs/dev/api/skimage.io.html
https://imageio.readthedocs.io/en/latest/userapi.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.io.wavfile.read.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html#sklearn.preprocessing.OneHotEncoder
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html#sklearn.preprocessing.OrdinalEncoder
https://scikit-learn.org/stable/modules/preprocessing.html#preprocessing

