
1.10. Decision Trees
Decision	Trees	(DTs)	are	a	non-parametric	supervised	learning	method	used	for	classification	and	regression.	The	goal	is	to	create	a
model	that	predicts	the	value	of	a	target	variable	by	learning	simple	decision	rules	inferred	from	the	data	features.

For	instance,	in	the	example	below,	decision	trees	learn	from	data	to	approximate	a	sine	curve	with	a	set	of	if-then-else	decision	rules.
The	deeper	the	tree,	the	more	complex	the	decision	rules	and	the	fitter	the	model.

Some	advantages	of	decision	trees	are:

Simple	to	understand	and	to	interpret.	Trees	can	be	visualised.
Requires	little	data	preparation.	Other	techniques	often	require	data	normalisation,	dummy	variables	need	to	be	created	and	blank
values	to	be	removed.	Note	however	that	this	module	does	not	support	missing	values.
The	cost	of	using	the	tree	(i.e.,	predicting	data)	is	logarithmic	in	the	number	of	data	points	used	to	train	the	tree.
Able	to	handle	both	numerical	and	categorical	data.	Other	techniques	are	usually	specialised	in	analysing	datasets	that	have	only
one	type	of	variable.	See	algorithms	for	more	information.
Able	to	handle	multi-output	problems.
Uses	a	white	box	model.	If	a	given	situation	is	observable	in	a	model,	the	explanation	for	the	condition	is	easily	explained	by	boolean
logic.	By	contrast,	in	a	black	box	model	(e.g.,	in	an	artificial	neural	network),	results	may	be	more	difficult	to	interpret.
Possible	to	validate	a	model	using	statistical	tests.	That	makes	it	possible	to	account	for	the	reliability	of	the	model.
Performs	well	even	if	its	assumptions	are	somewhat	violated	by	the	true	model	from	which	the	data	were	generated.

The	disadvantages	of	decision	trees	include:

Decision-tree	learners	can	create	over-complex	trees	that	do	not	generalise	the	data	well.	This	is	called	overfitting.	Mechanisms
such	as	pruning	(not	currently	supported),	setting	the	minimum	number	of	samples	required	at	a	leaf	node	or	setting	the	maximum
depth	of	the	tree	are	necessary	to	avoid	this	problem.
Decision	trees	can	be	unstable	because	small	variations	in	the	data	might	result	in	a	completely	different	tree	being	generated.	This
problem	is	mitigated	by	using	decision	trees	within	an	ensemble.
The	problem	of	learning	an	optimal	decision	tree	is	known	to	be	NP-complete	under	several	aspects	of	optimality	and	even	for
simple	concepts.	Consequently,	practical	decision-tree	learning	algorithms	are	based	on	heuristic	algorithms	such	as	the	greedy
algorithm	where	locally	optimal	decisions	are	made	at	each	node.	Such	algorithms	cannot	guarantee	to	return	the	globally	optimal
decision	tree.	This	can	be	mitigated	by	training	multiple	trees	in	an	ensemble	learner,	where	the	features	and	samples	are	randomly
sampled	with	replacement.
There	are	concepts	that	are	hard	to	learn	because	decision	trees	do	not	express	them	easily,	such	as	XOR,	parity	or	multiplexer
problems.
Decision	tree	learners	create	biased	trees	if	some	classes	dominate.	It	is	therefore	recommended	to	balance	the	dataset	prior	to
fitting	with	the	decision	tree.

1.10.1. Classification

https://scikit-learn.org/stable/modules/tree.html#tree-classification
https://scikit-learn.org/stable/modules/tree.html#tree-regression
https://scikit-learn.org/stable/auto_examples/tree/plot_tree_regression.html
https://scikit-learn.org/stable/modules/tree.html#tree-algorithms

DecisionTreeClassifier	is	a	class	capable	of	performing	multi-class	classification	on	a	dataset.

As	with	other	classifiers,	DecisionTreeClassifier	takes	as	input	two	arrays:	an	array	X,	sparse	or	dense,	of	size
[n_samples,	n_features] 	holding	the	training	samples,	and	an	array	Y	of	integer	values,	size	[n_samples] ,	holding	the	class	labels
for	the	training	samples:

After	being	fitted,	the	model	can	then	be	used	to	predict	the	class	of	samples:

Alternatively,	the	probability	of	each	class	can	be	predicted,	which	is	the	fraction	of	training	samples	of	the	same	class	in	a	leaf:

DecisionTreeClassifier	is	capable	of	both	binary	(where	the	labels	are	[-1,	1])	classification	and	multiclass	(where	the	labels	are	[0,	…,
K-1])	classification.

Using	the	Iris	dataset,	we	can	construct	a	tree	as	follows:

Once	trained,	you	can	plot	the	tree	with	the	plot_tree	function:

We	can	also	export	the	tree	in	Graphviz	format	using	the	export_graphviz	exporter.	If	you	use	the	conda	package	manager,	the
graphviz	binaries

and	the	python	package	can	be	installed	with

conda	install	python-graphviz

Alternatively	binaries	for	graphviz	can	be	downloaded	from	the	graphviz	project	homepage,	and	the	Python	wrapper	installed	from	pypi
with	pip	install	graphviz .

Below	is	an	example	graphviz	export	of	the	above	tree	trained	on	the	entire	iris	dataset;	the	results	are	saved	in	an	output	file	iris.pdf :

>>>	from	sklearn	import	tree
>>>	X	=	[[0,	0],	[1,	1]]
>>>	Y	=	[0,	1]
>>>	clf	=	tree.DecisionTreeClassifier()
>>>	clf	=	clf.fit(X,	Y)

>>>

>>>	clf.predict([[2.,	2.]])
array([1])

>>>

>>>	clf.predict_proba([[2.,	2.]])
array([[0.,	1.]])

>>>

>>>	from	sklearn.datasets	import	load_iris
>>>	from	sklearn	import	tree
>>>	X,	y	=	load_iris(return_X_y=True)
>>>	clf	=	tree.DecisionTreeClassifier()
>>>	clf	=	clf.fit(X,	y)

>>>

>>>	tree.plot_tree(clf.fit(iris.data,	iris.target))	 >>>

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://scikit-learn.org/stable/auto_examples/tree/plot_iris_dtc.html
https://www.graphviz.org/
https://scikit-learn.org/stable/modules/generated/sklearn.tree.export_graphviz.html#sklearn.tree.export_graphviz
https://conda.io/

The	export_graphviz	exporter	also	supports	a	variety	of	aesthetic	options,	including	coloring	nodes	by	their	class	(or	value	for
regression)	and	using	explicit	variable	and	class	names	if	desired.	Jupyter	notebooks	also	render	these	plots	inline	automatically:

>>>	import	graphviz	
>>>	dot_data	=	tree.export_graphviz(clf,	out_file=None)	
>>>	graph	=	graphviz.Source(dot_data)	
>>>	graph.render("iris")	

>>>

>>>	dot_data	=	tree.export_graphviz(clf,	out_file=None,	
...																						feature_names=iris.feature_names,		
...																						class_names=iris.target_names,		
...																						filled=True,	rounded=True,		
...																						special_characters=True)		
>>>	graph	=	graphviz.Source(dot_data)		
>>>	graph	

>>>

https://scikit-learn.org/stable/modules/generated/sklearn.tree.export_graphviz.html#sklearn.tree.export_graphviz

Alternatively,	the	tree	can	also	be	exported	in	textual	format	with	the	function	export_text.	This	method	doesn’t	require	the	installation
of	external	libraries	and	is	more	compact:

Examples:

Plot	the	decision	surface	of	a	decision	tree	on	the	iris	dataset
Understanding	the	decision	tree	structure

1.10.2. Regression

Decision	trees	can	also	be	applied	to	regression	problems,	using	the	DecisionTreeRegressor	class.

As	in	the	classification	setting,	the	fit	method	will	take	as	argument	arrays	X	and	y,	only	that	in	this	case	y	is	expected	to	have	floating
point	values	instead	of	integer	values:

>>>	from	sklearn.datasets	import	load_iris
>>>	from	sklearn.tree	import	DecisionTreeClassifier
>>>	from	sklearn.tree.export	import	export_text
>>>	iris	=	load_iris()
>>>	decision_tree	=	DecisionTreeClassifier(random_state=0,	max_depth=2)
>>>	decision_tree	=	decision_tree.fit(iris.data,	iris.target)
>>>	r	=	export_text(decision_tree,	feature_names=iris['feature_names'])
>>>	print(r)
|---	petal	width	(cm)	<=	0.80
|			|---	class:	0
|---	petal	width	(cm)	>		0.80
|			|---	petal	width	(cm)	<=	1.75
|			|			|---	class:	1
|			|---	petal	width	(cm)	>		1.75
|			|			|---	class:	2
<BLANKLINE>

>>>

https://scikit-learn.org/stable/auto_examples/tree/plot_iris_dtc.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.export_text.html#sklearn.tree.export_text
https://scikit-learn.org/stable/auto_examples/tree/plot_iris_dtc.html#sphx-glr-auto-examples-tree-plot-iris-dtc-py
https://scikit-learn.org/stable/auto_examples/tree/plot_unveil_tree_structure.html#sphx-glr-auto-examples-tree-plot-unveil-tree-structure-py
https://scikit-learn.org/stable/auto_examples/tree/plot_tree_regression.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html#sklearn.tree.DecisionTreeRegressor

Examples:

Decision	Tree	Regression

1.10.3. Multi-output problems

A	multi-output	problem	is	a	supervised	learning	problem	with	several	outputs	to	predict,	that	is	when	Y	is	a	2d	array	of	size
[n_samples,	n_outputs] .

When	there	is	no	correlation	between	the	outputs,	a	very	simple	way	to	solve	this	kind	of	problem	is	to	build	n	independent	models,	i.e.
one	for	each	output,	and	then	to	use	those	models	to	independently	predict	each	one	of	the	n	outputs.	However,	because	it	is	likely	that
the	output	values	related	to	the	same	input	are	themselves	correlated,	an	often	better	way	is	to	build	a	single	model	capable	of
predicting	simultaneously	all	n	outputs.	First,	it	requires	lower	training	time	since	only	a	single	estimator	is	built.	Second,	the
generalization	accuracy	of	the	resulting	estimator	may	often	be	increased.

With	regard	to	decision	trees,	this	strategy	can	readily	be	used	to	support	multi-output	problems.	This	requires	the	following	changes:

Store	n	output	values	in	leaves,	instead	of	1;
Use	splitting	criteria	that	compute	the	average	reduction	across	all	n	outputs.

This	module	offers	support	for	multi-output	problems	by	implementing	this	strategy	in	both	DecisionTreeClassifier	and
DecisionTreeRegressor.	If	a	decision	tree	is	fit	on	an	output	array	Y	of	size	[n_samples,	n_outputs] 	then	the	resulting	estimator	will:

Output	n_output	values	upon	predict ;
Output	a	list	of	n_output	arrays	of	class	probabilities	upon	predict_proba .

The	use	of	multi-output	trees	for	regression	is	demonstrated	in	Multi-output	Decision	Tree	Regression.	In	this	example,	the	input	X	is	a
single	real	value	and	the	outputs	Y	are	the	sine	and	cosine	of	X.

The	use	of	multi-output	trees	for	classification	is	demonstrated	in	Face	completion	with	a	multi-output	estimators.	In	this	example,	the
inputs	X	are	the	pixels	of	the	upper	half	of	faces	and	the	outputs	Y	are	the	pixels	of	the	lower	half	of	those	faces.

>>>	from	sklearn	import	tree
>>>	X	=	[[0,	0],	[2,	2]]
>>>	y	=	[0.5,	2.5]
>>>	clf	=	tree.DecisionTreeRegressor()
>>>	clf	=	clf.fit(X,	y)
>>>	clf.predict([[1,	1]])
array([0.5])

>>>

https://scikit-learn.org/stable/auto_examples/tree/plot_tree_regression.html#sphx-glr-auto-examples-tree-plot-tree-regression-py
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html#sklearn.tree.DecisionTreeRegressor
https://scikit-learn.org/stable/auto_examples/tree/plot_tree_regression_multioutput.html#sphx-glr-auto-examples-tree-plot-tree-regression-multioutput-py
https://scikit-learn.org/stable/auto_examples/tree/plot_tree_regression_multioutput.html
https://scikit-learn.org/stable/auto_examples/plot_multioutput_face_completion.html#sphx-glr-auto-examples-plot-multioutput-face-completion-py

Examples:

Multi-output	Decision	Tree	Regression
Face	completion	with	a	multi-output	estimators

References:

M.	Dumont	et	al,	Fast	multi-class	image	annotation	with	random	subwindows	and	multiple	output	randomized	trees,	International
Conference	on	Computer	Vision	Theory	and	Applications	2009

1.10.4. Complexity

In	general,	the	run	time	cost	to	construct	a	balanced	binary	tree	is	 	and	query	time	
.	Although	the	tree	construction	algorithm	attempts	to	generate	balanced	trees,	they	will	not	always	be	balanced.

Assuming	that	the	subtrees	remain	approximately	balanced,	the	cost	at	each	node	consists	of	searching	through	 	to	find
the	feature	that	offers	the	largest	reduction	in	entropy.	This	has	a	cost	of	 	at	each	node,	leading	to
a	total	cost	over	the	entire	trees	(by	summing	the	cost	at	each	node)	of	 .

1.10.5. Tips on practical use

https://scikit-learn.org/stable/auto_examples/plot_multioutput_face_completion.html
https://scikit-learn.org/stable/auto_examples/tree/plot_tree_regression_multioutput.html#sphx-glr-auto-examples-tree-plot-tree-regression-multioutput-py
https://scikit-learn.org/stable/auto_examples/plot_multioutput_face_completion.html#sphx-glr-auto-examples-plot-multioutput-face-completion-py
http://www.montefiore.ulg.ac.be/services/stochastic/pubs/2009/DMWG09/dumont-visapp09-shortpaper.pdf

Decision	trees	tend	to	overfit	on	data	with	a	large	number	of	features.	Getting	the	right	ratio	of	samples	to	number	of	features	is
important,	since	a	tree	with	few	samples	in	high	dimensional	space	is	very	likely	to	overfit.
Consider	performing	dimensionality	reduction	(PCA,	ICA,	or	Feature	selection)	beforehand	to	give	your	tree	a	better	chance	of
finding	features	that	are	discriminative.
Understanding	the	decision	tree	structure	will	help	in	gaining	more	insights	about	how	the	decision	tree	makes	predictions,	which	is
important	for	understanding	the	important	features	in	the	data.
Visualise	your	tree	as	you	are	training	by	using	the	export 	function.	Use	max_depth=3 	as	an	initial	tree	depth	to	get	a	feel	for	how
the	tree	is	fitting	to	your	data,	and	then	increase	the	depth.
Remember	that	the	number	of	samples	required	to	populate	the	tree	doubles	for	each	additional	level	the	tree	grows	to.	Use
max_depth 	to	control	the	size	of	the	tree	to	prevent	overfitting.
Use	min_samples_split 	or	min_samples_leaf 	to	ensure	that	multiple	samples	inform	every	decision	in	the	tree,	by	controlling
which	splits	will	be	considered.	A	very	small	number	will	usually	mean	the	tree	will	overfit,	whereas	a	large	number	will	prevent	the
tree	from	learning	the	data.	Try	min_samples_leaf=5 	as	an	initial	value.	If	the	sample	size	varies	greatly,	a	float	number	can	be
used	as	percentage	in	these	two	parameters.	While	min_samples_split 	can	create	arbitrarily	small	leaves,	min_samples_leaf
guarantees	that	each	leaf	has	a	minimum	size,	avoiding	low-variance,	over-fit	leaf	nodes	in	regression	problems.	For	classification
with	few	classes,	min_samples_leaf=1 	is	often	the	best	choice.
Balance	your	dataset	before	training	to	prevent	the	tree	from	being	biased	toward	the	classes	that	are	dominant.	Class	balancing
can	be	done	by	sampling	an	equal	number	of	samples	from	each	class,	or	preferably	by	normalizing	the	sum	of	the	sample	weights
(sample_weight)	for	each	class	to	the	same	value.	Also	note	that	weight-based	pre-pruning	criteria,	such	as
min_weight_fraction_leaf ,	will	then	be	less	biased	toward	dominant	classes	than	criteria	that	are	not	aware	of	the	sample
weights,	like	min_samples_leaf .
If	the	samples	are	weighted,	it	will	be	easier	to	optimize	the	tree	structure	using	weight-based	pre-pruning	criterion	such	as
min_weight_fraction_leaf ,	which	ensure	that	leaf	nodes	contain	at	least	a	fraction	of	the	overall	sum	of	the	sample	weights.
All	decision	trees	use	np.float32 	arrays	internally.	If	training	data	is	not	in	this	format,	a	copy	of	the	dataset	will	be	made.
If	the	input	matrix	X	is	very	sparse,	it	is	recommended	to	convert	to	sparse	csc_matrix 	before	calling	fit	and	sparse	csr_matrix
before	calling	predict.	Training	time	can	be	orders	of	magnitude	faster	for	a	sparse	matrix	input	compared	to	a	dense	matrix	when
features	have	zero	values	in	most	of	the	samples.

1.10.6. Tree algorithms: ID3, C4.5, C5.0 and CART

What	are	all	the	various	decision	tree	algorithms	and	how	do	they	differ	from	each	other?	Which	one	is	implemented	in	scikit-learn?

ID3	(Iterative	Dichotomiser	3)	was	developed	in	1986	by	Ross	Quinlan.	The	algorithm	creates	a	multiway	tree,	finding	for	each	node	(i.e.
in	a	greedy	manner)	the	categorical	feature	that	will	yield	the	largest	information	gain	for	categorical	targets.	Trees	are	grown	to	their
maximum	size	and	then	a	pruning	step	is	usually	applied	to	improve	the	ability	of	the	tree	to	generalise	to	unseen	data.

C4.5	is	the	successor	to	ID3	and	removed	the	restriction	that	features	must	be	categorical	by	dynamically	defining	a	discrete	attribute
(based	on	numerical	variables)	that	partitions	the	continuous	attribute	value	into	a	discrete	set	of	intervals.	C4.5	converts	the	trained
trees	(i.e.	the	output	of	the	ID3	algorithm)	into	sets	of	if-then	rules.	These	accuracy	of	each	rule	is	then	evaluated	to	determine	the	order
in	which	they	should	be	applied.	Pruning	is	done	by	removing	a	rule’s	precondition	if	the	accuracy	of	the	rule	improves	without	it.

C5.0	is	Quinlan’s	latest	version	release	under	a	proprietary	license.	It	uses	less	memory	and	builds	smaller	rulesets	than	C4.5	while
being	more	accurate.

CART	(Classification	and	Regression	Trees)	is	very	similar	to	C4.5,	but	it	differs	in	that	it	supports	numerical	target	variables
(regression)	and	does	not	compute	rule	sets.	CART	constructs	binary	trees	using	the	feature	and	threshold	that	yield	the	largest
information	gain	at	each	node.

scikit-learn	uses	an	optimised	version	of	the	CART	algorithm;	however,	scikit-learn	implementation	does	not	support	categorical
variables	for	now.

1.10.7. Mathematical formulation

Given	training	vectors	 ,	i=1,…,	l	and	a	label	vector	 ,	a	decision	tree	recursively	partitions	the	space	such	that	the	samples
with	the	same	labels	are	grouped	together.

Let	the	data	at	node	 	be	represented	by	 .	For	each	candidate	split	 	consisting	of	a	feature	 	and	threshold	 ,	partition
the	data	into	 	and	 	subsets

https://scikit-learn.org/stable/modules/decomposition.html#pca
https://scikit-learn.org/stable/modules/decomposition.html#ica
https://scikit-learn.org/stable/modules/feature_selection.html#feature-selection
https://scikit-learn.org/stable/auto_examples/tree/plot_unveil_tree_structure.html#sphx-glr-auto-examples-tree-plot-unveil-tree-structure-py
https://en.wikipedia.org/wiki/ID3_algorithm
https://en.wikipedia.org/wiki/Predictive_analytics#Classification_and_regression_trees_.28CART.29

The	impurity	at	 	is	computed	using	an	impurity	function	 ,	the	choice	of	which	depends	on	the	task	being	solved	(classification	or
regression)

Select	the	parameters	that	minimises	the	impurity

Recurse	for	subsets	 	and	 	until	the	maximum	allowable	depth	is	reached,	 	or	 .

1.10.7.1. Classification criteria

If	a	target	is	a	classification	outcome	taking	on	values	0,1,…,K-1,	for	node	 ,	representing	a	region	 	with	 	observations,	let

be	the	proportion	of	class	k	observations	in	node	

Common	measures	of	impurity	are	Gini

Entropy

and	Misclassification

where	 	is	the	training	data	in	node	

1.10.7.2. Regression criteria

If	the	target	is	a	continuous	value,	then	for	node	 ,	representing	a	region	 	with	 	observations,	common	criteria	to	minimise	as
for	determining	locations	for	future	splits	are	Mean	Squared	Error,	which	minimizes	the	L2	error	using	mean	values	at	terminal	nodes,
and	Mean	Absolute	Error,	which	minimizes	the	L1	error	using	median	values	at	terminal	nodes.

Mean	Squared	Error:

Mean	Absolute	Error:

where	 	is	the	training	data	in	node	

1.10.8. Minimal Cost-Complexity Pruning

©	2007	-	2019,	scikit-learn	developers	(BSD	License).	Show	this	page	source

[BRE]

Minimal	cost-complexity	pruning	is	an	algorithm	used	to	prune	a	tree	to	avoid	over-fitting,	described	in	Chapter	3	of	[BRE].	This
algorithm	is	parameterized	by	 	known	as	the	complexity	parameter.	The	complexity	parameter	is	used	to	define	the	cost-
complexity	measure,	 	of	a	given	tree	 :

where	 	is	the	number	of	terminal	nodes	in	 	and	 	is	traditionally	defined	as	the	total	misclassification	rate	of	the	terminal
nodes.	Alternatively,	scikit-learn	uses	the	total	sample	weighted	impurity	of	the	terminal	nodes	for	 .	As	shown	above,	the	impurity
of	a	node	depends	on	the	criterion.	Minimal	cost-complexity	pruning	finds	the	subtree	of	 	that	minimizes	 .

The	cost	complexity	measure	of	a	single	node	is	 .	The	branch,	 ,	is	defined	to	be	a	tree	where	node	 	is	its	root.	In
general,	the	impurity	of	a	node	is	greater	than	the	sum	of	impurities	of	its	terminal	nodes,	 .	However,	the	cost	complexity
measure	of	a	node,	 ,	and	its	branch,	 ,	can	be	equal	depending	on	 .	We	define	the	effective	 	of	a	node	to	be	the	value	where	they

are	equal,	 	or	 .	A	non-terminal	node	with	the	smallest	value	of	 	is	the	weakest	link	and	will

be	pruned.	This	process	stops	when	the	pruned	tree’s	minimal	 	is	greater	than	the	ccp_alpha 	parameter.

Examples:

Post	pruning	decision	trees	with	cost	complexity	pruning

References:

L.	Breiman,	J.	Friedman,	R.	Olshen,	and	C.	Stone.	Classification	and	Regression	Trees.	Wadsworth,	Belmont,	CA,	1984.

https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Predictive_analytics
J.R.	Quinlan.	C4.	5:	programs	for	machine	learning.	Morgan	Kaufmann,	1993.
T.	Hastie,	R.	Tibshirani	and	J.	Friedman.	Elements	of	Statistical	Learning,	Springer,	2009.

Toggle	Menu

https://scikit-learn.org/stable/_sources/modules/tree.rst.txt
https://scikit-learn.org/stable/modules/tree.html#id2
https://scikit-learn.org/stable/modules/tree.html#bre
https://scikit-learn.org/stable/auto_examples/tree/plot_cost_complexity_pruning.html#sphx-glr-auto-examples-tree-plot-cost-complexity-pruning-py
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Predictive_analytics

