
2.8. Density Estimation
Density	estimation	walks	the	line	between	unsupervised	learning,	feature	engineering,	and	data	modeling.	Some	of	the	most	popular
and	useful	density	estimation	techniques	are	mixture	models	such	as	Gaussian	Mixtures	(sklearn.mixture.GaussianMixture),	and
neighbor-based	approaches	such	as	the	kernel	density	estimate	(sklearn.neighbors.KernelDensity).	Gaussian	Mixtures	are
discussed	more	fully	in	the	context	of	clustering,	because	the	technique	is	also	useful	as	an	unsupervised	clustering	scheme.

Density	estimation	is	a	very	simple	concept,	and	most	people	are	already	familiar	with	one	common	density	estimation	technique:	the
histogram.

2.8.1. Density Estimation: Histograms

A	histogram	is	a	simple	visualization	of	data	where	bins	are	defined,	and	the	number	of	data	points	within	each	bin	is	tallied.	An
example	of	a	histogram	can	be	seen	in	the	upper-left	panel	of	the	following	figure:

A	major	problem	with	histograms,	however,	is	that	the	choice	of	binning	can	have	a	disproportionate	effect	on	the	resulting
visualization.	Consider	the	upper-right	panel	of	the	above	figure.	It	shows	a	histogram	over	the	same	data,	with	the	bins	shifted	right.
The	results	of	the	two	visualizations	look	entirely	different,	and	might	lead	to	different	interpretations	of	the	data.

Intuitively,	one	can	also	think	of	a	histogram	as	a	stack	of	blocks,	one	block	per	point.	By	stacking	the	blocks	in	the	appropriate	grid
space,	we	recover	the	histogram.	But	what	if,	instead	of	stacking	the	blocks	on	a	regular	grid,	we	center	each	block	on	the	point	it
represents,	and	sum	the	total	height	at	each	location?	This	idea	leads	to	the	lower-left	visualization.	It	is	perhaps	not	as	clean	as	a
histogram,	but	the	fact	that	the	data	drive	the	block	locations	mean	that	it	is	a	much	better	representation	of	the	underlying	data.

This	visualization	is	an	example	of	a	kernel	density	estimation,	in	this	case	with	a	top-hat	kernel	(i.e.	a	square	block	at	each	point).	We
can	recover	a	smoother	distribution	by	using	a	smoother	kernel.	The	bottom-right	plot	shows	a	Gaussian	kernel	density	estimate,	in
which	each	point	contributes	a	Gaussian	curve	to	the	total.	The	result	is	a	smooth	density	estimate	which	is	derived	from	the	data,	and
functions	as	a	powerful	non-parametric	model	of	the	distribution	of	points.

2.8.2. Kernel Density Estimation

Kernel	density	estimation	in	scikit-learn	is	implemented	in	the	sklearn.neighbors.KernelDensity	estimator,	which	uses	the	Ball	Tree
or	KD	Tree	for	efficient	queries	(see	Nearest	Neighbors	for	a	discussion	of	these).	Though	the	above	example	uses	a	1D	data	set	for
simplicity,	kernel	density	estimation	can	be	performed	in	any	number	of	dimensions,	though	in	practice	the	curse	of	dimensionality
causes	its	performance	to	degrade	in	high	dimensions.

In	the	following	figure,	100	points	are	drawn	from	a	bimodal	distribution,	and	the	kernel	density	estimates	are	shown	for	three	choices
of	kernels:

https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html#sklearn.mixture.GaussianMixture
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html#sklearn.neighbors.KernelDensity
https://scikit-learn.org/stable/modules/clustering.html#clustering
https://scikit-learn.org/stable/auto_examples/neighbors/plot_kde_1d.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html#sklearn.neighbors.KernelDensity
https://scikit-learn.org/stable/modules/neighbors.html#neighbors


It’s	clear	how	the	kernel	shape	affects	the	smoothness	of	the	resulting	distribution.	The	scikit-learn	kernel	density	estimator	can	be
used	as	follows:

Here	we	have	used	kernel='gaussian' ,	as	seen	above.	Mathematically,	a	kernel	is	a	positive	function	 	which	is	controlled	by

the	bandwidth	parameter	 .	Given	this	kernel	form,	the	density	estimate	at	a	point	 	within	a	group	of	points	 	is	given	by:

The	bandwidth	here	acts	as	a	smoothing	parameter,	controlling	the	tradeoff	between	bias	and	variance	in	the	result.	A	large	bandwidth
leads	to	a	very	smooth	(i.e.	high-bias)	density	distribution.	A	small	bandwidth	leads	to	an	unsmooth	(i.e.	high-variance)	density
distribution.

sklearn.neighbors.KernelDensity	implements	several	common	kernel	forms,	which	are	shown	in	the	following	figure:

The	form	of	these	kernels	is	as	follows:

Gaussian	kernel	(kernel	=	'gaussian' )

>>>	from	sklearn.neighbors	import	KernelDensity
>>>	import	numpy	as	np
>>>	X	=	np.array([[-1,	-1],	[-2,	-1],	[-3,	-2],	[1,	1],	[2,	1],	[3,	2]])
>>>	kde	=	KernelDensity(kernel='gaussian',	bandwidth=0.2).fit(X)
>>>	kde.score_samples(X)
array([-0.41075698,	-0.41075698,	-0.41076071,	-0.41075698,	-0.41075698,
							-0.41076071])

>>>

https://scikit-learn.org/stable/auto_examples/neighbors/plot_kde_1d.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html#sklearn.neighbors.KernelDensity
https://scikit-learn.org/stable/auto_examples/neighbors/plot_kde_1d.html


Tophat	kernel	(kernel	=	'tophat' )

	if	

Epanechnikov	kernel	(kernel	=	'epanechnikov' )

Exponential	kernel	(kernel	=	'exponential' )

Linear	kernel	(kernel	=	'linear' )

	if	

Cosine	kernel	(kernel	=	'cosine' )

	if	

The	kernel	density	estimator	can	be	used	with	any	of	the	valid	distance	metrics	(see	sklearn.neighbors.DistanceMetric	for	a	list	of
available	metrics),	though	the	results	are	properly	normalized	only	for	the	Euclidean	metric.	One	particularly	useful	metric	is	the
Haversine	distance	which	measures	the	angular	distance	between	points	on	a	sphere.	Here	is	an	example	of	using	a	kernel	density
estimate	for	a	visualization	of	geospatial	data,	in	this	case	the	distribution	of	observations	of	two	different	species	on	the	South
American	continent:

One	other	useful	application	of	kernel	density	estimation	is	to	learn	a	non-parametric	generative	model	of	a	dataset	in	order	to
efficiently	draw	new	samples	from	this	generative	model.	Here	is	an	example	of	using	this	process	to	create	a	new	set	of	hand-written
digits,	using	a	Gaussian	kernel	learned	on	a	PCA	projection	of	the	data:

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html#sklearn.neighbors.DistanceMetric
https://en.wikipedia.org/wiki/Haversine_formula
https://scikit-learn.org/stable/auto_examples/neighbors/plot_species_kde.html


©	2007	-	2019,	scikit-learn	developers	(BSD	License).	Show	this	page	source

The	“new”	data	consists	of	linear	combinations	of	the	input	data,	with	weights	probabilistically	drawn	given	the	KDE	model.

Examples:

Simple	1D	Kernel	Density	Estimation:	computation	of	simple	kernel	density	estimates	in	one	dimension.
Kernel	Density	Estimation:	an	example	of	using	Kernel	Density	estimation	to	learn	a	generative	model	of	the	hand-written	digits
data,	and	drawing	new	samples	from	this	model.
Kernel	Density	Estimate	of	Species	Distributions:	an	example	of	Kernel	Density	estimation	using	the	Haversine	distance	metric	to
visualize	geospatial	data

Toggle	Menu

https://scikit-learn.org/stable/_sources/modules/density.rst.txt
https://scikit-learn.org/stable/auto_examples/neighbors/plot_digits_kde_sampling.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_kde_1d.html#sphx-glr-auto-examples-neighbors-plot-kde-1d-py
https://scikit-learn.org/stable/auto_examples/neighbors/plot_digits_kde_sampling.html#sphx-glr-auto-examples-neighbors-plot-digits-kde-sampling-py
https://scikit-learn.org/stable/auto_examples/neighbors/plot_species_kde.html#sphx-glr-auto-examples-neighbors-plot-species-kde-py

